Picking A Least Biased Random Sample Of Size n From A Data Set of N Points {Version 3}. ISSN 1751-3030

Abstract
In this research investigation, a Statistical Algorithm is detailed that enables us to pick a Least Biased Random Sample of Size n, from a Data Set of N Points with n<N

Article body
Picking A Least Biased Random Sample Of Size \(n \) From A Data Set of \(N \) Points \{Version 3\}

ISSN 1751 - 3030

Author:
Ramesh Chandra Bagadi
Date Scientist
International School Of Engineering (IN80FE)
Postal Address: Plot No 63/A, 1st Floor,
Road No 13, Film Nagar, Jubilee Hills,
Hyderabad – 500033, Telengana State, India.
Email: ramesh.bagadi@insoft.edu.in

Abstract
In this research investigation, a Statistical Algorithm is detailed that enables us to pick a Least Biased Random Sample of Size \(n \), from a Data Set of \(N \) Points.

Theory
Given a Data Set of \(N \) points, if we were to pick a Least Biased Random Sample of Size \(n \), i.e., \(n \) Data Points, we can use the following stated Algorithm.

Algorithm
Firstly, we consider all possible Partitions of Size \(n \) of the given Data Set of \(N \) points. These will be \(^N\!C_n = \frac{N!}{n!(N-n)!} \) in number. Let these be represented by \(P_i \) for \(i = 1 \) to \(^N\!C_n \).

Now, for such Partitions \(P_i \), we find the Average (Arithmetic Mean) \(\bar{X}_{P_i} \).

We now find, using K-Means Clustering Algorithm, \(n \) Clusters using these \(^N\!C_n \) data points called \(\bar{X}_{P_i} \) and find their Centroids and let us Label these \(\bar{A}_{P_i} \).
We now pick any particular Partition, say P_k, wherein we establish $n!$ Number of One-One Functions between the n Elements of P_k and the aforementioned n Elements of Set \overline{A}_{P_i} and Pick One that Particular Function such that the

a. Differences $|\overline{A}_{P_i}(l) - P_k(m)|$ are Minimum Possible for $l = 1$ to NC_n and $m = 1$ to NC_n.

b. Sum Of the Differences $\sum_{i=1}^{^NC_n} |\overline{A}_{P_i}(l) - P_k(m)|$ are Minimum Possible for $j = 1$ to NC_n and $m = 1$ to NC_n.

c. Sum Of the Squares Of the Differences $\sum_{i=1}^{^NC_n} (|\overline{A}_{P_i}(l) - P_k(m)|)^2$ are Minimum Possible for $j = 1$ to NC_n and $m = 1$ to NC_n.

We now repeat this procedure for all the rest of P_i other than P_k and whichever Partition has this Least value, we consider that particular Partition has the Least Possible Sampling Bias.

Finding the aforementioned $n!$ Number of Functions

Considering the Set \overline{A}_{P_i}, the elements of the Set P_k can be arranged among themselves in $n!$ Number of ways. Now the One-One position wise respective correspondence between the Elements of the Set \overline{A}_{P_i} and the Elements of each of the aforementioned arrangements of the Set P_k gives us the $n!$ Number of Functions.

We can also repeat the same Procedure using the Expected Value in place of the Mean \overline{A}_{P_i}.
References

http://vixra.org/author/ramesh_chandra_bagadi

Medical Dictionary - 'Sampling Bias' Retrieved on September 23, 2009

