A Quadruplet of Numbers

Dragan N. Turanyanin*

turanyanin@yahoo.com

Three real numbers are introduced via related infinite series. With e, together they complete a quadruplet.

The fundamental mathematical constant e is well defined, among other ways, via the sum of the infinite series

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots \approx 2.7182818 \ldots$$

Following that way one might also examine the next, rather interesting, series of primes

$$e_p = \sum_{p} \frac{1}{p!} = \frac{1}{2!} + \frac{1}{3!} + \frac{1}{5!} + \cdots \approx 0.6751984 \ldots$$

This series, i.e. the number $e_p$, to the best author's knowledge and surprisingly enough, has not been in focus of a proper attention if any at all. Anyway, the questions regarding general characteristics of $e_p$, such as its irrationality, transcenden
cce or possible connections with other constants, could have been raised as well. It is especially so when we know about long term interest in primes, their distribution etc.

Along the similar line of reasoning two more convergent series as well as related numerical constants can be introduced equally. Now we use the function primorial over both natural and prime numbers, hence

$$\tau = \sum_{n=0}^{\infty} \frac{1}{n\#} = 1 + \frac{1}{1\#} + \frac{1}{2\#} + \frac{1}{3\#} + \cdots \approx 2.9200509 \ldots$$

* Web: wavespace.webs.com, Alter. e-mail: turanydra@gmail.com
and

\[ \tau_p = \sum_{p} \frac{1}{p^#} = \frac{1}{2#} + \frac{1}{3#} + \frac{1}{5#} + \cdots \approx 0.7052301 \ldots \]

We may speculate here about meaning of \( \tau \) let alone \( \tau_p \). Could we say that \( \tau \), in analogy to \( e \), rules over one to it related mathematics of primes? Next, all the questions about irrationality and transcendence of both \( \tau \) and \( \tau_p \) are opened too. Accordingly, we may ask ourselves about the nature and meanings of, e.g. \( \tau e \), \( \tau \tau \), \( \tau e \), \( e \tau \), \( \log \tau \) and so forth.

Finally, noticing kind of equivalence \( e \sim e_p \iff \tau \sim \tau_p \), we intuitively guess the existence of a numerical quadruplet.

**Acknowledgments**

Thankfully, the author dedicates this longstanding work to the memory of his first teacher Biljana Banožić.

This author acknowledges almost two decades of walks and talks with dear friend, as well as a splendid mind, Svetozar Jovičin.

Friendly entusiasm and insightful thoughts of Prof. Saša Doder are a valuable part of this work.

**Literature**

Bronstein I.N., Semendyaev K.A., Spravochnik po Matematike (Handbook of Mathematics), Nauka, Moskva (1964), in Russian

e (mathematical constant), en.wikipedia.org/wiki/E_(mathematical_constant)


Primorial, en.wikipedia.org/wiki/Primorial


The Euler Archive, eulerarchive.maa.org
Notes

i The question, however, has also been raised elsewhere; see at Sum of reciprocals of primes factorial, Nov 2013.

ii We use this version of it, i.e.

\[ n! \equiv \prod_{i=1}^{\pi(n)} p_i ; \pi(n) \text{ is the prime-counting function.} \]