
1

The Bordering Method of the Cholesky Decomposition and its
Backward Differentiation

Stephen P Smith (hucklebird@aol.com)
February 2017

Abstract

This paper describes the backward differentiation of the Cholesky decomposition by the
bordering method. The backward differentiation of the Cholesky decomposition by the
inner product form and the outer product form have been described elsewhere. It is
found that the resulting algorithm can be adapted to vector processing, as is also true of
the algorithms developed from the inner product form and outer product form. The three
approaches can also be fashioned to treat sparse matrices, but this is done by
enforcing the same sparse structure found for the Cholesky decomposition on a
secondary work space.

1. Introduction

There are different ways to order and arrange the calculations of the Cholesky
decomposition of an N×N matrix M=LL . First there are N! ways to permute rows andT

columns, where some permutations are preferred to maintain sparsity, while others
move the largest diagonal element forward to become a pivot and thereby improving
numerical stability. Moreover, there are three general ways to perform the Cholesky
decomposition (see George and Liu, 1981, Section 2.1.2): the inner product form (or
left-looking), the outer product form (or right-looking), and the bordering method. At any
of N steps in the algorithm, the calculations can switch over from one of the three
general ways to another way (with some transition calculations). A switch over can
happen, for example, when a sparse matrix outer product algorithm is used up until a
point that fill-in becomes excessive and then a switch over is done into the inner
product form that permits parallel vector calculations. Moreover, it is possible to inflate
the number of ways to organize the Cholesky decomposition further by adapting
software to blocked strategies and partition matrices.

The Cholesky decomposition is not an algorithm that is unambiguously defined without
fuller specifications from the choices above. Only with the fuller specifications does it
make better sense to strictly speak of the backward differentiation (ref. Griewank, 1989)
of the Cholesky decomposition, because different backward differentiation algorithms
emerge depending on the selection of computing possibilities. The inner product form,
the outer product form, and the bordering method are three methods that come with
three different backward differentiations. Partitioning and blocking strategies will also
impact on backward differentiation.

Even with the Cholesky decomposition well defined, there is nothing that forces the

2

forward sweep where L is computed by the selected algorithm, to be followed by the
backward sweep of this very same algorithm to calculate the backward derivatives. It is
quite possible to use one algorithm to compute L, and to follow this with the backward
differentiation of a different algorithm that also does the Cholesky decomposition. For a
radical departure, if M=X X where X is a rectangular matrix, then L can be computed byT

the QR algorithm applied to X, and the reverse sweep can be handled by one of the
available algorithms for backward differentiation of a more conventional Cholesky
decomposition of M. However, even the QR algorithm can be backward differentiated
when specified (Walter, Lehmann and Lamour 2011).

Symbolic differentiation can also generate a departure from algorithmic specificity, but
this is not necessarily a disadvantage. De Hoog, Anderssen and Lukas (2011), Koerber
(2015) and Murray (2016) investigated various symbolic differentiation techniques that
utilize powerful notations to differentiate the Cholesky decomposition, or the LU
factorization, all leading to algorithms that resemble forward and reverse mode
differentiation of the Cholesky decomposition. A closer study of symbolic differentiation
is presented in the Appendix. Giles (2008) provides a very useful collection of forward
and backward derivatives for common matrix operations and are ready-made for
symbolic differentiation, but when it came to the Cholesky decomposition Giles
performed straight backward differentiation on the outer product form. These are
variants that lead to hand-coding, where symbolism is turned into a computer program
by a programer, thereby avoiding automatic differentiation by software. Hand-coding is
symbolic differentiation applied on a fine scale, including backward differentiation or
one of the other variants that come from powerful notation. It is only symbolic
differentiation of multi-variate expressions that leads to lost algorithmic specificity.

Smith (1995a) performed the backward differentiation of the outer product form of the
Cholesky decomposition before Giles, and fashioned that algorithm for sparse matrices.
Murray (2016) performed backward differentiation on the inner product form. Murray
was more interested in dense matrices, and so Murray fashioned the approach to
vector processing, including the blocked Cholesky algorithm.

The backward differentiation of the bordering method has been unexplored or not
publicized. It is the purpose of this note to provide that differentiation so that all three
versions are available.

2. Bordering Method for the Cholesky Decomposition

To introduce the bordering method the following definitions are required.

3

where:

k kIt is noted that the lower triangular matrix L is the Cholesky decomposition of A ,

1 1 1 1 1recursively for k=1, 2,... N, where A and L are the scalars " and d =" , respectively.½

k+1 k k+1 k+1It is noted that the lower triangular matrix L is cobbled together from L , u and d .

1 2 N NThe series of matrices A , A , ... A , are the leading sub-matrices of A =M, an N x N

N Nsymmetric and positive definite matrix with the Cholesky decomposition L L =M.T

The bordering method to compute the Cholesky decomposition of the matrix M is given
below.

N k k k 1 11. Set A =M, thereby defining all the arrays, A , a , " , N$k>1, and A =" , implicitly as
data entries.

1 12. Evaluate d =" .½

3. For k=1, 2, ... N-1, perform the following calculations.

k+1 k k+1 k+13a. Solve u in the lower triangular system, L u =a , by forward substitution.

k+1 k+1 k+1 k+13b. Evaluate the vector product, >=u u , and then evaluate d =(" - >) .T ½

The matrix M can be half stored, and because its entries are used only once in one of

Nthe above calculations, it is feasible to overwrite M with L while following the bordering
method.

3. Backward Differentiation of the Bordering Method

Because the bordering method is highly granular, where all intermediate calculations
are saved, it need not involve overwriting. Except for the possibility of overwriting

N various parts of the initial data or the matrix M with various parts of L as they are

Rules for Backward Differentiation follow form Griewank (1989). They are provided in1

memos by Smith (1995b, pg 13; and 2000, Section 4.2), as symbolic tools that can be used
directly by a programer. The abbreviated version follows: in the forward sweep the k-th recursion

k k k k iis h =f (S), for S f{h :i<k}, k=1, 2, ...r; then in the reverse sweep, backward derivatives are

h(i) h(i) h(k) k i i kaccumulated by, F = F + F ×Mf /Mh , for all h0S , k=r, ... 2, 1, such that F is an array

hcorresponding to all the intermediates where F represents h(), and F is suitably initialized to F=

h(r) rnull except for F = 1 where h is a scalar.

4

computed, the application of the Rules for Backward Differentiation are most1

Ntransparent. Even when matrix M is overwritten, enough information is saved in L to
propagate the derivatives backward to the initial data with little difficulty. Therefore, it is
advantages to permit what little overwriting that may exists. If F is the array that stores
the backward propagated derivatives (following the Rules for Backward Differentiation)

L(N)then let F correspond to all the non-data intermediates that are all neatly collected in

N ML and let F correspond to the intermediates given by the initial data, or M, that is

L(N) Moverwritten in the forward sweep. The overwriting is represented by F 7 F in the

Mbackward sweep where F signifies a half-stored matrix. The symbolic representations

L(N) M L(N)preserve the distinction between F and F , even though F is lost by overwriting,

L(k) u(k) d(k)and that is enough for our purpose. Likewise, let F , F , and F correspond to the

k k k L(N) A(k) a(k)intermediates of L , u and d , all belonging to the larger array F . Let F , F and

"(k) k k k MF correspond to A , a , " , all belonging to F .

The only other adjustment to the Rules for Backward Differentiation that is required has

k k ito do with the h =f (h) function (see footnote 1) that is meant to represent step 3a
(above) that is found to be a non-scalar. Therefore, the needed update involves vector

h(k) k i i kmultiplication of the row vector F and column vector Mh /Mh for h0S .T

The Rules for Backward Differentiation when applied to the bordering method above
gives the following algorithm.

M L(N) N N rA. Set F = null, and F =Mh(L)/ML , where h() =h () is the scalar function at the end of
the recursion list of length r (see footnote 1).

For k=N-1 to 1, perform steps B, C, D, and F below.

For step 3b calculations:

"(k+1) d(k+1) k+1B. F = F /d

u(k+1) u(k+1) k "(k+1)C. F =F - u F

"(k+1) "(k+1)D. F = ½F

5

For step 3a calculations:

a(k+1) u(k+1) k a(k)E. F =F L , and done more frugally by solving F in the upper triangularT T -1

k a(k+1) u(k+1)system, L F =F , by backward substitution.T

L(k) L(k)-ij L(k)F. Make the following adjustments on F where F is the ij-th element of F , and

L(k)-ij L(k)-ij u(k+1) k i j k k+1 ij#i. Set F = F - F L [e×e] L a for all j#i#k-1, where e is a null columnT -1 T -1

vector except for the i-th position that is set to 1. This set of adjustments can be done

L(k) L(k) a(k+1) k+1more frugally by setting F = F - Lower(F × u), where Lower() is a matrixT

a(k+1) k+1function that returns a lower triangular matrix that is extracted from F × u whileT

intervening on the vector product to avoid computing elements above the diagonal.

G. Apply the above for k>0 and when done perform the last calculation that

"(1) d(1) 1corresponds to k=0, F = ½F /d .

L(N) MThe more frugal overwriting is easily recognize where F 7 F , where all the steps
can rewritten to reflect overwriting. However, it is better to first recognize that steps B, C
and G can be made part of the backward substitution conducted during step E but as
part of a larger system, with step D postponed until after step F, while changing the
summation to range over k from N to 1. With these changes the algorithm is more
neatly expressed below.

M N N rA�. Set F =Mh(L)/ML , where h() =h () is the scalar function at the end of the recursion
list of length r.

For k=N to 1, perform steps below.

a(k) "(k) a(k) "(k) kB�. For k>1, apply {F , F } 7 {F , F } L , and done more frugally by usingT T -1

k backward substitution to solve the k×1 column vector v in upper triangular system,

k k a(k) "(k) a(k) "(k) kL v = {F ,F } , but overwriting F and F with v in place. When k=1, thisT T T

"(1) "(1) 1becomes a trivial adjustment: F 7 F /d .

AC�. Make the following adjustments to the half-stored matrix F ,

A(k-1) A(k-1) a(k) kF 7 F - Lower(F × u), if k>1.T

"(k) "(k)D�. F 7 ½F

It is possible to postpone all the step C� adjustments, until when they are needed. The

a(k-1)next iteration requires that some of these adjustment must be applied before F and

"(k-1)F can be updated, if k>1. These particular adjustments are of the form,

a(k-1) "(k-1) a(k-1) "(k-1) k-1 k-1 k{F , F } 7 {F , F } - B w where B is a rectangular sub-matrix of L thatT T T T T

is located in the lower left corner where the first k rows and the last N-k columns are

k Astricken, and w is a column vector out of F that is strictly below the k-th diagonal and
has already been computed. These operations can be neatly appended to step B�, so

k kthat they are first up during a generalized backward substitution, noting that {L ,B } isT T T

A A AAThe full stored version of F is F +F - Diag(F), where the matrix function Diag() is2 T

defined in the Appendix.

6

k ka proper sub-matrix of L, and {v , w } becomes the k-th column of the full-storedT T T

A kversion of F once v is computed.2

A numerical test found that the above algorithm (involving A�, B�, C� and D�) gave the
correct calculation when compared to results found symbolically. When step C� was
postponed as described above, the correct calculation was also retrieved.

4. Discussion

The backward differentiation of the bordering method (Section 3) as structured can
benefit from vector processing, with all of the o(N) operations coming from steps B�3

and C�:

kB�. Use backward substitution to solve the k×1 column v in upper triangular system,

k k a(k) "(k) a(k) "(k) kL v = {F , F } , but overwriting F and F with v in place.T T T

A(k-1) A(k-1) a(k) kC�. F 7 F - Lower(F × u).T

A(k-1)Vector processing is feasible because each of the step C� adjustments of F can be
done independently, and because most of the operations in step B�, those involving
subtraction, can be done independently in k groups. There still might be a burden that
creates a relative inefficiency due to accessing quantities stored in memory (cashe),
and therefore bench-mark testing is recommended when comparing different
algorithms. When making comparisons, it makes no difference which algorithm is used
during the forward sweep, as explained in Section 1.

Murray (2016) fashioned the backward differentiation on the inner product form to
vector processing, including a blocked Cholesky algorithm. While Smith (1995) did not
consider the feasibility of blocking or vector processing to perform the backward
differentiation of the outer product form, it is clear that all of the o(N) operations can3

also be put into groups that are done independently, because they involve matrix and
vector multiplications representing the reverse differentiation of a rank-1 update:

1. Rank-1 update during forward sweep of a symmetric matrix H, H 7 H - ww .T

w w H H2. Hence, the reverse sweep is of the form, F 7 F - [Lower(F) + Lower(F)] w, whereT

HF is also a symmetric matrix.

Therefore, the backward differentiation the Cholesky decomposition can benefit from

Apart from an inconsequential reordering of calculations.3

If backward substitution involving a triangular linear system is vaguely defined to be a4

“flipped” forward substitution, then by analogy the backward differentiation of the outer product

7

vector processing (if not a fully blocked algorithm) for the bordering method, the inner
product form, and the outer product form.

The forward sweeps of the bordering method, the inner product form, and the outer
product form can all be fashioned to exploit sparse matrix structure (George and Liu,

L1981). Smith (1995) found that the array F has the same sparse structure as L, a result
that was transparent from the differentiation of the outer product form by the reverse
sweep. Therefore, it is feasible in principle to also fashion the backward derivatives of
the bordering method and the inner product form to sparse matrix manipulation, by

Lenforcing that F and L share the same sparse structure. However, whenever symbolic
differentiation is used to guide hand programming on multi-variate functions, it is

Lpossible to loose sight of the sparse structure of F . Symbolic differentiation does enter
into the backward differentiation of the bordering method and to a lesser extent the
inner product form. In the case of the bordering method of Section 2, step 3a is a multi-
variate function and it results in the steps B� and C� (Section 3). The backward
differentiation of forward substitution (step 3a, Section 2) does product the backward
substitution found in step B� exactly , and step C� is given symbolically as, 3

A(k-1) A(k-1) a(k) kF 7 F - Lower(F × u) T

but this will destroy sparsity if applied blindly. In fact, the introduction of the matrix
function Lower() was done to enforce the lower triangular structure of L and F, but it is

k k knot part of the symbolic derivatives of u =L a given by Giles (2008), if we lose sight of-1

kthe fact that L is lower triangular. Ironically, the update is valid even if the function
Lower() is removed, but those extra derivatives are unwanted. It’s the same way with
the general sparse structure. When faithfully going through the backward differentiation
(of forward substitution) that produces the backward substitution that is required for

A(k-1)step B�, it is also found that the step C� update involving F only occurs if the
corresponding element of L is occupied and not set to zero within the sparse structure.

Even though the inner product form, the outer product form and the bordering method
are only different because of the different ordering of calculations for the Cholesky
decomposition, these relate differentially to computational strategies for treating
sparsity, blocking and the utilization of vector processing where some approaches are
found efficient and others not so much (Ng and Peyton 1993). Moreover, when
backward differentiation is applied to the three ways to calculate the Cholesky
decomposition, what is found is not a trivial reordering of calculations, what comes out
is a notable complexification . The three different algorithms, or organizations, should4

form becomes a flipped bordering method, the backward differentiation of the boarding method
becomes a flipped outer product form, and the backward differentiation of the inner product form
becomes a flipped inner product form.

8

be tested anew for treating sparsity, blocking and the utilization of vector processing,
and done quite independently to what works well for the forward sweep. However, the
noted complexification may inform our expectations of test results.

References

Brewer, J.W. (1977), The gradient with respect to a symmetric matrix, IEEE
Transactions on Automatic Control, April, 265-267.

De Hoog, R.F., R.S. Anderssen and M.A. Lukas (2011), Differentiation of matrix
Functionals using triangular factorization, Mathematics of Computation.

George, A. and J.W. Liu (1981), Computer Solutions of Large Sparse Positive Definite
Systems, Pretice-Hall, Inc, Englewood Cliffs, New Jersey.

Giles, M. (2008), An extended collection of matrix derivative results for forward and
reverse mode algorithmic differentiation, Oxford University Computing Laboratory,
Report no. 08/01.

Griewank, A. (1989), On automatic differentiation, in Mathematical Programming:
Recent Developments and Applications, eds. M. Iri and K. Tanabe, Kluwer Academic
Publishers, Dordrecht, pp. 83-108.

Koerber, P. (2015), Adjoint algorithmic differentiation and the derivatives of the
Cholesky decomposition.

Murray, I. (2016), Differentiation of the Cholesky decomposition, arXiv archived.

Ng, E.G. and B.W. Peyton, 1993, Block spare Cholesky algorithms on advanced
uniprocessor computers, SIAM Journal of Scientific Computing, 14, 1034-1055.

Smith, S.P. (1995a), Differentiation of the Cholesky algorithm, Journal of Computational
and Graphical Statistics, 4, 134-147.

Smith, S.P., (1995b), The Cholesky decomposition and its derivatives, memo.

Smith, S.P. (2000), A tutorial on simplicity and computational differentiation for
statisticians, memo.

9

Walter, S.F, L. Lehmann and R. Lamour (2011), On Evaluating higher-order derivatives
of the QR decomposition of tall matrices with full column rank in forward and reverse
mode algorithmic differentiation, Optimization Methods & Software, 1-13.

Appendix: Symbolic Differentiation of the Cholesky Decomposition

While powerful notation is available to symbolically differentiate the Cholesky
decomposition, and to derive the backward derivative update, the published derivations
are complex and hard to follow once they turn to the reverse-mode derivative update.
Therefore, a detailed derivation of these results is helpful with the expressed purpose of
avoiding further layers of complexity and to simplify the derivations as much as
possible. Attention is restricted to the Cholesky decomposition, and not the LU
factorization. Originality for the following is not claimed.

M is an N×N symmetric matrix, where M=LL and L is a lower triangular.T

Definitions that describe differentiation with respect to a scalar x:

x xwhere M is a symmetric matrix representing the derivatives of M in place, likewise L is
a lower triangular matrix representing the derivatives of L in place.

Therefore, differentiating M by the chain rule reveals the following.

x x xM =L L + LLT T

Pre-multiplying this equation by L , and post-multiplying by L , results in the following.-1 -1T

x x x(1) L M L = L L + L L-1 -1T -1 T -1T

xThe right-hand side is revealed to be the sum of a lower triangular matrix, L L and an-1

xupper triangular matrix, L L .T -1T

Define the matrix function M(A) that extracts a lower triangular matrix from the N×N
matrix A:

10

Define the following matrix functions:

Then, A= Lower(A)+Upper(A), and M(A)=A-½Diag(A)-Upper(A)=Lower(A)-½Diag(A) .

x x xWith this notation, (1) implies M(L M L) = L L . Solving for L reveals the symbolic-1 -1T -1

derivatives of L with respect to x:

x x(2) L = L M(L M L) -1 -1T

Murray’s (2016) derivation of (2) is the same as the above. De Hoog, Anderssen and
Lukas’s (2011) gave a very similar derivation so far, but for the more general case
involving the LU factorization.

If f(M,L) is a scalar function of M and L, then to accumulate the backward derivatives, or
sensitivities, following the Rules for Backward Differentiation (see footnote 1), what is

Mneeded is an array F representing the elements of M and L. Let F represent the

L M(i,j)elements corresponding to M, F the elements corresponding to L, F the element

L(i,j)corresponding the ij-the element of M, and F the element corresponding to the ij-th
element of L (j#i).

To begin backward differentiation, make the following initializations.

MF = Mf(M,L)/MM

LF = Mf(M,L)/ML

Then the following updates are applied for all j#i.

M(i,j) M(i,j) L ij F = F +tr[F ML/MM]T

ij ijThe matrix of partial derivatives of L with respect to M , i.e., ML/MM , is provided by

ij x M(i,i) i j j i i jequation (2) with x=M and M = M = e e +e e (if i�j) or e e (if i=j) following BrewerT T T

i(1977), where e is a null column vector except of an entry one at the i-th position. If the

M(i,j)initialization for F was set to null, because f() was not selected to be a direct function
of M as is the usual case, the aforementioned substitutions produce the update
equations below.

M(i,j) L M(i,i)(3) F = tr[F L M(L M L)], for all j#i.T -1 -1T

11

To evaluate (3), consider the simpler trace calculation given by (4).

ij L i j(4) G = tr[F L M(L e e L)]T -1 T -1T

If the right-hand side of (4) can be expressed as the ij-th element of a matrix G, then the
update equation (3) becomes (5).

M(5) F = Lower(G + G) - Diag(G)T

i iTo evaluate (4), define T= L e , as the i-th column of L . Generalize the function-1 -1

Diag() to also operate on vectors, such that Diag(T) is a diagonal matrix with i-th
diagonal being the i-th element of T. Therefore, Diag(T) 1 = T, where 1 is understood

i jto be a column vector of only the number one for its entries. The function M(T T)T

contained in (4) is rewritten as,

i j i j i jM(T T) = M(Diag(T) 1 × 1 Diag(T)) = Diag(T) × M(1 × 1) × Diag(T) T T T

i j = Diag(T) × M(J) × Diag(T)

i j = Diag(T) × K × Diag(T)

where J is a matrix of the number one for its entries, as is evident from J=1 × 1 , and KT

is the lower triangular matrix defined by K=M(J). Note that diagonal matrices can be
factored out of the matrix function, M(), on both sides.

Equation (4) beomes

ij L i j j L i(6) G = tr[F × L × Diag(T) × K × Diag(T)]= tr[Diag(T)× F × L × Diag(T) × K]T T

j L iDefining B =Diag(T)× F × L × Diag(T), note that the right-hand side of (6) is of theT

form tr[B K]. It is apparent that tr[B K]=1 (B C K)1, where B C K is the direct product ofT T T

B on K (or the entry by entry multiplication). However, note that B C K =M(B),T T T

therefore (6) becomes the following.

ij i L j i L j(7) G = 1 M(B) 1 = 1 M(Diag(T) L F Diag(T)) 1 = 1 Diag(T) M(L F) Diag(T) 1 T T T T T T

i L j= T M(L F) TT T

i L j =e L M(L F) L eT -1 T T -1

Now the ij-th element of G can be read directly from (7), where it is apparent that

LG=L M(L F) L , and update equation (5) can now be expressed in the handy form.-1T T -1

M L L L(8) F = Lower(L {M(L F) + M(L F) } L) - Diag(L M(L F) L)-1T T T T -1 -1T T -1

Murray derived a reverse derivative update that agrees exactly with (8). A vague
resemblance was found to (8) following Koerber’s (2015) very different derivation, with
exact agreement found following from the matrix relation M(A) =½Diag(A)+Upper(A) forT T

any matrix A. While De Hoog, Anderssen and Lukas’s (2011) treatment was for the

12

more general LU factorization, exact agreement is again found with (8) by substituting
the upper triangular matrix U in their equation (3.13) with U=L . Hand programmingT

from these various symbolically derived results can precede and might even lead to
different programs, in addition to what is expected from the lack of algorithmic
specificity.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

