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ABSTRACT: In this paper we define a new Mellin discrete convolution, which is related to 
Perron's formula. Also we introduce new explicit formulae for arithmetic function  which 
generalize the explicit formulae of Weil. 
 

 

MELLIN DISCRETE CONVOLUTION: 

 
We define the Mellin discrete convolution in the form 
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The proof is quite easy, first we apply the integral operator 
10

( )
s

dx
f x

x

∞

+∫  to the 

left of (1) so if the series involving a(n) is completely convergent , so we can 
switch between the series and the integral then , we have  
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If we apply the inverse operator of 
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this kind of discrete transform is a discrete analogue to the Mellin Convolution 
theorem defined for Mellin transforms 
 



 2 

1 1

0 0 0

1
( ) ( ) ( )    ( ) ( )    G( ) ( )  

2

c i

s s s

c i

dt x
f g t F s G s x F s dxf x x s dxg x x

t t iπ

+ ∞
∞ ∞ ∞− − −

− ∞

  = = = 
 ∫ ∫ ∫ ∫  (3) 

 

Now, if we set 
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  we recover  Perron's formula [5]  for 

the Coefficients of the Dirichlet series 
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But one of the best applications of our Mellin convolution is related to several 

Dirichlet series(see [4] ) in the form  
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powers or quotients of the Riemann zeta function for example 
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The definition of the functions inside () and () is as follows 

• The Möbius function, ( ) 1nµ =  if the number ‘n’ is square-free (not 

divisible by an square) with an even number of prime factors , ( ) 0nµ =  if 

n is not squarefree and   if the number ‘n’ is square-free with an odd 
number of prime factors. 

• The Von Mangoldt function ( ) logn pΛ =  , in case ‘n’ is a prime or a prime 
power and takes the value 0 otherwise 

• The Liouville function  
( )( ) ( 1) nnλ Ω= −   ( )nΩ  is the number of prime factors 

of the number ‘n’  

• | ( ) |nµ  is 1 if the number is square-free and 0 otherwise 

• 
|
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∏  , the meaning of  |p n  is that the product is taken only 

over the primes p that divide ‘n’. 
 
To obtain the coefficients of the Dirichlet series we can use the Perron formula 
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If the function G(s) includes powers and quotients of the Riemann zeta function 
we can use Cauchy’s theorem to obtain the explicit formulae for example 
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Under the assumption that all the Riemann Non-trivial zeros are simple. 
 

Also we have for the Riemann zeta function and its derivatives 
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The reader will remember the relation between Perron's formula and our 
discrete convolution , using the work of Baillie [ ] we will give different explicit 
formulae, to do so we need to use Cauchy's theorem on complex integration 
and evaluate the closed mellin inverse transform by using the residue theorem 
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iπ ∫�  where 'C' is a closed circuit including all the poles of the 

Dirichlet series G(s) , we can do this assuming all the Riemann zeros are simple 
and that the Melliin transform F(s) has no poles inside 'C' , in this case we have 
the 'explicit formulae' 
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If the Mellin transform has poles inside the closed circuit 'C' ( ) ( ) s

C

F s G s x∫� , then 

this poles will contribute with a remainder term due to the Residue theorem [1] 
in this case we have the extra term 
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this is what happens in Perron formula , due to the step function ( 1)H x −  in this 

case its Mellin transform has a pole at 0s =  since 
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As a curious final example of our Mellin discrete convolution , if we use the 
Dirichlet generating function ( ) ( )G s s kζ= −  and the floor function as a test 
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identity for the k-th order sum of the divisor function 
 

1

1
( ) ( ) ( )

2

c i

k s

k

n x n c i

x ds
n n x s k s

n i s
σ ζ ζ

π

+ ∞∞

≤ = − ∞

 = = −  
∑ ∑ ∫   (20) 

 
We have previously investigated this kind of explicit formula [3] but instead of 
the Mellin transform we used the Fourier transform and Fourier convolution 
theorem for test functions g(x) and h(x) related by a dualFourier transform , so 
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depending on if the test function are even or not ( ) ( )h x h x= − . 
 
For the case of the Liouville function, there is no contribution due to the 
nontrivial Riemann zeroes -2,-4,-6,... since the Dirichlet generating functions for 

this  case
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In our previous work [3] we have stablished similar formulae to (14-18) but in 
terms only of the imaginary part of the Riemann zeros 
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And finally the explcit formula for the divisor function ( )nσ  which is the sum of 

divisors of 'n' (12) 1 2 3 4 6 12 28σ = + + + + + = , given by 
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Where the sum inside (21-25) are over the imaginary part of the zeros of the 

Riemann zeta function on the critical line, and 
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Equations (14-18) are equivalent to the equations (21-25) but in one hand we 
use the Mellin transform and in the other hand we use the Fourier transform 
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In the formula (26) the sum is over the positive imaginary parts of the Riemann 
zeros . For the case of the explicit formulae which involve the test function  g(x) 
the Laplace Bilateral transform of this function defined by 
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must be finite , or at least regularizable 
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