Spin’s Meaning, Characterization and Calculation

In New Particle Physics

Yibing Qiu
yibing.qiu@hotmail.com

Abstract: giving a viewpoint with regards to the spins of elementary particles from first principle; in the particular, about the proton’s spin meaning, characterization and calculation in the consistent and definite form that suitable to it in all of different states

Main viewpoints and conclusions:

In quantum mechanics and particle physics, spin is a property of microscopic particles; but, it is neither revolves nor rotates due to they all are in a bound state in new particle physics. [1][2][3][4][5][6]

Spin is the observed and measured charges number of a charged elementary particle in its free state or in a bound state.

In elementary particles, only protons and electrons have their distinct spin number in different states; and neutrinos haven’t any spin number due to it is a no-charged neutral elementary particle. [2][3]

With regards to protons, a proton spin number or averages spin number of protons that in a multi-protons system, sign the spin number of every elementary particle as SN, and A is proton’s numbers in the system; N is the π-meson’s number that combined with the protons in the system, and the spin number or averages spin number of every proton is:

$$SN = 1 - N/A; \quad \text{and} \quad 0 \leq SN \leq 1$$

Moreover, in the system, the proton’s spin number and the system energy levels is an inversely-proportional relationship, the higher the protons spin numbers, the lower the energy levels; on the contrary, the lower the protons spin numbers, the higher the energy levels. [4][5][6]

For instance:

- a single proton, $N = 1, A = 1, SN = 1$; the proton of a neutron, $N = 1, A = 1, SN = 0$;
- every proton of a Deuteron, $N = 1, A = 2, SN = 1/2$;
- every proton of a Helium-3, $N = 1, A = 3, SN = 2/3$;
- every proton of a Tritium, $N = 2, A = 3, SN = 1/3$.
References

[1] Spin

 http://vixra.org/abs/1608.0066

[3] Defining and delimiting of the elementary particle
 http://vixra.org/abs/1610.0177

[4] The structure, property and parameters of nucleons
 http://vixra.org/abs/1503.0121

[5] Nuclear force and nuclear structure
 http://vixra.org/abs/1504.0054

[6] The stability and radioactivity of atomic nucleus
 http://vixra.org/abs/1411.0501

[7] The credit of Image 1
 https://www.sciencedaily.com/releases/2016/08/160802171832.htm

[8] The credit of the Image 2
 http://apod.nasa.gov/apod/ap951025.html

[9] The credit of the Image 3

[10] The credit of the Image 4
 https://www.sciencedaily.com/releases/2015/01/150105142118.htm