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Alice prepares two large qubit-ensembles E1 and E2 in the following states: She individually
prepares each qubit of E1 in |0〉 or |1〉, the eigenstates of Pauli-z operator σz, depending on the
outcome of an unbiased coin toss. Similarly, she individually prepares each qubit of E2 in |+〉 or
|−〉 the eigenstates of σx. Bob, who is aware of the above states preparation procedures, but knows
neither which of the two is E1 nor Alice’s outcomes of coin tosses, needs to discriminate between the
two maximally mixed ensembles. Here we argue that Bob can partially purify the mixed states (E1,
E2), using the information supplied by central limit theorem. We will show that, subsequently Bob
can discriminate between ensembles E1 and E2 by individually rotating each qubit state about the
x-axis on Bloch sphere by a random angle, and then projectively measuring σz. By these operations,
the variance of sample mean of σz measurement outcomes corresponding to the ensemble E1 gets
reduced. On the other hand, qubit states in E2 are invariant under the x-rotations and therefore
the variance remains unaltered. Thus Bob can discriminate between the two maximally mixed
ensembles. We analyse the above problem both analytically as well as numerically, and show that
the latter supports the former.

PACS numbers: 03.65.Ta, 03.67.-a, 03.65.Aa, 03.67.Ac
Keywords: Random x-rotations, Projective measurements

I. INTRODUCTION

A state vector is associated with a unique pure quan-
tum system. However, a density matrix can be associated
with two different mixed quantum ensembles where each
is a mixture of different (complete) set of pure quantum
(basis) states. It is generally believed that it is not pos-
sible to discriminate between such mixed ensembles, as
density matrix is assumed to specify all the properties of
a given quantum ensemble [1–3]. However there are dis-
cussions in the literature contrary to this belief [4]. Fano
defines the state via the way it is prepared [5]. The pur-
pose of the present paper is to re-examine this problem
and show that discrimination is indeed possible.

The problem of discriminating between two ensembles
of qubits where each is in a maximally mixed state but
having different physical content i.e., having been pre-
pared using two different procedures, is interesting as
well as important. Alice prepares an ensemble E1 (E2)
of N qubits in the following state: She tosses an unbi-
ased coin and if the outcome is Head, then she prepares
the jth qubit in the state |0〉 (|+〉), else she prepares it
in the state |1〉 (|−〉), j = 1, 2, ..., N , where |0〉, |1〉 are
eigenkets of Pauli-z matrix σz with eigenvalues +1,−1
respectively, and |±〉 = [|0〉 ± |1〉]/

√
2. N is sufficiently

large enough to obtain at least approximately normally
distributed sample mean. Alice gives Bob one of the two
ensembles and Bob needs to find which of the two. Bob
knows how Alice prepared the state of the qubits in the
ensembles E1 and E2, but he do not know Alice’s out-
comes of coin tosses. We are going to show that, even
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though Bob cannot know the exact state of each and ev-
ery qubit in the given ensemble, still he can know whether
it was the ensemble E1 or ensemble E2, provided the en-
sembles have certain extra features (i.e., Bob should be
able to individually address and manipulate each qubit
in the given ensemble, like Alice in the above case) than
conventional ensembles.

A plausible implication of our discrimination protocol
might be that Alice may signal Bob, provided they have
pre agreed upon the time of communication. By this,
Bob knows a priori that Alice is definitely going to mea-
sure on her entangled qubit states at a particular time
instant. Hence it does not violate the no-signaling prin-
ciple [6–8] per se, as the latter excludes any kind of a
priori knowledge.

The rest of the introduction serves as a descriptive ac-
count of the notations and defining terms in developing
our approach to the problem considered here, and gives
a brief overview of the discrimination protocol.

We define following two kinds of ensembles: If Al-
ice and Bob can (cannot) individually address and con-
trol each qubit in the ensemble, and if the qubits are
non-interacting, we call it an individual control ensem-
ble i.e., IC-ensemble (a collective control ensemble i.e.,
CC-ensemble). The above state preparation by coin toss-
ing corresponds to IC-ensembles. A few more examples
of IC-ensembles are the following: (a) Non-interacting
qubits fixed at definite sites of a 2D crystal lattice (see
Fig. (1)), where each qubit can be labeled with spatial
coordinates and hence can be manipulated individually.
(b) Consider two polarization directions of a single pho-
ton as a qubit. Alice prepares it either in |0〉 or |1〉 (|+〉 or
|−〉) state, and sends it to Bob via optical fiber. She re-
peats this procedure N times. Here Alice and Bob can la-
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bel each qubit with temporal coordinates, and obviously
they can manipulate individual qubits at different points
of time. An example of CC-ensemble is the following:
Pseudo pure part of liquid state NMR qubit-ensemble [9]
where individual labeling and hence individual manipu-
lation of qubits is not possible. Here one can address and
control all the qubits together i.e., only collective/mass
control is possible.

Suppose in the above state preparation by coin tossing,
Alice somehow looses information about label/address of
individual qubits and also her ability to manipulate in-
dividual qubits, after she had prepared the ensembles
E1 and E2. Consequently Bob also looses individual ad-
dressability as well as his ability to manipulate individ-
ual qubits. Then E1 and E2 becomes CC-ensembles of
qubits, and consequently both are in maximally mixed
state (i.e., 12/2 where 1n is n× n identity matrix) even
for Alice. This is because of the following two reasons:
(1) Alice just knows that a given qubit in E1 (E2) is ei-
ther in the state |0〉 or |1〉 (|+〉 or |−〉), but she is not
sure of its exact state, as she has lost its label. (2) Alice
has lost individual control. For Bob, qubits in the given
CC-ensemble Ei are in the state 12/2, i = 1 or 2. In CC-
ensembles, only collective/nonselective operations (uni-
tary evolutions, measurements etc.) are possible. Hence
every qubit state has to evolve under the same unitary
operator i.e., U12U

†/2 = 12/2. Further if Bob mea-
sures some observable nonselectively on the state 12/2,
then the post measurement state is also 12/2 (Appendix
(C 5)). Hence Bob cannot purify his mixed state 12/2,
and hence he obtains same mean and variance of sample
mean of σz measurement outcomes from both the CC-
ensembles E1 and E2. Hence Bob cannot discriminate
between CC-ensembles E1 and E2.

However if E1 and E2 are IC-ensembles (see Fig. (1)),
like in the above state preparation by coin tossing, then
for Alice, qubits in them are in a pure state |φ1j〉 and
|φ2j〉 respectively. This is because, she knows the ex-
act state of each of the N qubits in the IC-ensemble
Ei, i = 1, 2. However for Bob, qubits in the given IC-
ensemble Ei, i = 1 or 2, are in a maximally mixed
state 12N /2

N . Mixedness represents his ignorance about
whether the given ensemble is E1 or E2, and also his ig-
norance about the exact state of individual qubits in the
given IC-ensemble. Bob partially purifies his mixed state
by applying central limit theorem to his knowledge about
Alice’s states preparation procedures. Then Bob carries
out following operations individually on each of the N
qubit states in the given IC-ensemble Ei (i.e., |φij〉): (1)
Rotates the qubit state about x-axis on Bloch sphere by
an angle θq where θq is a random number (random x-
rotation). (2) Measures σz projectively. By these oper-
ations, variance of sample mean of σz measurement out-
comes corresponding to the IC-ensemble E1 gets reduced
(see orange narrow Gaussian in the top row of Fig. (1)).
This happens due to sort of convolution between proba-
bility distribution of θq and that of sample mean before
random x-rotations. However if the given IC-ensemble is
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FIG. 1. (Color online) Non-interacting qubits fixed at def-
inite sites of a 2D crystal lattice. Hence E1 and E2 are
IC-ensembles. For Alice qubits in the IC-ensemble E1 (E2)
are in a pure state |φ1j〉 = [|0〉|0〉|1〉...|0〉][|1〉|1〉|1〉...|0〉]...
(|φ2j〉 = [|+〉|−〉|+〉...|+〉][|+〉|−〉|−〉...|−〉]...). (θq)x is ran-
dom rotation about x-axis where θq = {0, π} with probability
{1/2, 1/2} respectively. T|a1〉 (T|a2〉) is the number of qubits
in a given column of the IC-ensemble E1 (E2) which are in the
state |a1〉 (|a2〉), a1 = 0, 1 (a2 = +,−), where T|0〉+T|1〉 = M ,
and T|+〉 + T|−〉 = M . Gaussian is the probability density
function of sample mean of M number of σz measurement
outcomes. Bob uses M1 sample mean points to construct the
full Gaussian. Note that Bob measures only after applying
(θq)xs.

E2, then random x-rotations introduces an insignificant
global phase to the qubit states |+〉, |−〉 in it. Hence the
variance of sample mean remains unaltered (see green
broad Gaussians in the bottom row of Fig. (1)). Hence
Bob can discriminate between IC-ensembles E1 and E2
via variance of sample mean.

We start section II by describing how Bob can par-
tially purify his mixed state. In the beginning of sec-
tion IIA, we give the motivation to introduce random
x-rotations. Then by applying central limit theorem to
independently distributed random variables, we obtain
the resultant probability density of sample mean, in case
of Bob getting IC-ensemble E1. In section IIB we con-
sider the simplest case and show that resultant variance
of sample mean gets reduced only in case of IC-ensemble
E1, leading to discrimination. In section III we present
results of a numerical simulation in support of the the-
oretical predictions, and we summarize and conclude in
section IV. The details of the frameworks and related
topics are elucidated in four appendices each of which are
divided into subsections for purposes of clarity of presen-
tation.
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II. THEORY

Whenever we say measurement, we mean projective
measurement unless stated otherwise.
Problem: Alice prepares an IC-ensemble E1 (E2) of N
qubits in the following state: She tosses an unbiased
coin and if the outcome is Head, then she prepares the
jth qubit in the state |0〉 (|+〉), else she prepares it in
the state |1〉 (|−〉), j = 1, 2, ..., N . Alice gives Bob, IC-
ensemble Ei with probability αi, i = 1, 2, α1 + α2 = 1.
Bob knows how Alice prepared the state of the qubits
in the IC-ensembles E1, E2, but he do not know Alice’s
outcomes of coin tosses. Bob has to find out whether the
given IC-ensemble is E1 or E2. Bob need not have to find
out the exact state of each qubit in the given IC-ensemble
Ei, i = 1 or 2.

For notational convenience, almost every where we use
same symbol for both random variable and its value.
However they are distinguishable from the context.
Solution: Bob divides the given IC-ensemble Ei as follows

to obtain M1 sample mean points: Ei =
∏M1

j=1⊗Eij , i = 1
or 2. Each sample mean point is calculated with M num-
ber of σz measurement outcomes. Hence N = M ×M1

where M,M1 are sufficiently large enough to obtain at
least approximately normally distributed sample mean.
IC-ensemble Eij is nothing but a column of the matrix in
Fig. (1).

Let

F1 = {|0〉⊗N , |0〉⊗N−1|1〉, ..., |1〉⊗N}, and

F2 = {|+〉⊗N , |+〉⊗N−1|−〉, ..., |−〉⊗N}. (1)

Fi is a complete set of orthonormal basis states in 2N di-
mensional (2N -D) Hilbert space, and also it corresponds
to the sample space of N number of unbiased coin tosses
where each of the 2N possible outcomes are equally likely
(Appendix C 1), i = 1, 2. E.g., for N = 2,

F1 = {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}, and

F2 = {|+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉}.

Let |φij〉 ∈ Fi, i = 1, 2, where j = 1, 2, ..., 2N . For Alice,
qubits in the IC-ensemble Ei are in one of the pure states
|φij〉s, as she knows the exact state of each of the N
qubits in it, i = 1, 2. However for Bob, given qubits are
in a mixed state

ρB = α1ρ1 + α2ρ2,

where ρi =

2N∑
j=1

1

2N
|φij〉〈φij | =

12N

2N
, i = 1, 2 (2)

[10]. ρB represents the state of given qubits from Bob’s
mathematical perspective. Mixedness of ρB represents
Bob’s ignorance about whether the given IC-ensemble is
E1 or E2, and also his ignorance about the exact state of
each of the N qubits in the IC-ensemble Ei (which is rep-
resented by the mixedness of ρi), i = 1, 2. The fact that
both ρ1 and ρ2 are maximally mixed implies that Bob is

equally ignorant in both the cases. But it does not mean
that Bob cannot discriminate between them. Although
mathematically same, they are physically different (Ap-
pendix (C 3)). Bob assigns the value +1 (−1) to the
outcome Head (Tail) in the above state preparation by
Alice. As Bob knows Alice’s states preparation proce-
dures, he applies central limit theorem ([11], Appendix
(A 1)) to them, which asserts that in the large M limit,
probability of Alice preparing such a state |φij〉 which
corresponds to the sample mean SAi → ND : 0, 1/M
(i.e., SAi is a Normally Distributed random variable with
mean 0 and variance 1/M) tends to one, where SAi =

(TA+
i − TA−i )/M , TA±i is the number of ±1 outcomes

Alice obtains during the preparation of IC-ensemble Ei
such that TA+

i +TA−i = M , i = 1, 2. Using this informa-
tion Bob projects ρi as follows:

ρi → ρ̂i =
∑
j

p̂j |φij〉〈φij |

where |φij〉 is such a state which corresponds to the sam-
ple mean SAi , and

∑
j p̂j ≈ 1, i = 1, 2. Renormalizing we

get

ρ̃i =
ρ̂i

Tr(ρ̂i)
=
∑
j

p̃j |φij〉〈φij | 6=
12N

2N
, i = 1, 2.

⇒ ρB → ρ̃B =

2∑
i=1

αiρ̃i. (3)

Further Tr(ρ̃2
i ) =

∑
j p̃

2
j > Tr(ρ2

i ) = 1/2N , i = 1, 2.
Hence the information supplied by central limit theo-
rem has partially purified ρ1, ρ2 and hence ρB . In Ap-
pendix (C 6) we show how mixed state of qubits in an
IC-ensemble can be purified solely via information.

Notations and definitions: (1) Bob rotates jth qubit
state in the IC-ensemble Ei about x-axis on Bloch sphere,
through an angle θq (i.e., Bob evolves jth qubit state
under the unitary operator

(θq)x = exp(−iθqσx/2)

), where θq is a random number which takes discrete val-
ues {θ1, θ2, ...} with probability {poθ1 , p

o
θ2
, ...} respectively

({θ1, θ2, ...} → {poθ1 , p
o
θ2
, ...}),

∑
q p

o
θq

= 1, i = 1 or 2,

j = 1, 2, ..., N .
(2) If Bob measures σz individually on each of the M
qubits in the IC-ensemble Eij , then sample mean

Si = (T+
i − T

−
i )/M

where T±i is the number of ±1 outcomes, and T+
i +T−i =

M , i = 1 or 2. Value of Si varies as j varies. However,
Bob is going to measure only after applying (θq)x in-
dividually to each of the M qubits in the IC-ensemble
Eij , i = 1 or 2. Si is defined just for the sake of calcula-
tions. Further S1 = SA1 (Appendix (B 3)).
(3) Bob measures σz individually on each of the M qubits
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in the IC-ensemble E ′ij to obtain sample mean

S′i = (T ′+i − T
′−
i )/M

where T ′±i is the number of±1 outcomes, T ′+i +T ′−i = M ,
and IC-ensemble E ′ij is got by applying (θq)x individually
to each of the M qubits in the IC-ensemble Eij , i = 1
or 2. Value of S′i varies as j varies. But E ′2j = E2j (∵
(θq)x introduces an insignificant global phase to the qubit
states in the IC-ensemble E2j). Hence S′2 = S2 +X = S2

where X corresponds to application of (θq)xs.
From Alice’s state preparation procedure, it is easily

evident that S1 ≡ S2 i.e., S1 and S2 are independent
and identically distributed (i.e., they have same mean
and variance) random variables (Appendix (B 3)). Fur-
ther, sample mean Si has mean 〈Si〉 = 〈σz〉|+〉 = 0, and
variance

∆S2
i = (∆σz)

2
|+〉/M = 1/M,

(Appendix (B 3)), where 〈X〉|ζ〉 = Tr(X|ζ〉〈ζ|), and

(∆X)2
|ζ〉 = 〈(〈X〉|ζ〉 − x)2〉 = 〈X2〉|ζ〉 − 〈X〉2|ζ〉

[12], i = 1, 2. As SA1 = S1 ≡ S2 (Appendix (B 3)) we have
sample mean Si → ND : 0, 1/M , i = 1, 2. Now we are
going to show that, for θ1 6= θ2, p

o
θ1
6= 0, poθ2 6= 0, variance

of S′1 will be less than that of S′2. This is because, in this
case S′1 6= S1(≡ S2 = S′2 as shown above). Hence Bob
can discriminate between IC-ensembles E1 and E2.

A. General case

Motivation: Consider the following theorem: If

Xi → ND : µi, σ
2
i , then Z =

∑Ñ
i=1Xi → ND :∑Ñ

i=1 µi,
∑Ñ
i=1 σ

2
i where Xis are normally distributed in-

dependent random variables [11]. Probability distribu-
tion of Z is the convolution of that of Xis. Note that Z
has probability distribution different from that of Xis.
This is the motivation behind introducing a new in-
dependent random variable θq via (θq)x, into already
present random variable S1 in the IC-ensemble E1j , so
that resultant probability distribution may turn out to
be different from that of S1. We are going to sort of
convolute (Eq. (10) resembles convolution) two inde-
pendent probability distributions: S1 → ND : 0, 1/M
and {θ1, θ2, ...} → {poθ1 , p

o
θ2
, ...} to obtain S′1 → ND :

0, (1 − (∆ cos θq)
2
poθq

)/M . Note that in S′1 there is a re-

duction in variance unlike in Z above. This is because
in case of Z, as Ñ increases, number of independent ran-
dom variables also increases. But it is not so in case of
S′1 (Appendix (B 13)).

Applying (θq)x individually to each of the M qubit
states in the IC-ensemble E2j , introduces an insignificant
global phase (∵ (θq)x|±〉 = exp(∓iθq/2)|±〉), and hence
Bob obtains sample mean S′2(= S2) → ND : 0, 1/M .

Whereas in the IC-ensemble E1j , applying (θq)x individ-
ually to each of the M qubit states, transforms |0〉, |1〉
to

|θq〉 = (θq)x|0〉 = cos
θq
2
|0〉+ e−i

π
2 sin

θq
2
|1〉,

|θq⊥〉 = (θq)x|1〉 = e−i
π
2 (sin

θq
2
|0〉+ ei

π
2 cos

θq
2
|1〉)

respectively.

Application of (θq)x individually to each of the N
qubits in the unknown state |φij〉, transforms ρ̃B (Eq.
(3)) as follows:

ρ′B =

dN∑
l=1

PlUlρ̃
BU†l =

2∑
i=1

αi
∑
j

p̃j

dN∑
l=1

PlUl|φij〉〈φij |U†l

=

2∑
i=1

αi
∑
j,l

p̃jPl|φ′ijl〉〈φ′ijl| =
2∑
i=1

αiρ
′
i, (4)

where Ul = (θq1)x ⊗ (θq2)x ⊗ ...⊗ (θqN )x, q1, q2, ..., qN =
1, 2, ..., d, {θ1, θ2, ..., θd} → {poθ1 , p

o
θ2
, ..., poθd}, Pl is the

probability with which Ul is applied, and
∑dN

l=1 Pl = 1
[13], Appendix (C 8). Upon Bob measuring σz indi-
vidually on each of the N qubits in the state ρ′i, the
state ρ′i gets projected onto a pure state (∵ Bob knows
the post measurement state of each of the N qubits
exactly), i = 1 or 2 (Appendix (C 4)). Using cen-
tral limit theorem we are going to show that, in the
large M limit, probability of ρ′1 getting projected onto
such a pure state which corresponds to the sample mean
S′1 → ND : 0, (1 − (∆ cos θq)

2
poθq

)/M tends to one. Using

this information Bob can project as follows:

ρ′1 → ρ′′1 =
∑
j,l

p̃jPl|φ′1jl〉〈φ′1jl| =
∑
j

p′′j |φ′1j〉〈φ′1j |,

where |φ′1jl〉, |φ′1j〉 are such states which corresponds to

the sample mean S′1 → ND : 0, (1 − (∆ cos θq)
2
poθq

)/M ,

and
∑
j p
′′
j ≈ 1. Renormalizing

ρ̂′1 =
ρ′′1

Tr(ρ′′1)
=
∑
j

p̂′j |φ′1j〉〈φ′1j |. (5)

In a special case one can easily show that Tr(ρ̂′21 ) >
Tr(ρ̃2

1) (Appendix (C 7)), and hence there is an increase in
purity. But ρ′2 = ρ̃2 (∵ (θq)x introduces an insignificant

global phase to |+〉, |−〉 in |φ2j〉s). ⇒ Tr(ρ′2
2
) = Tr(ρ̃2

2).
Hence

ρ′B → ρ̂′B = α1ρ̂
′
1 + α2ρ̃2.

As ρ̂′1 corresponds to the sample mean S′1, and ρ̃2 to
S′2(= S2 ≡ S1), Bob can discriminate between ρ1 and ρ2.

Consider |φ′1jl〉. Measuring σz individually on each of

the |θq〉s and |θq⊥〉s is equivalent to tossing differently bi-
ased coins. By these measurements, ρ′1 is projected onto
a pure state as explained above. In a special case Bob
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can even know the exact state of each of the N qubits in
the given IC-ensemble E1 (Appendix (B 6)). After mea-
surement, Bob calculates the sample mean (S′1) of the
outcomes. We are now going to obtain the probabil-
ity density function of S′1. We have random variable
means 〈σz〉|θq〉 = cos θq, 〈σz〉|θq⊥〉 = − cos θq, and vari-

ances (∆σz)
2
|θq〉 = (∆σz)

2
|θq⊥〉 = sin2 θq. By applying

central limit theorem to independently distributed (id)
random variables [11], we obtain effective mean

µeff =
∑
q

(pq〈σz〉|θq〉 + pq⊥〈σz〉|θq⊥〉)

=
∑
q

(pq − pq⊥) cos θq, (6)

where pq = M ′q(T
+
1 , pθq )/M (pq⊥ = M ′q⊥(T−1 , pθq )/M),

and M ′q (M ′q⊥) is the total number of |θq〉s (|θq⊥〉s),∑
q[M

′
q +M ′q⊥] = M ; pθq = mq/M where mq is the total

number of times (θq)x is applied, and
∑
qmq = M (see

Appendix (A 2) for derivation of µeff). Note that the ba-
sic probabilities cos2(θq/2), sin2(θq/2) are fixed, whereas
the derived probabilities pq, pq⊥ varies over M1 number
of IC-ensembles E1js, because the numbers M ′q,M

′
q⊥ are

not fixed. As T±1 and mq are independent, we obtain
using Bayes’ rule

pq = p+
1 pθq , pq⊥ = p−1 pθq , (7)

where p±1 = T±1 /M [14]. Substituting pq, pq⊥ into µeff

(Eq. (6)) we obtain

µeff = S1〈cos θq〉pθq , (8)

where 〈cos θq〉pθq =
∑
q pθq cos θq. Note that probabilities

p±1 , pθq , and sample mean S1 are normally distributed
random variables with non-zero variance i.e.,

p±1 → ND : 1/2, 1/(4M) (∵ T±1 → ND : M/2,M/4),

pθq → ND : poθq , σ
2
mq/M

2 (∵ mq → ND : poθqM,σ2
mq ),

and S1 → ND : 0, 1/M where σ2
mq ∼ M (see Appendix

(B 4) for derivation). Hence we need to take care of the
variance (however small) present in them. Hence, first
we shall do calculations for given values of pθqs and S1,
and later we will integrate the results obtained over all
possible values of pθqs and S1 after multiplying by the
corresponding weighing factor.

Applying central limit theorem to id random variables,
we obtain effective variance

(∆σz)
2
eff =

∑
q

(pq(∆σz)
2
|θq〉 + pq⊥(∆σz)

2
|θq⊥〉)

=
∑
q

(pq + pq⊥) sin2 θq = 1− 〈cos2 θq〉pθq , (9)

where 〈cos2 θq〉pθq =
∑
q pθq cos2 θq (see Appendix (A 2)

for derivation of (∆σz)
2
eff). Note that even though µeff

happens to coincide with 〈σz〉ρ′1j , (∆σz)
2
eff 6= 〈σ2

z〉ρ′1j −

〈σz〉2ρ′1j where ρ′1j =
∑
q(pq|θq〉〈θq|+ pq⊥|θq⊥〉〈θq⊥|), this

is because in going from IC-ensemble E ′1j to CC-ensemble
corresponding to ρ′1j , there is information loss (Appendix
(A 2, A 3)). Then according to central limit theorem, in
the large M limit, probability distribution of effective
sample mean S′1, for given values of pθqs and S1 (i.e.,

for given values of mqs and T+
1 ), tends to normal distri-

bution i.e, S′1 → ND : µeff , (∆σz)
2
eff/M [11], Appendix

(A 2). Now we shall integrate over all possible values of
pθqs and S1 after multiplying the component probability
density function by corresponding weighing factor (joint
probability), to get the resultant probability density of
S′1, as follows:

f(S′1) =

∫ ∏
i,i 6=l

{dpθi(Nd(pθi) : poθi , σ
2
mi/M

2)}

×dS1(Nd(S1) : 0, 1/M)

(
Nd(S′1) : µeff , (∆σz)

2
eff/M

)
,(10)

where (Nd(x) : µ, σ2) = 1√
2πσ

exp(−(x−µ)2/(2σ2)) (i.e.,

Normal probability density function with mean µ and
variance σ2), dx(Nd(x) : µ, σ2) is the probability of ob-
taining value x of normally distributed random variable
x. In Eq. (10) index i 6= l is because of the con-
straint equation pθl = 1 −

∑
j,j 6=l pθj . Using this con-

straint equation we should eliminate pθl from 〈cos θq〉pθq
and 〈cos2 θq〉pθq , before integrating. In Eq. (10) we have
product of probabilities because pθqs and S1 are indepen-
dent random variables [15]. As there are no constraint
equations in pθqs and S1, we have to integrate over the
entire hyper volume spanned by pθqs and S1. Further,
as we can integrate in any order (Appendix (B 16)), we
can integrate out S1 from −∞ to ∞ [16] in Eq. (10).
Integrating out S1 we obtain

f(S′1) =

∫ ∏
i,i6=l

{dpθi(Nd(pθi) : poθi , σ
2
mi/M

2)}

×(Nd(S′1) : 0, (1− (∆ cos θq)
2
pθq

)/M) (11)

where (∆ cos θq)
2
pθq

= 〈cos2 θq〉pθq − 〈cos θq〉2pθq [17].

Now consider θq = θ0,∀q. Then Eq. (11) reduces to
f(S′1) = (Nd(S′1) : 0, (1 − 0)/M) = g(S′2), hence no dis-
crimination. This is expected because, by rotating all M
qubit states by same angle we are not introducing any
new independent random variable. A random variable
is characterized by having non zero variance. But here
variance of random variable cos θq is (∆ cos θq)

2
poθq

= 0.

Hence no randomness. Hence we cannot change/distort
the probability distribution of sample mean (S1) corre-
sponding to the IC-ensemble E1j . Hence for discrimi-
nation, we should take at least {θ1, θ2} → {poθ1 , p

o
θ2
},

θ1 6= θ2, p
o
θq
6= 0,∀q. Further, when θ0 = 0, f(S′1) =

(Nd(S′1) : 0, 1/M) = g(S1), probability density of S1, as
required.



6

B. Specific case

Let us consider the simplest possible case: {θ1, θ2} →
{poθ1 , p

o
θ2
}. pθqs are constrained by pθ1 + pθ2 = 1. Let

l = 2 in Eq. (11). Eliminating pθ2 from Eq. (11) we
obtain

f(S′1) =

∫
dpθ1(Nd(pθ1) : poθ1 , σ

2
m1
/M2)

×(Nd(S′1) : 0, (1− pθ1(1− pθ1)(cos θ1 − cos θ2)2)/M).

(12)

Direct evaluation of the integral in Eq. (12) is difficult
(for an indirect evaluation see Appendix (B 5)). Note
that f(S′1) in Eq. (12) is the weighted mean of many
Gaussians each having mean zero. Hence there is no
swaying of center of Gaussians (Appendix (B 1)) unlike
in Eq. (10). Also as M is large, it is justifiable to replace
the weighing Gaussian (Nd(pθ1) : poθ1 , σ

2
m1
/M2) in Eq.

(12) with delta function δ(pθ1 −poθ1) (Appendix (A 1)) to
obtain

f(S′1) ≈ (Nd(S′1) : 0, ((∆σz)
2
|+〉 − (∆ cos θq)

2
poθq

)/M), (13)

where (∆σz)
2
|+〉 = 1, and

(∆ cos θq)
2
poθq

= poθ1(1− poθ1)(cos θ1 − cos θ2)2.

Hence the resultant variance of sample mean S′1 is
∆S′21 ≈ (1 − (∆ cos θq)

2
poθq

)/M . Note that this approx-

imation does not work in Eq. (10), as there is sway-
ing of center of Gaussians. In Eq. (10) if we replace
the weighing Gaussian (Nd(S1) : 0, 1/M) with δ(S1− 0),
then we will be neglecting the swaying of center of Gaus-
sians in (Nd(S′1) : µeff , (∆σz)

2
eff/M). This results in

f(S′1) = (Nd(S′1) : 0, sin2 0/M), for θq = 0 ∀q, which
is not correct. Hence swaying of center of Gaussians af-
fects/contributes to the resultant/net variance. To con-
clude, as the variance of sample mean S′2, ∆S′22 = 1/M (∵
S′2 = S2), is different from ∆S′21 , Bob can discriminate
between the two IC-ensembles E1 and E2.

Nonlinearity in action: We will show how nonlinearity
is reducing the variance. We have ∆S′21 ≈ (〈cos θq〉2poθq +

〈sin2 θq〉poθq )/M (Eq. (13)). Let {θ1(= 0), θ2(= π/2)} →
{po0, poπ/2}. ⇒ ∆S′21 ≈ (po0

2 + poπ/2)/M < 1/M . Note

that squaring of probabilities is a nonlinear operation
(Appendix (B 10)).

In Appendix (C 1) we show that it is nothing but a
‘deterministic but inexact nonorthogonal state discrimi-
nation’ problem. For explanation using central limit the-
orem and Shannon entropy, see sections (B 8) and (B 9)
respectively in Appendix.
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FIG. 2. (Color online) CombRecursive is the PRN generator.
Red curve with dot marker is g(S1)(= g(S′2) = g(S2)), and
blue curve with no marker is f(S′1). (a) Ag (= Area under one

standard deviation of g(S1) i.e., from S1 = −∆S1 = −1/
√
M

to S1 = ∆S1) is 0.685 (theoretical prediction in the large
M,M1 limit is ≈ 0.683). Af (= Area under f(S′1) correspond-
ing to one standard deviation of g(S1)) is 0.783 (as predicted
by our protocol in the large M,M1 limit is ≈ 1). Hence there
is clear reduction in variance i.e., ∆S′21 < ∆S2

1(= ∆S′22 ). (b)
Ag = 0.684, Af = 0.78.

III. NUMERICAL SIMULATION

Reduction in variance: Standard uniformly distributed
Pseudo Random Numbers (PRN), drawn from the open
interval (0, 1), were generated using MATLAB. These
PRNs were used to simulate measuring σz on the state

|χ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉

as follows: if we get a PRN in the interval (0, cos2(θ/2)),
then it is equivalent to getting outcome +1, else it is
equivalent to getting outcome −1. We simulated the case
{θ1(= 0), θ2(= π)} → {poθ1(= 1/2), poθ2(= 1/2)} for vari-
ous values of M,M1. Application of (θq)xs was simulated
as described in Appendix (B 4). Here we discriminate
by comparing f(S′1) with g(S1)(= g(S2) = g(S′2)), as
both density functions can be obtained from the given
IC-ensemble Ei, i = 1 or 2. If the given IC-ensemble
is E1, then f(S′1) corresponds to after applying (θq)xs,
else f(S′1) (virtual) corresponds to before applying (θq)xs
(Appendix (B 2)). Results are plotted in Fig. (2), and in
Appendix Fig.s (3, 4, 5, 7(c)). There is a clear reduction
in variance as predicted by theory. In Fig. (2), g(S1) is
much closer to the corresponding theoretical prediction,
but f(S′1) is not so close to the corresponding theoretical
prediction (approximately a delta function). Reasons for
this lower reduction in variance than theoretically pre-
dicted might be the following: (1) Theoretical predictions
are in the large M,M1 limit, where as simulation results
are for M = 102, 105, ...;M1 = 2000, 104, 106, .... Reasons
given in the section ‘How hard it might be to reduce the
variance?’ in Appendix (B 14) may also apply here. (2)
Theoretical calculations may not be exact/precise. E.g.,
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we have not evaluated the integral in Eq. (12) exactly.
(3) PRNs depends on the generator. (4) We might be
missing something in theoretical calculations.

Instead of directly looking for reduction in variance,
we can also look for reduction in population difference
(|T ′+1 − T

′−
1 | − |T

+
1 − T

−
1 |) (Appendix (D 2)).

IV. SUMMARY AND CONCLUSION

We considered such kind of ensembles where Alice and
Bob were able to individually address and control each
qubit in the ensemble. Alice prepared two ensembles of a
large number of qubits, E1 and E2, in the following states:
Depending on the outcomes of unbiased coin tosses, she
prepared the qubits in E1, in the eigenstates of Pauli-z
matrix; while she prepared the qubits in E2, in the eigen-
states of Pauli-x matrix. Alice gave Bob one of the two
ensembles, E1, E2, and asked him to identify. Bob was
aware of Alice’s states preparation procedures, but was
unaware of her outcomes of coin tosses. Qubits in each of
the two ensembles were in maximally mixed state from
Bob’s mathematical perspective, although they had dif-
ferent physical content. We showed that Bob was able
to partially purify the mixed states by applying central
limit theorem to his knowledge of Alice’s state prepara-
tion procedure, which gave him the hopes of discrimina-
tion. Then Bob individually rotated each qubit state in
the given ensemble about x-axis by a random angle, and
then projectively measured Pauli-z operator. We showed
that, by these operations, variance of sample mean of
measurement outcomes gets reduced if the given ensem-
ble were E1. As random rotations about x-axis does noth-
ing to the qubit states in the ensemble E2, variance of
sample mean remains unaltered, leading to discrimina-

tion. We also exhibited numerical simulation results in
support of theoretical predictions. A likely implication
of our discrimination protocol might be that Alice may
signal Bob provided Bob knows a priori that Alice is go-
ing to send a message at a pre agreed upon time instant.
Hence it does not violate the no-signaling principle per
se, as the latter excludes any kind of a priori knowledge.
However the origin of nonlinear effect (reduction in vari-
ance) (II B) which leads to discrimination is not clear.
Still it remains to be explored whether it is a genuine or
pseudo nonlinear effect due to one or more or some com-
bination of the following operations: selective projective
measurements (Appendix (C 11)), information supplied
by central limit theorem, selective random x-rotations,
and statistical data analysis technique? Further analysis
from an information theoretic perspective i.e., entropy,
mutual information etc., may shed some light on this
question, and also may give further insight. Our efforts
are going on in this direction.
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Appendix A: Central limit theorem

1. Independent and identically distributed (iid)
random variables

Let X be a normal random variable. Then, probabil-
ity density of X is given by: f(x) = 1√

2πσ
exp(−(x −

µ)2/(2σ2)). ⇒ 〈X〉 =
∞∫
−∞

xf(x)dx = µ, and vari-

ance 〈X2〉 − 〈X〉2 = σ2 [11]. One can verify that
∞∫
−∞

f(x)dx = 1. lim
σ→0

f(x) = 0 for x 6= µ, lim
σ→0

f(x) = ∞

for x = µ. Therefore f(x) behaves like a delta function in
the limit σ → 0. One can show that, if X → ND : µ, σ2,
then Y = aX + b → ND : aµ + b, a2σ2 [11]. Let
aµ+b = 0, a2σ2 = 1. ⇒ Y = (X−µ)/σ and it is known as
standard or unit normal random variable [11]. Consider

I =
∞∫
−∞

f(x)dx. Put (x − µ)/σ = y. ⇒ I =
∞∫
−∞

g(y)dy

where g(y) = (2π)−1/2e−y
2/2 is the probability density

of Y . Note that, even in the limit σ → 0, g(y) does not
behave like delta function. This is because, in the limit
σ → 0, it is like mapping an infinite plane (f(x)) on to
Riemann sphere (g(y)).

Consider independent and identically distributed ran-
dom variables X1, X2, ..., Xn having mean 〈Xi〉 = µ and
variance ∆X2

i = 〈X2
i 〉 − 〈Xi〉2 = σ2,∀i. Sample mean

is defined as S = (1/n)
∑n
i=1Xi. S has mean 〈S〉 = µ,

and variance ∆S2 = σ2/n [11]. Note that even though
all Xis have same mean and variance, we cannot take
Xi = X ′,∀i, because they are independent events, and
outcome of each is random.

Let

J =
1√

2π∆S

c∫
−∞

dS exp

(
−1

2∆S2
(S − µ)2

)

=
1√
2π

b∫
−∞

dy e−y
2/2 = Ω(b),where −∞ < c, b <∞.

According to central limit theorem, probability distribu-
tion:

P{ 1

∆S
(S − µ) ≤ b} → Ω(b), as n→∞, (A1)

i.e., in the limit n → ∞, probability distribution of ran-
dom variable S tends to normal (Gaussian) distribution
with mean µ and variance σ2/n [11]. Then using Eq.
(A1) we obtain

P{−ε ≤ (S − µ) ≤ ε} = P{ −ε
∆S
≤ 1

∆S
(S − µ) ≤ ε

∆S
}

≈ Ω(
ε
√
n

σ
)− Ω(

−ε
√
n

σ
) =

1

2
(erf(

ε
√
n√

2σ
)− erf(

−ε
√
n√

2σ
))

= 2Ω(
ε
√
n

σ
)− 1,

where erf(x) = (2/
√
π)
∫ x

0
dt e−t

2

. Approximation in the
second line is based on the assumption that n is large.
How large n should be for this to be a good approxima-
tion depends on probability distribution of Xi.

2. Independently distributed (id) random variables

Consider n biased coins out of which nj have mean
µ′j and variance σ′2j , j = 1, 2, ..., r, where

∑r
j=1 nj = n.

In other words, we have n independent random variables
Xi, i = 1, 2, ..., n. Xi has mean µi and variance σ2

i , i =
1, 2, ..., n.

µi = µ′1, σ
2
i = σ′21 for i = 1, 2, ..., n1,

µi = µ′2, σ
2
i = σ′22 for i = n1 + 1, n1 + 2, ..., n1 + n2,

...

µi = µ′r, σ
2
i = σ′2r for i = (n1 + n2 + ...+ nr−1 + 1),

(n1+n2 + ...+ nr−1 + 2), ..., (n1 + n2 + ...+ nr−1 + nr).

If Xis are uniformly bounded ([11] p. 399) and∑∞
i=1 σ

2
i =∞ then,

P {n×
(1/n)

∑n
i=1Xi −

∑r
j=1(nj/n)µ′j√∑r

j=1 njσ
′2
j

≤ b}

= P{
S −

∑r
j=1 pjµ

′
j√

(1/n)
∑r
j=1 pjσ

′2
j

≤ b}

= P{ S − µ′eff√
(∆X ′)2

eff/n
≤ b} → Ω(b), as n→∞ (A2)

http://dx.doi.org/10.1103/PhysRevLett.76.2832
http://dx.doi.org/10.1103/PhysRevLett.76.2832
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1002/andp.200610207
https://comscire.com/product/pcqng/
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for given values of njs (and hence pjs), j = 1, 2, ..., r [11].
Further if njs are varying (e.g., if nj is got by throwing n
times, a r faced biased dice such that probability of get-
ting its jth face is poj . pj → ND : poj , σ

2
nj/n

2, σ2
nj ∼ n),

then it should be taken into account by integrating
over all possible values of njs (or pjs), after multiply-
ing Nd(S) : µ′eff , (∆X

′)2
eff/n by corresponding weighing

factors/weights, to get the final effective probability den-
sity function of sample mean. When µ′j = µ, σ′2j = σ2,∀j
i.e., all n coins have same probability distribution, then
Eq. (A2) reduces to Eq. (A1) as required.

No effective single coin: Let Xi be a coin with proba-
bility pHi of getting head and probability pTi(= 1− pHi)
of getting tail, i = 1, 2, ..., n. Let us assign value +1 to
head and value −1 to tail. Then we get σ′2j = 1− µ′2j (∵
σ2
i = 〈X2

i 〉 − 〈Xi〉2 = 1 − µ2
i ). Using µi = pHi − pTi , we

can rewrite

µ′eff =

r∑
j=1

pjµ
′
j = p+

eff − p
−
eff = 〈Xeff〉

for given values of pjs. Now consider

(∆X ′)2
eff =

r∑
j=1

pjσ
′2
j =

r∑
j=1

pj(1− µ′2j ) = 1−
r∑
j=1

pjµ
′2
j

6= 1− (

r∑
j=1

pjµ
′
j)

2 = 1− 〈Xeff〉2 = ∆X2
eff ,

where ∆X2
eff = 〈X2

eff〉 − 〈Xeff〉2. It is true for any given
set of values of pjs including pj = nj/n = 1/n, ∀j i.e.,
r = n, and pj = nj/n = (n/c)/n = 1/c,∀j where c is an
integer. ⇒ r = c. Hence concept of single effective coin is
not correct with respect to effective variance unless r = 1.
This is because when we are tossing r different types of
independent coins, we are sort of convoluting r different
probability distributions, which is absent in the case of
tossing only one type of effective coin Xeff (here previous
r types of coins has been coalesced into a single effective
coin Xeff). Hence the two situations are different.

No effective state: Let the random variable Xi be mea-
suring σz on the state |Pi〉 =

√
Pi|0〉 +

√
1− Pi|1〉, i =

1, 2, ..., n. Let

Pi = P ′1 for i = 1, 2, ..., n1,

Pi = P ′2 for i = n1 + 1, n1 + 2, ..., n1 + n2,

...

Pi = P ′r for i = (n1 + n2 + ...+ nr−1 + 1),

(n1+n2 + ...+ nr−1 + 2), ..., (n1 + n2 + ...+ nr−1 + nr).

Then we get σ′2j = 1−µ′2j (∵ σ2
i = 〈X2

i 〉−〈Xi〉2 = 1−µ2
i ).

We can rewrite

µ′eff =

r∑
j=1

pj(2P
′
j − 1) =

r∑
j=1

pjTr(σzρ
′
j) = Tr(σzρ

′
eff)

= 〈σz〉ρ′eff

for given values of pjs, where ρ′eff =
∑r
j=1 pjρ

′
j , ρ

′
j =

|P ′j〉〈P ′j |. Now consider

(∆X ′)2
eff =

r∑
j=1

pjσ
′2
j =

r∑
j=1

pj(1− µ′2j ) = 1−
r∑
j=1

pjµ
′2
j

6= 1− (

r∑
j=1

pjµ
′
j)

2 = 1− 〈σz〉2ρ′eff = 〈σ2
z〉ρ′eff − 〈σz〉

2
ρ′eff
.

Hence the concept of effective state ρ′eff is not correct with
respect to effective variance unless r = 1. This is because
ρ′eff corresponds to a CC-ensemble (Alice has only partial
knowledge of the state of the qubits in the ensemble),
whereas the formula (∆X ′)2

eff =
∑
j pjσ

′2
j corresponds to

an IC-ensemble (Alice has full knowledge of the state of
the qubits in the ensemble). For further justification see
Appendix (A 3).

Also note that, even though jth type of coin is thrown
only nj(≤ n) times, j = 1, 2, ..., r, variance of effec-
tive/resultant sample mean is calculated considering all
n measurements together i.e., ∆S2

eff = (∆X ′)2
eff/n =∑r

j=1 pj(σ
′2
j /n). But ∆S2

eff 6=
∑r
j=1 pj(σ

′2
j /nj) ∵ it

gives inconsistent result as follows: Assume ∆S2
eff =∑r

j=1 pj(σ
′2
j /nj). Then for µ′j = µ, σ′2j = σ2,∀j we get

∆S2
eff = σ2

∑r
j=1 pj/nj = rσ2/n 6= σ2/n unless r = 1.

3. Justifying the formula (∆X ′)2
eff =

∑
j pjσ

′2
j

(Appendix (A 2)) in the light of an IC-ensemble

Consider an IC-ensemble E11 having T|0〉 number of
qubits in the state |0〉 and T|1〉 number of qubits in the
state |1〉 such that T|0〉+ T|1〉 = M , and M is sufficiently
large. Let the state of the qubits in the IC-ensemble
E11 be |0〉|1〉.... Consider measuring σz. σz has no vari-
ance with respect to |0〉 and |1〉 as both are its eigen-
kets. Hence effective/resultant variance of σz measure-
ment on the IC-ensemble E11 must also be zero. This
is because however many times we repeat σz measure-
ment on identically prepared IC-ensembles E11s (i.e., each
having exactly T|0〉, T|1〉 number of |0〉s, |1〉s respectively
), we always get exactly T|0〉 number of +1 outcomes
and T|1〉 number of −1 outcomes. Hence no variance.
Hence sample mean S = (T|0〉−T|1〉)/M = p0−p1 where
p0 = T|0〉/M, p1 = T|1〉/M , and S has zero variance.

Now consider 〈σz〉|0〉 = 1, 〈σz〉|1〉 = −1. ⇒ µeff =

p0〈σz〉|0〉 + p1〈σz〉|1〉 = p0 − p1. (∆σz)
2
|0〉 = 0, (∆σz)

2
|1〉 =

0. Let us define (∆σz)
2
eff = p0(∆σz)

2
|0〉+p1(∆σz)

2
|1〉. Sub-

stituting previous results we obtain (∆σz)
2
eff = 0. Hence

sample mean S = (T|0〉 − T|1〉)/M = p0 − p1 = µeff , and

S has variance ∆S2 = (∆σz)
2
eff/M = 0 as required.

Instead let us define (∆σz)
2
eff = 〈σ2

z〉ρ1 − 〈σz〉2ρ1 where
ρ1 = p0|0〉〈0|+ p1|1〉〈1| (as the state has become mixed,
we have lost partial information. Where as the IC-
ensemble E11 corresponds to a pure state, and hence
we have full information). µeff = 〈σz〉ρ1 = p0 − p1.
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⇒ (∆σz)
2
eff = 1−(p0−p1)2 = 1−µ2

eff . Then sample mean
S has variance ∆S2 = (∆σz)

2
eff/M = (1− (p0 − p1)2)/M

(it is the variance in initial state (ρ1) preparation, see
‘Coalesced’ below) which is 6= 0 in general. Moreover
it predicts that S → ND : p0 − p1, (1 − (p0 − p1)2)/M .
But from Eq. (A2) it is evident that, as the condition∑∞
i=1 σ

2
i = ∞ is not satisfied (actually

∑∞
i=1 σ

2
i = 0

as (∆σz)
2
|0〉 = (∆σz)

2
|0〉 = 0), S cannot be normally

distributed. This definition contains correlation term
p0p1〈σz〉|0〉〈σz〉|1〉. But measurement of σz on |0〉 and |1〉
are uncorrelated. Here no convolution (sort of) of two
independent probability distributions unlike in previous
case. Here two independent events i.e., measuring σz on
|0〉 and measuring σz on |1〉, has been coalesced into one
single event i.e., measuring σz on

√
p0|0〉 +

√
p1|1〉 (see

‘Coalesced’ below). Hence this definition of effective vari-
ance corresponds to a CC-ensemble whose qubits are in
the state ρ1, whereas the formula (∆X ′)2

eff =
∑
j pjσ

′2
j

corresponds to the IC-ensemble E11 whose qubits are in
the pure state |0〉|1〉....

Consider another IC-ensemble E21 having T|+〉 num-
ber of qubits in the state |+〉 and T|−〉 number of qubits
in the state |−〉 such that T|+〉 + T|−〉 = M , and M is
sufficiently large. Let the state of the qubits in the IC-
ensemble E21 be |+〉|−〉.... Let ρ2 = p+|+〉〈+|+p−|−〉〈−|
where p± = T|±〉/M . ρ2 represents the state of the qubits
in a CC-ensemble. State of the qubits in the IC-ensemble
E21 is pure and hence we have full knowledge of the state
of the qubits in IC-ensemble E21, where as ρ2 is mixed,
which represents our ignorance (incomplete knowledge)
about the state of the qubits in the CC-ensemble. Hence
there is loss of information in going from IC-ensemble
E21 to ρ2. This can be further justified as follows: Let
p± = 1/2. Then ρ2 = (|+〉〈+| + |−〉〈−|)/2 = 12/2.
But we also have ρ1 = (|0〉〈0| + |1〉〈1|)/2 = 12/2 for
p0 = p1 = 1/2. Hence ρ1 and ρ2 have become identical,
even though ρ1 contains |0〉s and |1〉s where as ρ2 contains
|+〉s and |−〉s. But IC-ensembles E11 and E21 are different
(i.e., not identical). Hence in going from IC-ensemble Ei1
to ρi there is loss of information, i = 1, 2. The extra infor-
mation which was making IC-ensemble E11 different from
IC-ensemble E21, has been lost in going from IC-ensemble
Ei1 to ρi, i = 1, 2, there by making ρ1 and ρ2 identi-
cal. Further (∆σz)

2
eff,E11 = p0(∆σz)

2
|0〉 + p1(∆σz)

2
|1〉 =

p0 × 0 + p1 × 0 = 0, and (∆σz)
2
eff,E21 = p+(∆σz)

2
|+〉 +

p−(∆σz)
2
|−〉 = p++p− = 1. This is because IC-ensembles

E11 and E21 are different (for a similar example see [4]).
Where as, (∆σz)

2
eff,ρ1

= 〈σ2
z〉ρ1 − 〈σz〉2ρ1 = 1− 0 = 1, and

(∆σz)
2
eff,ρ2

= 〈σ2
z〉ρ2−〈σz〉2ρ2 = 1−0 = 1. This is because

ρ1 and ρ2 are identical.

Coalesced : Consider measuring σz nonselectively on a
CC-ensemble of M identical copies of |ψ〉 =

√
p0|0〉 +√

p1|1〉. Then the post measurement state is ρ1 =
p0|0〉〈0| + p1|1〉〈1|. Further 〈σz〉|ψ〉 = p0 − p1 = 〈σz〉ρ1
and (∆σz)

2
|ψ〉 = 〈σ2

z〉|ψ〉 − 〈σz〉2|ψ〉 = 1 − (p0 − p1)2 =

〈σ2
z〉ρ1 − 〈σz〉2ρ1 , hence this corresponds to variance in

the initial state (ρ1) preparation. Here sample mean,

S(= (T+ − T−)/M) → ND : p0 − p1, (1− (p0 − p1)2)/M
in the large M limit, where T± is the number of ±1 out-
comes, and T+ + T− = M .

4. Independent and normally distributed random
variables

If Xi → ND : µi, σ
2
i then Z =

∑Ñ
i=1Xi → ND :∑Ñ

i=1 µi,
∑Ñ
i=1 σ

2
i where Xis are normally distributed in-

dependent random variables [11]. This result is based
on the following convolution relation: fX+Y (a) =∫∞
−∞ fX(a − y)fY (y)dy where fX , fY , fX+Y are proba-

bility density functions of X,Y,X + Y respectively [11].

Let Ñ = 2, Xi = (1/n)
∑n
j=1Xij where Xij is an inde-

pendent random variable with mean µij and variance σ2
ij ,

i = 1, 2. Then using central limit theorem (Eq. (A2)) we
get Xi → ND : µi, σ

2
i where µi =

∑n
j=1(1/n)µij , σ

2
i =

(1/n)
∑n
j=1(1/n)σ2

ij in the limit n → ∞, i = 1, 2. Then

Z = X1 +X2 = (1/n)(
∑n
j=1X1j +

∑n
j=1X2j).

Appendix B: IC-Ensemble picture

1. Swaying of center of Gaussians

Another less rigorous way of arriving at the resultant
variance in Eq. (11) i.e., (1 − (∆ cos θq)

2
pθq

)/M is the

following: When we integrate over S1 in Eq. (10), there
is contribution to resultant variance from following two
factors: (1) Swaying of center of Gaussians due to the
varying mean i.e., µeff = 〈cos θq〉pθqS1. (2) Variance aris-

ing from the measurement of σz on |θq〉s and |θq⊥〉s i.e.,
(∆σz)

2
eff/M (below Eq. (9)). In Eq. (10) we are inte-

grating with respect to S1 for given values of pθqs. Hence
〈cos θq〉pθq in µeff can be treated as a constant. Then

µeff → ND : 0, 〈cos θq〉2pθq /M (using the theorem in Ap-

pendix (B 4)). Hence the resultant variance is given by
〈cos θq〉2pθq /M + (∆σz)

2
eff/M = (1− (∆ cos θq)

2
pθq

)/M .

2. Discrimination via comparison

As ∆S′21 < ∆S′22 (= 1/M ∵ S′2 = S2), Bob can discrim-
inate between the two IC-ensembles E1 and E2. How-
ever in the large M limit, both ∆S′21 and ∆S′22 be-
comes smaller. Hence it is easier to discriminate via
their ratio i.e., limM→∞∆S′21 /∆S

′2
2 ≈ limM→∞[(1 −

(∆ cos θq)
2
poθq

)/M ]/[1/M ] = 1− (∆ cos θq)
2
poθq

, rather than

via ∆S′2i alone, i = 1 or 2. This is possible in a spe-
cial case: {θ1(= 0), θ2(= π)} → {po0, poπ}. In this case
Bob can obtain both ∆S′21 (and hence f(S′1)) and ∆S′22
(and hence g(S′2) = g(S1) = g(S1)) from the given IC-
ensemble Ei, i = 1 or 2 (Appendix (B 6)).
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3. Equivalence of S1 and S2

Consider the following alternate preparation procedure
which also gives exactly same state of the qubits in IC-
ensembles E1 and E2 as that given in the main text (II):
Alice prepares an IC-ensemble E1 (E2) of qubit states by
measuring σz (σx, Pauli-x matrix) individually on each
of the N qubits in an IC-ensemble where each qubit is
in the state |+〉 (|0〉), and renormalizing the post mea-
surement state. Then T+

2 , T
−
2 are also the number of

|0〉s, |1〉s respectively in the IC-ensemble E1j (∵ |+〉 and
|−〉 are equivalent with respect to σz measurement out-
comes (Appendix (B 7)). Hence measuring σz individu-
ally on each of the M qubits in the IC-ensemble E2j is
equivalent to measuring σz individually on each of the
M identical copies of |+〉 in an IC-ensemble. But IC-
ensemble E1j has also been obtained by measuring σz
individually on each of the M identical copies of |+〉
in an IC-ensemble). ⇒ T±2 is also the total number
of ±1 outcomes obtained by measuring σz individually
on each of the M qubits in the IC-ensemble E1j (∵ vari-
ances (∆σz)

2
|0〉 = 〈σ2

z〉|0〉−〈σz〉2|0〉 = 0, (∆σz)
2
|1〉 = 0 where

〈σz〉|0〉 = Tr(σz|0〉〈0|)) i.e., T±2 ≡ T±1 . Hence S1 ≡ S2.
Further, sample mean Si has mean 〈Si〉 = 〈σz〉|+〉 = 0,

and variance ∆S2
i = (∆σz)

2
|+〉/M = 1/M (∵ S1 ≡ S2

as explained above, and S1 corresponds to sample mean
of outcomes of individual σz measurements on each of
the M identical copies of |+〉 in an IC-ensemble (as ex-
plained above)). Now it is easily evident that S1 = SA1
(∵ variances (∆σz)

2
|0〉 = 0, (∆σz)

2
|1〉 = 0).

4. Probability distribution of T±1 , p
±
1 , and pθq

We have S1 → ND : 0, 1/M where S1 = (T+
1 −

T−1 )/M, T+
1 + T−1 = M . ⇒ T±1 = M(1 ± S1)/2. Con-

sider the following theorem: If X → ND : µ, σ2 then
Y (= aX + b) → ND : aµ + b, a2σ2 [11]. Using this
we obtain T±1 → ND : M/2,M/4. We have defined
p±1 = T±1 /M . Again using the above theorem we obtain
p±1 → ND : 1/2, 1/(4M).

Let {θ1, θ2} → {poθ1 , p
o
θ2
}. It is equivalent to measuring

σz on |ζ〉 =
√
poθ1 |0〉+

√
poθ2 |1〉, and if the outcome is +1

apply θ1, else apply θ2. Then sample mean S(= (m1 −
m2)/M) → ND : 2poθ1 − 1, (∆σz)

2
|ζ〉/M where m1(m2)

is the number of +1(−1) outcomes. (∆σz)
2
|ζ〉 = 1 −

〈σz〉2|ζ〉,m1 +m2 = M . ⇒ mj(= M(1 + (−1)j+1S)/2)→
ND : poθjM,σ2

mj where σ2
mj = (∆σz)

2
|ζ〉M/4, j = 1, 2 (us-

ing the theorem stated above). ⇒ pθj (= mj/M)→ ND :

poθj , σ
2
mj/M

2, j = 1, 2 (using the theorem stated above).

We assume that this is true even when j > 2, where
σ2
mj ∼ M . But this assumption is not important, be-

cause j = 2 is necessary and sufficient for our protocol to
work.

5. Indirect exact evaluation of the integral in
Eq.(12)

We may indirectly evaluate the integral in Eq. (12)
as follows: As both weighing function and the function
being weighed are normally distributed, it is justifiable to
assume that f(S′1) will also be normally distributed. As
there is no swaying of center of Gaussians, contribution
to the net/resultant variance comes only from (1−pθ1(1−
pθ1)(cos θ1−cos θ2)2)/M . Hence resultant variance might
be the following

∆S′21 =

∫ ∞
−∞

dpθ1(Nd(pθ1) : poθ1 , σ
2
m1
/M2)(1− pθ1(1− pθ1)(cos θ1 − cos θ2)2)/M

= (1− (poθ1(1− poθ1)− σ2
m1
/M2)(cos θ1 − cos θ2)2)/M. (B1)

Hence f(S′1) = (Nd(S′1) : 0,∆S′21 ). Here we are integrat-
ing from −∞ to ∞ because of a reason similar to [16].
In the large M limit, we can neglect σ2

m1
/M2 compared

to poθ1(1 − poθ1), and we recover variance in Eq. (13) as
required.

6. Knowing the state of each of the N qubits in the
IC-ensemble E1 exactly

Let {θ1(= 0), θ2(= π)} → {po0, poπ}. Then if Bob has
got the IC-ensemble E1, then no collapse of the qubit

states upon measuring σz after applying (θq)xs. Se-
quence of (θq)xs (say, function F ) maps IC-ensemble E1
to IC-ensemble E ′1 (i.e., E ′1 = F (E1)) where E ′i is the IC-
ensemble got by applying (θq)x individually to each of the
N qubit states in the IC-ensemble Ei, i = 1, 2. As Bob
has individual control, he can know the exact state of
each of the N qubits in the IC-ensemble E ′1, by σz mea-
surement. Then working backward using the sequence
of (θq)xs (i.e., inverse mapping, E1 = F−1(E ′1)), he can
know exactly what was the state of each of the N qubits
in the given IC-ensemble E1. Note that if Bob has got the
IC-ensemble E2, then he cannot know the state of each of
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the N qubits, as there will be collapse upon σz measure-
ment. Bob can know only that the given IC-ensemble
was E2 via variance of sample mean.

If Bob has got the IC-ensemble E1, then sample mean
S1 → ND : 0, 1/M corresponds to before applying (θq)xs,
where as the sample mean S′1 → ND : 0, (1 − 4po0(1 −
po0))/M (for {θ1(= 0), θ2(= π)} → {po0, poπ}) corresponds
to after applying (θq)xs. In this case Bob can construct
the probability distribution of even S1 via inverse map-
ping E1 = F−1(E ′1), as explained above.

However, if Bob has got the IC-ensemble E2, then sam-
ple mean S′2 → ND : 0, 1/M corresponds to after apply-
ing (θq)xs (note that in the previous case this probability
distribution was present before applying (θq)xs, which
leads to discrimination). From the IC-ensemble E ′′2 got
by measuring σz individually on each of the N qubits in
the IC-ensemble E ′2, if Bob works backward via the se-
quence of (θq)xs that he had applied (i.e., the mapping
E ′′′2 = F (E ′′2 )), then he obtains a virtual IC-ensemble E ′′′2

which gives sample mean→ ND : 0, (1−4po0(1−po0))/M .
Hence Bob can construct the probability distribution of
a virtual sample mean which is same as that of S′1.

Hence Bob can obtain both ∆S′21 and ∆S′22 from the
given IC-ensemble Ei, i = 1 or 2. If i = 1 then ∆S′21
and f(S′1) corresponds to after applying (θq)xs where as
∆S′22 (= ∆S2

1 ∵ S′2 = S2 ≡ S1) and g(S′2)(= g(S2) =
g(S1)) corresponds to before applying (θq)xs. If i = 2
then ∆S′21 and f(S′1) (which are virtual) corresponds to
before applying (θq)xs where as ∆S′22 and g(S′2) corre-
sponds to after applying (θq)xs. Hence Bob can also
discriminate by comparing the entire probability density
functions f(S′1) and g(S1)(= g(S2) = g(S′2)).

7. Equivalence of the states |+〉 and |−〉 with
respect to σz measurement outcomes

Consider an IC-ensemble having T± number of |±〉s.
Let p± = T±/M where T+ + T− = M , and M is suf-
ficiently large. Then, µeff = p+〈σz〉|+〉 + p−〈σz〉|−〉 =

0, and hence independent of p+, p−. (∆σz)
2
eff =

p+(∆σz)
2
|+〉 + p−(∆σz)

2
|−〉 = 1(∵ (∆σz)

2
|+〉 = (∆σz)

2
|−〉 =

1), again independent of p+, p−. ⇒ variance of effec-
tive sample mean ∆S2

eff = (∆σz)
2
eff/M = 1/M . Hence

all the results are same as measuring σz individually on
each of the M copies of |+〉s or |−〉s in an IC-ensemble.
Hence the states |+〉 and |−〉 are equivalent as far as σz
measurement outcomes are concerned. In other words,
probabilities of getting outcomes +1,−1 upon measur-
ing σz, is same in both the states: |+〉, |−〉. Hence the
two states are equivalent with respect to σz measurement
outcomes.

8. Explanation using central limit theorem

We can explain the reduction in population difference
(and hence variance) via central limit theorem as fol-

lows: Let {θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(= 1/2)}.
Consider the case where T+

1 = M . Then it is obvious
that getting T ′+1 � T ′−1 or T ′+1 � T ′−1 is very unlikely,
whereas getting T ′+1 ≈ T ′−1 is very likely. Consider the
case where T ′+1 = M . There is only one sequence of
(θq)xs which can give this i.e., all θqs being 0 radians.
But there are very large number of sequences of (θq)xs
which do not give T ′+1 = M . Hence according to cen-
tral limit theorem, probability of getting T ′+1 = M tends
to zero in the large M limit. This extreme case clearly
explains how and why there is reduction in population
difference (and hence variance of sample mean) (i.e.,
|T ′+1 − T

′−
1 | � |T

+
1 − T

−
1 |) upon applying (θq)xs. Sim-

ilar thing happens even when T+
1 � T−1 or T+

1 � T−1 ,
and it is also obvious. What is not obvious is the predic-
tion that similar thing happens even when T+

1 > T−1 or
T+

1 < T−1 . This may be explained as follows: The result
below Eq. (9) (i.e., S′1 → ND : µeff , (∆σz)

2
eff/M) is due

to central limit theorem. Hence the results in Eq.s (12,
13) (with {θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(= 1/2)})
are also a consequence of central limit theorem. Hence in
the spirit of central limit theorem we can say that, total
number of possible sequences of (θq)xs which transforms

|T+
1 − T

−
1 |(=

√
M |S̃1|) to |T ′+1 − T

′−
1 |(= |S̃′1|), is much

greater than sum of other possible sequences which do not
do this transformation i.e., probability of this transfor-
mation tends to one in the large M limit, where |S̃1|, |S̃′1|
varies between 0 and 10 (approximately) (see Appendix
(D 2)).

9. Explanation using Shannon entropy

We can also explain the phenomenon of reduction in
population difference (and hence variance) in terms of en-
tropy as follows: As the population difference |T+

1 − T
−
1 |

increases towards M , the sequence of |0〉s, |1〉s (in the
IC-ensemble E1j) becomes more and more ordered and
hence entropy decreases. More rigorously consider Shan-
non entropy H = −

∑2
i=1 Pi log2 Pi,

∑
i Pi = 1, where P1

is the probability of occurrence of |0〉, and P2 that of |1〉
[18]. Then, |T+

1 − T
−
1 | = M (extreme case) corresponds

to P1 = 1 or P2 = 1 where P1 = T+
1 /M,P2 = T−1 /M

(∵ T+
1 , T

−
1 are also the number of |0〉s, |1〉s respectively).

⇒ H = 0 i.e., minimum entropy configuration. When we
introduce a new independent random variable θq such
that {θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(= 1/2)} via
the application of (θq)xs, naturally it will try to make
the sequence of |0〉s, |1〉s disordered, which is typical of
any random operation. This corresponds to increasing
entropy. In other words, |T ′+1 − T ′−1 | = 0 corresponds
to P1 = P2 = 1/2 where P1 = T ′+1 /M,P2 = T ′−1 /M .
⇒ H = 1 i.e., maximum entropy configuration. Hence
application of (θq)xs increases disorder (entropy) and
hence reduces the population difference |T+

1 − T−1 | to-
wards zero. Hence |T ′+1 − T

′−
1 | ≈ 0 in the large M limit.
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10. Nonlinearity in action

We saw in the main text (II B) that probabilities
(corresponding to the new random variable θq) get
squared (nonlinear operation) when they enter through
〈cos θq〉2poθq , and hence we call this nonlinear channel.

This channel corresponds to swaying of center of Gaus-
sians. Where as when probabilities enter through
〈sin2 θq〉poθq they come out as such (linear operation).

Hence we call this linear channel, and it corresponds to
measuring σz selectively on |θq〉s and |θq⊥〉s (see the sec-
tion ‘Swaying of center of Gaussians’ in Appendix (B 1)).
Hence there is reduction in variance due to nonlinear ef-
fect.

Now we can justify the result obtained in Eq. (13) as
follows: In Eq. (12) there is no swaying of center of Gaus-
sians. Hence pθqs are contributing to resultant variance
only via linear channel unlike in Eq. (10) where they were
contributing via both linear and nonlinear channels. As
the channel is linear, in the large M limit, we can simply
replace pθq with poθq .

Asymmetry (nonlinear and linear) in the two channels
mentioned above might be due to the following reason: It
seems it is more difficult to change the variance via sway-
ing of center (it requires undulating the entire Gaussian),
than via throwing out/in a few sample mean points sym-
metrically about the center, with center fixed. In the
IC-ensemble E1j approximately Mpoπ/2 number of qubit

states were rotated on to y-axis. Hence there is reduction
in swaying of center of Gaussians which in turn reduces
resultant/net variance as cos(π/2) = 0. When we mea-
sure σz on the qubit states on y-axis there is positive
contribution to the resultant variance as sin(π/2) = 1.
Similarly the qubit states on z-axis will contribute posi-
tively to net/resultant variance via swaying of center of
Gaussian, as cos 0 = 1. But measurement of σz on the
qubit states on z-axis do not contribute to resultant vari-
ance, as sin 0 = 0. Because of nonlinear nature (with
respect to variance) of swaying of center of Gaussian,
sum of contributions to variance from nonlinear and lin-
ear channels fails to reach back to 1/M .

Further, the result ∆S′2 = (po0
2 + poπ/2)/M < 1/M

(main text (II B)) is counter intuitive, because intuitively

if Bob rotates Ñ number of qubit states on z-axis (on
Bloch sphere) on to y-axis, it is as if he has measured

σz on M − Ñ number of |+〉s (∵ IC-ensemble E1j can
also be obtained by measuring σz selectively on an IC-
ensemble of M identical copies of |+〉 (Appendix (B 3)))

and Ñ more are to be measured (∵ with respect to σz
measurement outcomes, eigenkets of Pauli-y matrix σy,

|±〉y, are equivalent to |±〉). Hence after measuring Ñ
more, Bob should get back variance 1/M . A closer look

shows that, when Bob is measuring σz first on M − Ñ
number of |+〉s and then on Ñ more, there is only one
random variable i.e., σz. Hence we are neglecting the
way Bob brought Ñ states on z-axis onto y-axis i.e., via

random rotations about x-axis by angle θqs. This new
random variable is reducing the variance. More rigorous
explanation is that in previous paragraph.

11. Smoothing out non uniformities

Let {θ1(= 0), θ2(= π)} → {poθ1(= 1/2), poθ2(= 1/2)}.
⇒ ∆S′21 ≈ 0/M . This is saying that in the large M
limit, random flippings removes/smooths out the pop-
ulation difference T+

1 − T−1 (nonuniformity). Situation
here is analogous to the following example: If we rotate
a nonuniform (in mass distribution) disc (≡ (T+

1 > T−1 ))
at high speed (≡ random flippings), it starts behaving
as if it were uniform (≡ (T ′+1 ≈ T ′−1 )). Situation here
is also analogous to the following example: Consider a
small metallic sphere of mass m tied to a string of length
L. At time t = 0 it is on z-axis pivoted at the origin.
Its center of mass (COM) lies at z = L(≡ (T+

1 − T
−
1 )).

Now rotate the sphere about x-axis at high speed (≡
random flipping i.e., applying (θq)xs). Its time averaged
(dynamic) COM lies at (

∑
imi~r(ti))/

∑
imi = 〈~r(t)〉δt =

0(≡ (T ′+1 − T
′−
1 ≈ 0)) where ~r(ti) is the position vector

at time ti, and δt is a small time interval. Note that we
cannot make T ′+1 − T

′−
1 = 0 always, because as evident

from Eq. (B1), even when {θ1(= 0), θ2(= π)} → {po0(=
1/2), poπ(= 1/2)}, and even in the large M limit, variance
is non zero (however small). This will cause T ′+1 6= T ′−1 .
The analogy used here is just for illustration.
Similarly if we spin a nonuniform (in mass distribution)
disc at high speed, it starts behaving as if it were uniform.
Fast spinning smooths out nonuniformities in mass dis-
tribution. Even if the angular speed varies slightly over
time (≡ variance σ2

m1
/M2 of poθ1), still nonuniformities

will be smoothed out.
When T+

1 > T−1 more number of |0〉s will be rotated by
θ2(= π) than |1〉s, there by equalizing the population dif-
ference. When T−1 > T+

1 its the other way round, there
by equalizing the population difference again.

12. Why the reduction in variance?

Variance of random variable σz in the state |ψ〉 is
(∆σz)

2
|ψ〉 ≤ 1. For given M , sample mean has variance

(∆σz)
2
|ψ〉/M ≤ 1/M . Hence the IC-ensemble E1 already

corresponds to maximum possible variance (∵ S1 → ND :
0, 1/M). Hence, introduction of a new independent ran-
dom variable θq [which does not increase the number of
qubit states (= M ×M1)(see the section ‘Motivation’ in
main text (II A))] can only decrease the variance. We can
write S′1 = h(S1, cos θq) where S1 → ND : 0, 1/M = ND :
0, (∆σz)

2
|+〉/M , and {θ1, θ2, ...} → {poθ1 , p

o
θ2
, ...}. New

random variable cos θq has variance (∆ cos θq)
2
poθq

. Then

S′1 → ND : 0, ((∆σz)
2
|+〉 − (∆ cos θq)

2
poθq

)/M . Variance

here seems to have pseudo-Riemannian metric signature
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(+,−).

13. Why the reduction in variance unlike in Z ?

Let Xi be the sample mean: Xi = (1/n)
∑n
j=1Xij

where Xijs are independent random variables (Appendix

(A 4)). Then, total number of Xijs increases as Ñ in-
creases. But in our protocol, number of qubit states
on which σz is measured (≡ number of Xijs) remains
unaltered with the introduction of θq. Application of
(θq)xs changes only the probability distribution of al-
ready present random variables (i.e., measuring σz on
the qubit states). Also, θq is not normally distributed in
general. Hence we are going to observe a reduction in
variance unlike in Z.

14. How hard it might be to reduce the variance?

If Bob has IC-ensemble E2, then even if M,M1 are
not very large, he obtains sample mean S′2 which is at
least approximately normally distributed with mean 0
and variance 1/M . This is because it is simple i.e., it
is not a complicated weighted mean of very large num-
ber of Gaussians, whose resultant is ND : 0, 1/M . But
f(S′1) in Eq. (10) is a complicated weighted mean of
very large number of Gaussians. There seems to be
no simple way of obtaining f(S′1) ≈ Nd(S′1) : 0, (1 −
(∆ cos θq)

2
poθq

)/M . This may be shown as follows: Con-

sider |δ〉 = cos(δ/2)|0〉+sin(δ/2)|1〉. Then 〈σz〉|δ〉 = cos δ,

(∆σz)
2
|δ〉 = sin2 δ. In the large M limit, sample mean

→ ND : cos δ, sin2 δ/M . Let ND : cos δ, sin2 δ/M =
ND : 0, (1 − (∆ cos θq)

2
poθq

)/M . ⇒ δ = π/2. But

sin2(π/2) 6= 1 − (∆ cos θq)
2
poθq

in general. This is also

justified by the fact that there is no effective state/single
coin with respect to effective variance (Appendix (A 2)).
Hence it seems ND : 0, (1− (∆ cos θq)

2
poθq

)/M can be got

only as the resultant of complicated weighted mean of a
large number of different Gaussians as given in Eq. (10).
Even to realize one of the component Gaussians in Eq.
(10) (e.g., Nd(S′1) : S1〈cos θq〉pθq , (1−〈cos2 θq〉pθq )/M for

given values of S1, pθqs and θqs) we require large set of M
measurements each. Hence to obtain the resultant prob-
ability density f(S′1) ≈ Nd(S′1) : 0, (1−(∆ cos θq)

2
poθq

)/M ,

it seems, M1 should be really large. As we are working
with perfect Gaussians, we have implicitly assumed that
M is very large. When M,M1 are small, Bob may get
f(S′1) ≈ g(S′2)(= ND : 0, 1/M), and hence no discrimina-
tion. Only when M,M1 are really large, Bob may obtain
f(S′1) ≈ Nd(S′1) : 0, (1− (∆ cos θq)

2
poθq

)/M .

Bob is trying to change/deviate from ND : 0, 1/M . At
low M,M1 the deviation/change is not large enough to
give rise to observable effect in the form of reduction in
variance below 1/M . Only as M,M1 increases, devia-

tions accumulate drop by drop and results in apprecia-
ble reduction in variance. Reduction in variance is the
resultant of many operations viz., application of (θq)xs,
measurement of σz on different states: |θq〉s, |θq⊥〉s.

15. We cannot directly convolute probability
distribution of S1 (i.e., ND : 0, 1/M) with that of θq

(i.e., pθqs)

Reasons for this are the following: (1) Effec-
tive/resultant random variable, S′1, is not a simple
straight forward function of S1 and θq i.e., no simple
straight forward relation connecting them, even though
S1 and θq are independent. (2) Both S′1 and S1 corre-
spond to M number of qubit states (where measuring σz
on qubit states is equivalent to Xijs in Appendix (A 4)),
which is unlike in Appendix (A 4) where Z corresponds to
2n number of Xijs, whereas Xi corresponds to n number
of Xijs. (3) S1 is continuous, where as θq is discrete.

16. Order of integration does not matter

In Eq. (10) even if we had integrated first with respect
to pθqs, there would have been oscillations symmetrically
about a given S1. Next when we integrate with respect
to S1, all the previous oscillations will oscillate symmet-
rically about zero. Hence resultant mean vanishes as in
Eq. (11). Further multiple integration is nothing but
sum over multiple indices. As long as indices are in-
dependent, order in which the indices are summed over
should not matter.

Appendix C: Single copy picture

1. As a deterministic but inexact nonorthogonal
state discrimination problem

Linear and unitary nature of quantum mechanics for-
bids cloning an unknown state chosen from a set of
nonorthogonal states [19]. Hence, given a single copy of a
pure state chosen from a set of nonorthogonal states, Bob
cannot know the given state both exactly and determin-
istically. However, exact but probabilistic nonorthogo-
nal state discrimination is possible. E.g., given a single
copy of |0〉 or |+〉, Bob can know the unknown state
exactly but only probabilistically using POVM measure-
ment [20]. Natural next question to ask is the following:
Is deterministic but inexact nonorthogonal state discrimi-
nation possible? To answer this question, we consider the
following problem: Consider the two sets F1,F2 defined
in the main text (Eq. (1)). The problem considered in
the main text (II) is exactly equivalent to the following:
Alice gives Bob, a single copy of |φij〉 chosen with prob-
ability 1/2N from Fi (i.e., all the states in Fi are equally
likely to be chosen), i = 1 or 2. Bob knows that the
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given state is either one of |φ1j〉s or one of |φ2j〉s. Bob
has to find out whether the given state |φij〉 was cho-
sen from F1 or F2. Qubits in the IC-ensemble Ei are in
one of the states |φij〉s which Alice has chosen from Fi,
i = 1 or 2. What we have shown is that, in the large N
limit, even though Bob cannot know the unknown state
|φij〉 exactly (∵ he cannot know the state of each of the
N qubits in it), still he can know deterministically (i.e.,
with probability tending to one, in the large N limit)
whether it was chosen from F1 or F2 (and hence it is
deterministic but inexact nonorthogonal state discrimi-
nation). Note that even though |〈φ1j |φ2k〉| decreases as
N increases, |φ2k〉 can never become exactly orthogonal
to |φ1j〉, because Fi is already a complete set of orthonor-
mal basis states, i = 1, 2. Hence knowing whether |φij〉
was chosen from F1 or F2 is a nontrivial deterministic
but inexact nonorthogonal state discrimination problem
(Appendix (C 2)). Further, as each of F1, F2 is a com-
plete set of basis states, this can also be viewed as a basis
discrimination problem.

2. Nontrivial nonorthogonal states

Consider two sets D1 = {|0〉|0〉, |0〉|1〉} and D2 =
{|w〉|0〉, |w〉|w〉} where |w〉 = cos((π− ε)/2)|0〉+ sin((π−
ε)/2)|1〉, and ε → 0. 〈0|w〉 = cos((π − ε)/2). Di is
not a complete set of orthonormal basis states (CSOBS),
i = 1, 2. |w〉 → |1〉 in the limit ε→ 0, and hence D1 and
D2 together constitute a CSOBS. Hence given a state
chosen from D1 or D2, knowing whether it was chosen
from D1 or D2 is equivalent to (in the limit ε → 0) or-
thogonal state discrimination. Hence we call this, trivial
nonorthogonal state discrimination. Moreover, by mea-
suring a nondegenerate observable whose eigenkets are
|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉, we can discriminate between
the states in D1,D2 with probability tending to one (in
the limit ε→ 0).

However it is not so in case of F1 and F2. Fi is itself
a CSOBS, i = 1, 2. Hence, even in the limit N →∞, F1

and F2 together cannot form a CSOBS unlike in the pre-
vious case. Hence knowing whether the given state |φij〉
was chosen from F1 or F2 cannot be reduced to orthogo-
nal state discrimination unlike in previous case. Further,
even though |〈φ1j |φ2k〉| → 0 in the limit N → ∞, |φ1j〉
cannot be exactly orthogonal to |φ2k〉 because the set Fi
already forms a CSOBS, i = 1, 2. Hence even in the
limit N → ∞, discriminating between |φ1j〉s and |φ2k〉s
is a nontrivial nonorthogonal state discrimination prob-
lem. This is also justified by the fact that, even in the
limit N → ∞, by direct measurement of whatever ob-
servable (e.g., an observable whose nondegenerate eigen-
kets are |φ1j〉s), Bob cannot know even with probability
just greater than zero, whether the given state was cho-
sen from F1 or F2, unlike in the case of D1,D2. This
is because |φ2k〉 is a state of equal superposition of all
the states in F1. |φ2k〉 is the state which is equidistant
from each of the states in F1, and hence in some sense

most nonorthogonal simultaneously to each of the states
in F1. This is easily evident for the case N = 1. The
fact that |〈φ1j |φ2k〉| decreases as N increases, seems to
be analogous to the following example: In d dimensional
hyper space, the ratio of volume of a sphere of radius
1−ε to the volume of unit sphere turns out to be (1−ε)d
(∵ volume is proportional to Rd where R is the radius).
For a fixed ε such that 0 < ε < 1, (1 − ε)d decreases as
d increases i.e., most of the volume tends to accumulate
near the surface of the unit sphere.

Suppose Alice tells Bob, her outcomes of coin tosses
used to prepare the states |φ1j〉, |φ2j〉 (see the prepara-
tion procedure in the main text (II)). Then for Bob the
problem reduces to discriminating between just the two
states |φ1j〉 and |φ2j〉 where j is known to Bob. The
problem reduces to sort of orthogonal state discrimina-
tion in the large N limit, as the inner product 〈φ1j |φ2j〉
tends to zero. Bob assigns value +1 to Alice’s outcome
Head and −1 to Tail. Then he measures σz individually
on each of the qubits in the unknown state |φij〉, i = 1
or 2. If the outcomes match exactly with that of Alice’s,
then he comes to know that the given state is |φ1j〉, else
he comes to know that it was |φ2j〉.

3. Physical difference between ρ1 and ρ2

|φ1j〉 (|φ2j〉) physically has |0〉s and |1〉s (|+〉s and |−〉s)
arranged in some random sequence. Hence |φ1j〉 and
|φ2j〉 are physically different even for Bob. This can be
justified as follows: Suppose Alice prepares the qubits
in the IC-ensemble E1 (E2) in the state |φ1j〉 (|φ2j〉) by
measuring σz (σx) individually on each of the N identical
copies of |+〉 (|0〉) in an IC-ensemble. This preparation
procedure is exactly equivalent to that given in the main
text (II). Let Alice give Bob |φij〉, and also let her tell
Bob, her sequence of measurement outcomes, i = 1 or
2. Then Bob measures σz selectively on each of the N
qubits in the unknown state |φij〉, i = 1 or 2. If his
measurement outcomes exactly matches with that of Al-
ice, then he comes to know that the given state is |φ1j〉,
else he comes to know that it was |φ2j〉 [4] (this is sort
of orthogonal state discrimination, see Appendix (C 2)).
This clearly shows that ρ1 (ρ2) is just a mathematical
description of the over all (i.e., taking into consideration
all possibilities) state of the qubits in the IC-ensemble E1
(E2) from Bob’s ignorant perspective, which physically
has |0〉s and |1〉s (|+〉s and |−〉s). In our protocol, Al-
ice do not tell Bob, her measurement outcomes. But this
cannot change the actual physical content of ρi. Purifica-
tion of ρi using the information supplied by central limit
theorem, and subsequently by selectively applying (θq)xs,
and measuring σz, implies gain of knowledge about the
unknown state, there by leading to discrimination. Fur-
ther it has been shown in [21] that, one can also discrim-
inate between states similar to ρ1 and ρ2 using determin-
istic nonlinear evolution (but there ρ1, ρ2 corresponds to
CC-ensembles).



16

4. Mixed state of a closed single quantum system
can be purified by projective measurement

Consider the following game: Alice has a single qubit.
She tosses an unbiased coin and if the outcome is Head,
she prepares the qubit in the state |0〉, else she prepares it
in the state |1〉. Then she gives the qubit to Bob. Bob is
aware of preparation procedure. He need to find out the
state of the qubit. For Bob, state of the single qubit is
the following: ρB = 1

2 |0〉〈0| +
1
2 |1〉〈1| = 1/2. Mixedness

is a measure of his ignorance about the state. No unitary
operation can purify it because UρBU

† = 1/2. Now Bob
projectively measures σz. Of course there is no collapse
upon measurement, as his pre-measurement state was an
eigenstate of σz. If he gets +1 outcome then he comes
to know that the qubit is in the state |0〉. In density
matrix language, ρB → ρ0

B/Tr(ρ
0
B) = |0〉〈0|, a renormal-

ized pure state which indicates gain of full knowledge
about the unknown state, where ρ0

B = |0〉〈0|ρB |0〉〈0|.
|0〉〈0| is a linear but nonunitary operator which does
projection. Similarly, if he gets the outcome −1, then
he comes to know that the qubit is in the state |1〉 i.e.,
ρB → ρ1

B/Tr(ρ
1
B) = |1〉〈1| where ρ1

B = |1〉〈1|ρB |1〉〈1|.
For Bob post measurement state is not the following:

ρfB = ρ0
B + ρ1

B = 1/2, because he is no more igno-

rant of the state. Hence ρfB corresponds to nonselective
CC-ensemble measurement but not to a single copy mea-
surement. Hence in case of single copy measurement we
should not sum over all possibilities (also see the section
‘Single copy versus nonselective CC-ensemble measure-
ment’ in Appendix (C 5)). This is nothing but orthogonal
state discrimination.

However if Bob measures A = a0Π0 + a1Π1,Π0 =
|0〉〈0|,Π1 = |1〉〈1|, nonselectively on a CC-ensemble of
qubits initialized in the state ρin = 12/2, then post
measurement state of the full CC-ensemble is given by
ρf =

∑
i ΠiρinΠi = 12/2. Note that it is true even if

one of ais is zero. Hence even if we measure an arbitrary
observable, post measurement state remains maximally
mixed. Hence measurement cannot purify the state un-
like in single copy measurement.

5. Single copy versus nonselective CC-ensemble
measurement

Consider a single copy of the state |m〉 = cos(θ/2)|0〉+
eiφ sin(θ/2)|1〉. If we measure σz and obtain the out-
come +1, then the normalized state immediately after
measurement is given by Π0|m〉/

√
〈m|Π0|m〉 = |0〉 where

Π0 = |0〉〈0| [12]. In density matrix language it is given
by Π0ρmΠ0/Tr(Π0ρmΠ0) = |0〉〈0|, a pure state, where
ρm = |m〉〈m|. Similarly if the outcome is −1, post mea-
surement state turns out to be |1〉.

Now consider a CC-ensemble of n identical copies of
|m〉. If we measure σz nonselectively, then the un-
normalized post measurement state of the subensem-
ble corresponding to +1 outcome is given by ρ0 =

Π0ρmΠ0 = cos2(θ/2)|0〉〈0|. State of the subensemble cor-
responding to −1 outcome is given by ρ1 = Π1ρmΠ1 =
sin2(θ/2)|1〉〈1| where Π1 = |1〉〈1|. Normalized state
of the full CC-ensemble is given by ρf = ρ0 + ρ1 =

cos2(θ/2)|0〉〈0|+ sin2(θ/2)|1〉〈1| which is mixed [22].

6. Purification solely via information

Bob’s unknown state is given by ρB = α1ρ1 + α2ρ2 =
12N /2

N (Eq. (2)). Suppose Alice tells Bob, whether
she has given him IC-ensemble E1 or E2, say, E1. Then
Bob’s state collapses as follows: ρB → α1ρ1. Renor-
malizing, Bob obtains ρ1. Next suppose Alice also tells
Bob, the exact state of each of the N qubits in the given
IC-ensemble E1. Then even without Bob doing any op-
eration (unitary/nonunitary, linear/nonlinear), his state
further gets projected as follows: ρ1 → |φ1j〉〈φ1j |/2N
where value of j is known to Bob. Again renormalizing,
Bob obtains |φ1j〉〈φ1j |. This clearly shows that in case of
an unknown pure state or IC-ensemble, mixedness rep-
resents mere ignorance, which can be purified via pure
information (e.g., information supplied by central limit
theorem in the main text (Eq. (3))), even without any
kind of operations.

7. Uls increases the purity of ρ̃1 via central limit
theorem

Consider {θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(=
1/2)}. Then, variance ∆S′21 ≈ 0/M (Eq. (13)). Us-
ing Eq. (5) we get ρ̂′1 =

∑
j p̂
′
j |φ1j〉〈φ1j | (also see Ap-

pendix (B 8) for further justification). Obviously num-
ber of |φ1j〉s in ρ̂′1 will be much less than that in ρ̃1 (∵
the former corresponds to variance 0/M whereas the lat-
ter corresponds to variance 1/M), and hence purity (von
Neumann entropy) of ρ̂′1 must be greater (less) than that
of ρ̃1. Hence Tr(ρ̂′21 ) > Tr(ρ̃2

1).
Note that the above result does not contradict the

result in Appendix (B 9) where we showed that with
{θ1(= 0), θ2(= π)} → {po0(= 1/2), poπ(= 1/2)} Shannon
entropy increases. There we were looking at the number
of |0〉s and |1〉s in a particular |φ1j〉, but not the whole
state ρ̃1 (Eq. (3)). Note that even a state |φ1j〉 with equal
number of |0〉s and |1〉s has maximum Shannon entropy
(as calculated in Appendix (B 9)) where as minimum von
Neumann entropy (because we are looking only at a par-
ticular |φ1j〉, and as we have assumed that we know how
many |0〉s and |1〉s it has, and further if we assume that
we also know their sequence, it is a pure state). There
we introduced a new random variable (θq)x into a par-
ticular pure state |φ1j〉 and hence obviously it should
increase the randomness and hence Shannon entropy as
calculated over there. But here we are pumping in infor-
mation into the whole state ρ̃1, consequently purity (von
Neumann entropy) of the mixed state must increase (de-
crease). The thing we are concerned here is different from
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that in Appendix (B 9). Hence no contradiction.

8. Sort of nonlinear unitary evolution

We can also rewrite ρ′1 (Eq. (4)) as follows: ρ′1 =∑dN

l=1 PlUlρ̃1U
†
l . Then we obtain

Tr(ρ′21 ) = Tr(ρ̃2
1)
∑
l

P 2
l +

∑
l,k 6=l

PlPkTr(Ulρ̃1U
†
l Ukρ̃1U

†
k)

6= Tr(ρ̃2
1)(∵ ρ̃1 6=

12N

2N
, and l > 1)⇒ Tr(ρ′1

2
) 6= Tr(ρ̃2

1).

But ρ′2 = ρ̃2 (∵ (θq)x introduces an insignificant global

phase to |+〉, |−〉 in |φ2j〉s). ⇒ Tr(ρ′2
2
) = Tr(ρ̃2

2). This
clearly shows that (θq)xs does nothing to ρ̃2 and does
something to ρ̃1 and hence may give rise to some observ-
able effect which may lead to discrimination. Further

Tr (ρ′iρ
′
j)

= Tr(ρ̃iρ̃j)
∑
l

P 2
l +

∑
l,m6=l

PlPmTr(Ulρ̃iU
†
l Umρ̃jU

†
m)

6= Tr(ρ̃iρ̃j) in general for i 6= j(∵ ρ̃i 6=
12N

2N
, and l > 1).

⇒ Tr((ρ′B)2) 6= Tr((ρ̃B)2). Hence there is change in pu-
rity. Hence the net effect (of having individual control,
working with a single copy of |φij〉, and introducing a
new independent random variable θq via (θq)x) is as if
Bob is evolving ρ̃B under a nonlinear unitary operator.
Hence the purity of ρ̃B has changed. Note that no linear
unitary operation can do this. Notice how purity fur-
ther changed, as Bob pumped in the information that ρ̃1

contains |0〉s and |1〉s and hence Uls must affect them,
and that ρ̃2 contains |+〉s and |−〉s and hence Uls cannot
affect them.

9. A linear operator can clone at the most two
nonorthogonal states in 2-D Hilbert space

Consider a linear operator L such that L|0〉|0〉 = |0〉|0〉
and L|1〉|0〉 = |1〉|1〉. Assume L(α|0〉+β|1〉)|0〉 = (α|0〉+
β|1〉)(α|0〉 + β|1〉). Substituting the above transforma-
tions we obtain the following solutions: α = 1, β = 0 or
α = 0, β = 1 or α = 0, β = 0.

Now instead consider the following transformations:
L|0〉|0〉 = |0〉|0〉, L|+〉|0〉 = |+〉|+〉. Then we obtain
the following constraint equations: L00,00 = 1, L00,10 =

1/
√

2 − 1, L10,00 + L10,10 = 1/
√

2, L01,00 + L01,10 =

1/
√

2, L11,00 + L11,10 = 1/
√

2 where L00,10 = 〈00|L|10〉
etc. It has infinitely many solutions. This and previous
results together imply that L can at the most clone two
nonorthogonal states. We assume that a similar result
holds even for N qubit state i.e., a linear operator can at
the most clone 2N nonorthogonal states.

10. A linear operator in 2-D Hilbert space can map
at the most two nonorthogonal states into

orthogonal states

Consider the following transformation: L|0〉 =

|0〉, L|+〉 = |1〉. ⇒ L11 = 1, L12 = −1, L21 = 0, L22 =
√

2
where Lijs are matrix elements of the linear operator L.

⇒ L|1〉 = −|0〉+
√

2|1〉 6= |0〉 and L|−〉 =
√

2|0〉 − |1〉 6=
|1〉. Hence L can map at the most two nonorthogonal
states into orthogonal states. Hence we require nonlin-
ear evolution to map |0〉, |1〉 to |0〉, and |+〉, |−〉 to |1〉.
This corresponds to deterministic but inexact nonorthog-
onal state discrimination (because, after mapping if we
measure σz and if the outcome is +1, then we come to
know only that the given state was |0〉 or |1〉. Similar
thing with −1 outcome). Hence deterministic but inex-
act nonorthogonal state discrimination also seems to be
demanding nonlinear evolution. Of course there may be
ways other than the mapping technique that we are using
here, which may do deterministic but inexact nonorthog-
onal state discrimination with linear evolution and mea-
surement. We assume that a similar result holds even in
2N -D Hilbert space i.e., a linear operator in 2N -D Hilbert
space can at the most map 2N nonorthogonal states into
orthogonal states. This is also justified by the fact that,
maximum possible number of mutually orthogonal states
in 2N -D Hilbert space is 2N . Hence a map similar to that
described in 2-D Hilbert space (above) may require non-
linear evolution.

11. Nonlinear evolution seems to be necessary

A linear operator can clone at the most 2N nonorthogo-
nal states in 2N -D Hilbert space (Appendix (C 9)). Hence
we can discriminate between them exactly and determin-
istically, via tomography. Another method is the follow-
ing: In 2N -D Hilbert space, a linear operator can at the
most map 2N nonorthogonal states into orthogonal states
(Appendix (C 10)). Then, by projectively measuring an
observable whose eigenkets (with nondegenerate eigen-
value) are these orthogonal states, we can discriminate
between 2N number of nonorthogonal states, both ex-
actly and deterministically. However in our protocol we
have 2N (|φ1j〉s) + 2N (|φ2j〉s) number of nonorthogonal
states. Hence |φ1j〉s and |φ2j〉s together constitute a set
of 2N+1 number of nonorthogonal states. Note that in
Appendix (C 2) we showed that |φ1j〉s and |φ2k〉s are non-
trivially nonorthogonal. Even if we discard those states
among |φ1j〉s and |φ2j〉s, whose probability of Bob get-
ting them tends to zero in the large N limit (e.g., |0〉⊗N ),
still one can easily show that the set of nonorthogonal
states will have much more than 2N number of states. In
this case, as shown in Appendix (C 10), even determinis-
tic but inexact discrimination between |φ1j〉s and |φ2j〉s
may also require nonlinear evolution.

We showed that it is the nonlinear effect (reduction in
variance) (main text (II B)) which leads to discrimina-
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tion. Further it makes sense to say that, nonlinear effect
could be a consequence of some nonlinear evolution.

Following are the likely sources of nonunitary, nonlin-
ear evolution in our protocol: (1) Individual/selective
projective measurements. (2) Information supplied by
central limit theorem which purifies the state at various
stages of the protocol. (3) Application of random-x rota-
tion i.e., (θq)x individually to each of the qubit states in
the given IC-ensemble (this is justified by the fact that

Tr(ρ′1
2
) 6= Tr(ρ̃2

1), see Appendix (C 8)).

12. Power of a single quantum system

To build a portable quantum computer we need to ma-
nipulate single quantum systems. NMR being a CC-
ensemble, is considered only as a test bed for quan-
tum information protocols, but not a candidate for ul-
timate portable quantum computer. Whereas NV cen-
ter, SQUID, trapped ion, cold atoms etc., where we can
manipulate single quantum systems, are considered as
ultimate candidates to build a portable quantum com-
puter. IC-ensembles can be realized in these architec-
tures. Similarly, in our protocol, Bob is able to discrimi-
nate because he works with a single quantum system in
the state |φij〉, i = 1 or 2, j = 1 or 2 or ... or 2N .

Appendix D: Numerical simulation

1. Reduction in variance

(Continued from the main text (III)) A few more sim-
ulation results are plotted in Fig.s (3, 5, 7 (c)). Details
about the seed corresponding to Fig. (2) is given in Fig.
(4).

2. To look for reduction in population difference

Instead of directly looking for reduction in variance,
we can also look for total amount of reduction in pop-
ulation difference, as it is possible to obtain both f(S′1)
and g(S1)(= g(S2) = g(S′2)) from the given IC-ensemble
Ei, i = 1 or 2 (B 2). Here we considered the case {θ1(=

0), θ2(= π)} → {po0(= 1/2), poπ(= 1/2)}. Let S′1 = ∆S′1S̃
′
1

where S̃′1 → ND : 0,∆S̃′21 . ⇒ S′1 → ND : 0,∆S′21 ∆S̃′21
(using theorem in Appendix (B 4)). But we have S′1 →
ND : 0,∆S′21 . ⇒ ∆S̃′21 = 1. Also S′1 = (T ′+1 − T

′−
1 )/M .

Substituting θ1 = 0, θ2 = π, po0 = poπ = 1/2, σ2
m1

= M/4

in Eq. (B1) we obtain ∆S′1 = 1/M . ⇒ (T ′+1 −T
′−
1 ) = S̃′1.

Similarly we obtain S1 = (T+
1 −T

−
1 )/M = S̃1/

√
M where
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Seed: 3 x 104+1 to 4 x 104
Seed: 104+1 to 2 x 104

Seed: 205 x 104+1 to 206 x 104

(a) (b)

(d)(c)

FIG. 3. (Color online) ‘Seed’ is the PRN generator’s seed
value. We used different seed for each of the M1 number of
sample mean points. (a) Ag = 0.6795, Af = 0.7445. As it
is evident from the figure (a), centers of two Gaussians are
not perfectly coinciding (this may be due to small M1). If we
make them to coincide, we get A′g (= aligned area under one
standard deviation of g(S1)) to be 0.6795, and A′f (= aligned
area under f(S′1) corresponding to one standard deviation
of g(S1)) to be 0.785. (b) Ag = 0.6787, Af = 0.739, A′g =
0.6793, A′f = 0.777. (c) Ag = 0.685, Af = 0.7492, A′g =
0.6828, A′f = 0.7855. (d) Ag = 0.6811, Af = 0.7442, A′g =
0.6811, A′f = 0.7824. Seed corresponding to applying (θq)xs

in (a) was from 1 to 104, in (b) was from 2×104 +1 to 3×104,
and in (c) was from 204× 104 + 1 to 205× 104.
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Seed: 104 x 104+1
to 204 x 104

(a) (b)

Seed: 104 x 104+1 to
105 x 104

FIG. 4. (Color online) (b) A′g = 0.683286, A′f = 0.780642.
Seed corresponding to applying (θq)xs in (a) was from 4 ×
104 +1 to 5×104, and in (b) was from 4×104 +1 to 104×104.

S̃1 → ND : 0, 1. ⇒ (T+
1 − T

−
1 ) =

√
MS̃1. Now consider

h(r) =

r∑
i=1

(|T ′+1i − T
′−
1i | − |T

+
1i − T

−
1i |)

= (〈|S̃′1|〉r −
√
M〈|S̃1|〉r)r, (D1)

where r = 1, 2, ...,M1, 〈|S̃′1|〉r = (1/r)
∑r
i=1 |S̃′1i|,

〈|S̃1|〉r = (1/r)
∑r
i=1 |S̃1i|. Note that even though both

S̃1 and S̃′1 are identically distributed, they are inde-

pendent. Therefore 〈|S̃′1|〉r 6= 〈|S̃1|〉r in general. For
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FIG. 5. (Color online) True random number generator [23]
was interfaced with MATLAB. Dj is the difference in area
under the Gaussians ×105 i.e., Dj = (

∑aj
S′1=−aj

f(S′1) −∑aj
S1=−aj g(S1))δS × 105 where δS is the smallest element

(step size) on x-axis (sample mean) considered for plot-
ting, and aj = j × δS, j = 1, 2, .... In the summation,
S′1, S1 increases in steps of δS. Following values indicate
respective

∑
j Dj (=area under respective curve divided by

δS): a1=1800, a2=12550, a3=-7150, a4=-1200, a5=4550,
a6=-11900, a7=650, a8=-12150, a9=-17200, a10=11550,
a11=21300, a12=20624T (‘T’ stands for approximate the-
oretical prediction, and it has been scaled down by a fac-
tor of 10 (approximately) i.e., theoretical curve corresponds
to (Dj)theory/10. Also the theoretical curve corresponds
to f(S′1) = Nd(S′1) : 0,∆S′21 where ∆S′21 was taken to be
(0.12/M) instead of ∆S′21 ≈ (1 − (∆ cos θq)

2
po
θq

)/M = 0/M .

This is for the sake of better comparison of simulation re-
sults with theoretical prediction, as simulation was done with
small values of M,M1). b1=15950, b2=2400, b3=16300,
b4=1900, b5=7250, b6=9000, b7=5100, b8=19150, b9=-
4950, b10=-3900, b11=20624T. c1=14225, c2=-32050, c3=-
4725, c4=29450, c5=51683T. In the following (hj,fj,dj) rep-
resents the values of (M,M1,

∑
kDk) respectively: h1=6e2,

f1=3e3, d1=27667. h2=1e3, f2=4e3, d2=-3425. h3=2e2,
f3=45e2, d3=-5378. h4=6e2, f4=3e3, d4=34562T.

r > ro, ro ∼ 100, we can neglect 〈|S̃′1|〉r compared to√
M〈|S̃1|〉r as M � 1. Hence h(r) ≈ −

√
M〈|S̃1|〉rr.

〈|S̃1|〉r is also a random variable with certain mean and

a small variance. We can replace 〈|S̃1|〉r with a further

averaged value C = 〈〈|S̃1|〉r〉. Then h(r) ≈ −
√
MCr,

which is a straight line with negative slope. Hence h(r)
diverges to −∞ as r → ∞. Now consider the area un-
der the curve h(r), A(r) =

∑r
x=1 h(x)δx ≈ −

√
MCr(r+

1)/2, where step size δx = 1, r = 1, 2, ...,M1. A(r) is a
downward opening parabola. Hence area under h(r) also
diverges. Corresponding MATLAB simulation results are
plotted in Fig.s (6, 7 (a,b), 8).
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FIG. 6. (Color online) Number with the legend (where ‘r’e‘n’
= r × 10n, ‘r’ is a real number and ‘n’ is an integer) is the
PRN generator (CombRecursive)’s seed values. We used dif-
ferent seed for each of the M1 number of sample mean points.
Curves in (b) represents the area under the respective curves
in (a). Similarly, the curves in (d) represents the area under
the respective curves in (c). Consider (a): Seed corresponding
to applying (θq)xs in the red curve (i.e., seed 104+1 to 2×104)
was from 1 to 104, in the blue curve (i.e., seed 3× 104 + 1 to
4×104) was from 2×104 +1 to 3×104, and in the green curve
(i.e., seed 205× 104 + 1 to 206× 104) was from 204× 104 + 1
to 205× 104.
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FIG. 7. (Color online) Twister is the PRN generator. (a)
and (b) Values in the legend are the PRN generator’s seed
value(s). Only one seed value implies that we have used same
seed for all M1 number of sample mean points. A range (e.g.,
271e4+1−272e4 i.e., 2710001 to 2720000) of seed values im-
plies that we have used different seed value for each of the M1

number of sample mean points. Curves in (b) represents the
area under the respective curves in (a). (c) Dj and ‘T’ are
defined in Fig. (5). In each legend (except the last, which has
no seed), first value represents PRN generator’s seed value(s)
(see above for description), and the second value represents∑
j Dj . Theoretical curve has been scaled down by a factor of

100 (approximately), and ∆S′21 was taken to be (0.12/M) to
plot the theoretical curve. Consider (a) and (c): Seed corre-
sponding to applying (θq)xs in the curve represented by first
legend (i.e., seed 1) was 1, second legend (i.e., seed 20) was
20, third legend (i.e., seed 271 × 104 + 1 to 272 × 104) was
from 270× 104 + 1 to 271× 104, fourth legend (i.e., seed 40)
was 40, fifth legend (i.e., seed 60) was 60, sixth legend (i.e.,
seed 273 × 104 + 1 to 274 × 104) was from 272 × 104 + 1 to
273×104, seventh legend (i.e., seed 21671 to 31670) was from
11671 to 21670, eighth legend (i.e., seed 41671 to 51670) was
from 31671 to 41670, ninth legend of Fig. (c) (i.e., seed 80)
was 80.
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FIG. 8. (Color online) Simulation was done with true random
numbers. Curves in (b) represents the area under the respec-
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