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ABSTRACT  

With the term ñLaw of Selfvariationsò we mean an exactly determined increase of the 

rest mass and the absolute value of the electric charge of material particles. In this article we 

present the basic theoretical investigation of the law of selfvariations. We arrive at the central 

conclusion that the interaction of material particles, the corpuscular structure of matter, and 

the quantum phenomena can be justified by the law of Selfvariations. We predict a unified 

interaction between particles with a unified mechanism (the Unified Selfvariation Interaction, 

USVI). Every interaction is described by the three distinct terms with distinct consequences 

in the USVI. The theory predicts a wave equation, whose special cases are the Maxwell 

equations, the Schrödinger equation and the related wave equations. The theory provides a 

mathematical expression for any conservable physical quantity, and the current density 4-

vector in every case. The corpuscular structure and wave behaviour of matter and the relation 

between this emerge clearly and the theory also predicts the rest masses of material particles. 

We prove an «internal symmetry» theorem which justifies the cosmological data. The study 

we present can be the basis for further investigation of the theory and their consequences. 

Keywords: Particles and Fields, Quantum Physics, Cosmology. 
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1. INTRODUCTION  

 

            The theoretical foundation of physics as developed in the last century, summed up 

mainly in special and general theory of relativity and quantum mechanics. The great advances 

in theoretical physics is mainly attributed to these two theories. There are however good 

reasons to consider seriously that these two theories may not be the fundamental theories of 

physics. The incompatibility between them, the failure to find a deeper cause of quantum 

phenomena and the multiple assumptions, imposed by the experimental data, for the 

development of quantum mechanics, are just some of these reasons.   

            These weaknesses of theoretical physics have led to build the confidence that the 

deeper understanding of physical reality is impossible. Spearheading this argument was the 

lack of understanding of quantum phenomena. Over the years Einstein's view that we should 

seek and understand the cause of quantum phenomena was ignored and passed to the margin 

             A question that arises is whether there is a prominent fundamental law in nature. A 

law which has the potential to reproduce our basic knowledge in physics. If indeed there is 

such a law in nature then a continuing reduction of the axioms of theoretical physics is 

expected to converge to this law. We present such a study below. 

The present study is founded on three axioms: The principle of the conservation of the 

four-vector of momentum, the equation of the Theory of Special Relativity for the rest mass 

of the material particles and the law of Selfvariations. 

With the term ñLaw of Selfvariationsò we mean an exactly determined increase of the 

rest mass and the absolute value of the electric charge of material particle. The law is 

consistent with the principles of conservation of energy, momentum, angular momentum and 

electric charge. It is also invariant under the Lorentz-Einstein transformations. 

The most direct consequence of the law of Selfvariations is that energy, momentum, 

angular momentum and electric charge (when the material particle is electrically charged) of 

particles are distributed in the surrounding spacetime. For example, to compensate the 

increase (in absolute value) of the electric charge of the electron, the particle emits  a 

corresponding positive electric charge into the surrounding spacetime. Otherwise, the 

conservation of the electric charge is violated. Similarly, the increase of the rest mass of the 

material particle involves the ñemissionò of negative energy as well as momentum in the 
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space-time surrounding the material particle (spacetime energy-momentum, STEM). Later 

we will see that STEM contains charge in cose the particle is charged. The law of 

Selfvariations quantitatively describes the interaction of material particles with the STEM. 

Every material particle interacts both with the STEM emitted by itself due to the 

selfvariations, and with the STEM originating from other material particles. The material 

particle and the STEM with which it interacts, comprise a dynamic system which we called 

ñgeneralized particleò.  In the present article we study this continuous interaction. The 

conclusions resulting from the law of Selfvariations will be referred to as "the Theory of 

Selfvariations" (TSV). 

            The main conclusion reached is that the three axioms we use reproduce all of our 

basic knowledge in physics. In particular they predict and justify the particle structure of 

matter, the interactions of particles, the quantum effects and the cosmological data. Moreover 

an exceptionally large number of new statements about physical reality can be derived from 

these axioms. 

The TSV predicts a common mechanism for the interaction of particles which is the 

Unified Selfvariation Interaction (USVI). The USVI implies that each interaction consists of 

three components with different characteristics. One of these components corresponds to our 

familiar Lorentz force as known from electromagnetism, one component corresponds to the 

curvature of space-time, while the existence of the third component was totally unknown to 

us before the formulation of the TSV. 

The TSV predicts a wave equation whose special cases are the Maxwell's equations, 

the Schrödinger equation and the associated wave equations. We determine a unified 

mathematical expression for all conserved physical quantities and calculate the corresponding 

4-vector for the current density. Both the density and the current density of conserved 

physical quantities have a ócrystallineô structure which refers to the quantum behavior of 

matter. 

The equations of the TSV predict a strictly determined structure of matter. They 

highlight both the particulate structure and the wave behavior of matter and the relationship 

between them. 
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We prove a theorem, the internal symmetry theorem, which predicts and justifies the 

cosmological data. We will show that for observations done at cosmological scale, our 

observation instruments directly record the consequences of Selfvariations. 

 

2. THE BASIC STUDY OF THE STRUCTURE OF THE GENERALIZED PARTICLE  

 

2.1. Introduction  

            In this chapter we give the mathematical formulation of the law of selfvariations for 

the rest mass and we determine the fundamental physical quantities , , 0,1,2,3ki k il = which 

are obtained from the law. For the formulation of the equations the following notation is 

used: 

W= the energy of the particle 

=J  the momentum of the particle 

0m = the rest mass of the particle 

E= the energy  of the STEM interacting with the particle 

=P  the momentum of the STEM interacting with the particle  

 0E = the rest energy of the STEM interacting with the particle . 

With the above symbolism, the law of Selfvariations for the rest mass is given by equations 
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The conclusions resulting from the law of Selfvariations will be referred to as "the 

Theory of Selfvariations" (TSV). In the beginning we present the TSV in inertial frames of 

reference. 

 

2.2. The basic study of the internal structure of the generalized particle 

We consider a particle with rest mass 0 0m ¸  and we denote 0E  the rest energy of the 

STEM interacting with the particle. The rest mass 0m  and the rest energy 0E   given by 

equations (2.1) and (2.2) respectively (according to special relativity [1-4]) 

 

 
2 4 2 2 2

0m c W c= -J
                                                                                                          (2.1) 

 
2 2 2 2

0E E c= -P
.                                                                                                            (2.2) 

We now denote the four-vectors  
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                                                                                                            (2.5) 

where c is the light constant (vacuum velocity of light) and i  is the imaginary unit,2 1i =-. 

            Using this notation, the law of Selfvariations and equations (2.1) and (2.2) are written 

in the form of equations (2.6), (2.7) and (2.8) 
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0
0, 0,1,2,3k

k

m b
P m k

x

µ
= =

µ
, 0 0m ¸                                                                                 (2.6) 

 
2 2 2 2 2 2

0 1 2 3 0 0J J J J m c+ + + + =                                                                                        (2.7) 

 
2

2 2 2 2 0
0 1 2 3 2

0.
E

P P P P
c

+ + + + =                                                                                          (2.8) 

 

However equations (2.7), (2.8) remain valid in the case where 0 0m = , 0 0E = . 

After differentiating equation (2.7) with respect to , 0,1,2,3kx k=  we obtain 
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0 1 2 3 0 0
k k k k k

J J mJ J
J J J J m c

x x x x x
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+ + + + =
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and with equation (2.6)  we obtain 
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and with equation (2.7)  we obtain 
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.                                               (2.9) 

We now symbolize 

, , 0,1,2,3i
k i ki

k

J b
P J k i

x
l

µ
- = =

µ
.                                                                                 (2.10) 

With this notation, equation (2.9) can be written in the form 

0 0 1 1 2 2 3 3 0, 0,1,2,3k k k kJ J J J kl l l l+ + + = = .                                                              (2.11) 

 We now need the 4 4³  matrix T  as given by equation  
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With this notation, equation (2.11) can be written in the form 

0TJ= .                                                                                                                          (2.13) 

From 0 0m =  in equation (2.7) we get again equations (2.11) and (2.13). 

Proof. For 0 0m = in equation (2.7) we get 

2 2 2 2

0 1 2 3 0J J J J+ + + = 

and differentiating with respect to , 0,1,2,3kx k=  we obtain 
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and symbolizing 

, , 0,1,2,3i
k i ki

k

J b
P J k i

x
l

µ
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µ
 

we get again equations (2.11) and (2.13) .  

            We now prove the following theorem: 

 Theorem 2.1ȭȭ For }{, , 0,1,2,3k i k i¸ Í  it hold that 

1. 0 0i k

k i

P P
m

x x
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µ µç ÷
, , , 0,1,2,3k i k i¸ =                                                                                  (2.14) 



8 
 

2. 0 0 , , , 0,1,2,3i k

k i

P P
m k i k i

x x

µ µ
¸ Ý = " ¸ =

µ µ
                                                                            (2.15) 

3. When 

      i k

k i

P P

x x

µ µ
¸

µ µ
 

for at least one pair ( ) }{, , , , 0,1,2,3k i k i k i¸ Í it holds that 

    0 0m = .ȭȭ                                                                                                                   (2.16) 

Proof. Indeed, by differentiating equation (2.6) with respect to , 0,1,2,3ix i=  we get    
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and using the identity  
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and with equation (2.6) we have 
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 and with equation  (2.6)  we have 
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 from which we obtain relations (2.15) and (2.16).  
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3. PHYSICAL QUANTITIES ki
ɚ , k,i =0,1,2,3 AND THE CONSERVATION 

PRINCIPLES OF ENERGY AND MOMENTUM  

 

 

3.1. Introduction  

The physical quantities , , 0,1,2,3ki k il =  are related to the conservation of energy and 

momentum of the generalized particle. This investigation we will  present in this section.  

              We present the internal symmetry, which expresses the isotropy of spacetime, and 

the external symmetry which expresses the anisotropy of spacetime. In this chapter we two of 

the fundamental theorems of TSV: the theorem of internal symmetry and the first theorem of 

external symmetry. 

 

3.2. Physical quantities ki
ɚ , k,i =0,1,2,3 and the conservation principles of energy and 

momentum 

 

             We start our study with the proof of the following theorem: 

Theorem 3.1 ȭȭFor 0 0m ¸ and when the generalized particle conserves its momentum along 

the axes , 0,1,2,3ix i=  , that is  

 constanti i iJ P c+ = =                                                                                                    (3.1) 

then the following equation holds 

( ) ( ) ( )ki ik k i i k i k k i k i i k

b b b
J P J P c J c J c P c Pl l- = - = - = -                                           (3.2)   

for every , 0,1,2,3, .k i k i=  ̧ȭȭ 

Proof. Combining relation (2.15) with equation (3.1) we obtain 

 ( ) ( )i i k k

k i

c J c J
x x

µ µ
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J J

x x
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=
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and with equation (2.10) we get 

( )

k i ki i k ik

ki ik k i i k

b b
P J PJ

b
J P J P

l l

l l

+ = +

- = -

 

which is equation (3.2). The rest of equations (3.2) are derived taking into account equation 

(3.1). Equation (3.2) holds for , , i 0,1,2,3k i k¸ = , since equation (2.14), from which 

equation (3.2) results is an identity for k i=and gives no information in this case. 

            We now prove the following theorem: 

 Theorem 3.2. TSV theorem for the symmetry of indices: 

ȭȭ For 0 0m ¸  and when the generalized particle conserves its momentum along the axes ix

and kx  with k i̧ , the following equivalences hold 

1. ik ki k i i k i k k i k i i kJ P J P c J c J c P c Pl l= Ú = Ú = Ú = .                                                (3.3) 

2. ik kil l=- Ú ( ) ( ) ( )
2 2 2

ki k i i k i k k i k i i k

b b b
J P J P c J c J c P c Pl= - = - = -.                 (3.4)          

, 0,1,2,3,k i k i=  ̧.ȭȭ  

Proof. The theorem is an immediate consequence of equation 3.2.  

    We now consider the four-vector ,C  as given by equation 

0

1

2

3

.

c

c
C J P

c

c

è ø
é ù
é ù= + =
é ù
é ù
ê ú

                                                                                                            (3.5) 

When the generalized particle conserves its momentum along every axis, then the four-vector 

C  is constant. Also, we denote 0M  the total rest mass of the generalized particle, as given by 

equation  

2 2 2 2 2 2

0 1 2 3 0 cTC C c c c c M= + + + =-                                                                                    (3.6) 

where TC  is the transposed of the column vector C . 
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            For reasons that will become apparent later in our study, we give the following 

definitions: We name the symmetry , , , 0,1,2,3ik ki k i k il l= ¸ =  internal symmetry, and the 

symmetry , , , 0,1,2,3ik ki k i k il l=- ¸ =  external symmetry. We now prove the following 

theorem: 

Theorem 3.3. Internal Symmetry Theorem: 

ȭȭ For 0 0m ¸  and when the generalized particle conserves its momentum in every axis, the 

following hold:  

1. ik kil l=  for every , 0,1,2,3k i= Ú  J , P  and C  are parallel                   

      Ú P J=F where FÍ .                                                                                       (3.7) 

2.  For 1F=-or 0F=  the following equations hold 

      

2

0 0 0

0 0 0

0

0

E m c M

m M E

=° Ø =

=° Ø =
                                                                                               (3.8) 

respectively.  

3.  For 1F¸-and 0F¸  the following equations hold: 

      ( )0 0 1 1 2 2 3 3exp
b

K c x c x c x c x
è ø

F= - + + +é ù
ê ú

                                                               (3.9) 

     0
0

1

M
m =°

+F
                                                                                                            (3.10) 

     
2

0
0

1

M c
E

F
=°

+F
                                                                                                         (3.11) 

      , 0,1,2,3
1

i
i

c
J i= =

+F
                                                                                             (3.12) 

     , i 0,1,2,3
1

i
i

c
P

F
= =
+F

                                                                                              (3.13) 

 where K  is a dimensionless constant physical quantity. 

 We have  ik kil l=  for every , i 0,1,2,3k =  

                                  Ú                                                                                                (3.14) 

      0kil =  for every , i 0,1,2,3k =  . ȭȭ  
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 Proof. Equivalence (3.7) result immediately from equivalence (3.3). For 1F=- from the 

last of equivalence (3.7) we obtain P J=-  and from equations (2.7), (2.8) and (3.5), (3.6) we 

obtain  

2 2 2

0 0 0 0E m c M= Ø = 

which is the first of the equations (3.8). For 0F= from the last of equivalence (3.7) we 

obtain 0P=  and from equations (3.5), (3.6) and (2.7) we obtain  

 2 2

0 0 0 0m M E= Ø = 

which is the second of the equations (3.8). 

             For 1F¸- and 0F¸  from the last of equivalence (3.7) we obtain  i iP J=F  for 

every 0,1,2,3i =  and with equation (3.1)  i i iJ P c+ =  we initially obtain equations (3.12) and 

(3.13). Then, combining equations (2.7) and (3.12) we get 

( )
( )2 2 2 2 2 2

0 0 1 2 32

1
0

1
m c c c c c+ + + + =

F+
  

 and with equation (3.6) we obtain equation 

( )

2 2
2 2 0
0 2

0
1

M c
m c - =

F+
                                                                                                       (3.15) 

 and we finally have 

0
0

1

M
m =°

+F
 

which is equation  (3.10). Similarly, combining equations (2.8) and (3.13) we obtain equation 

(3.11). We now prove that function F is given by equation (3.9). 

Differentiating equation (3.15) with respect to , 0,1,2,3vx v=  and considering 

equation (2.6) we obtain  

( )

2 2
2 2 0
0 3

22
0

1
v

v

M cb
P m c

x

µF
+ =

µF+
 

and with equation (3.15) we have  
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( ) ( )

( )

2 2 2 2

0 0

2 3
0

1 1

1

v

v

v

v

M c M cb
P

x

b
P

x

µF
+ =

µF+ F+

µF
=- F+

µ

 

 and with equation (3.13) for i v=  we arrive at equation 

  , 0,1,2,3.v

v

b
c v

x

µF
=- F =

µ
                                                                                         (3.16) 

By integration of equation (3.16) we obtain 

( )0 0 1 1 2 2 3 3exp
b

K c x c x c x c x
è ø

F= - + + +é ù
ê ú

 

where K  is the integration constant, which is equation (3.9). 

             Combining equations (2.10), (3.12) and (3.13) for0,1,2,3k=  we obtain 

i
ki k i

k

J b
P J

x
l

µ
= -
µ

 

 
1 1 1

i k i
ki

k

c c cb

x
l

Fµå õ
= -æ ö
µ +F +F +Fç ÷

 

 
( ) ( )

2 2
1 1

i k i
ki

k

c c cb

x
l

FµF
=- -

+F +F
 

and with equation (3.16) for kn=  we obtain 

( ) ( )
2 2

1 1

i k i
ki k

c c cb b
cl

F
= F-
+F +F

 

0kil = .  

            We formulated internal symmetry theorem for 0J¸  in order for the material particle 

to exist. If we formulate the theorem for 0P¸ , the material particle and the STEM exchange 

places in the equations and the conclusions of the TSV. 

               Following we do the study based on case 3. of the internal symmetry theorem. That is 

in the case where 1F¸- and 0F¸ . The study of the cases 1F¸- and 0F¸ , i.e. of 

equations (3.8) are not considered in the present publication. 
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 According to the previous theorem, internal symmetry is equivalent to the parallelism 

of the four-vectors ,J P . Starting from this conclusion we can determine the physical content 

of the internal symmetry. 

In an isotropic space the spontaneous emission of STEM by the material particle is 

isotropic. Due to the linearity of the Lorentz-Einstein transformations, this isotropic emission 

has as a consequence the parallelism of the four-vectors ,J P  ([5] par. 5.3). Thus, the 

theorem of internal symmetry 3.3 holds for the spontaneous emission of STEM by the 

material particle due to Selfvariations . 

In the following chapters, we will make clear that the internal symmetry refers to a 

spontaneous internal increase of the rest mass and the electrical charge of the material 

particles, independent of any external causes. The consequences of this increase is the 

cosmological data, as we'll see in Chapter 16. Also, the internal symmetry is associated with 

Heisenberg's uncertainty principle. 

We start the investigation of the external symmetry with the proof of the following 

theorem:  

Theorem 3.4. First theorem of the TSV for the external  symmetry: ȭȭ For 0 0m ¸  and 

when the generalized particle conserves its momentum along every axis, and the symmetry 

ik kil l=-  holds for every k i, , 0,1,2,3k i¸ = , then: 

 1.  

0

0

0

i vk k iv v ki

i vk k iv v ki

i vk k iv v ki

c c c

J J J

P P P

l l l

l l l

l l l

+ + =

+ + =

+ + =

                                                                                         (3.17) 

for every , , , , , 0,1,2,3i v v k k i k i v¸ ¸ ¸ = . 

 2.  
2 2

ki v v
v ki ki v ki ki

v

bc bcb b
P J

x

l
l l l l

µ
= - =- +

µ
                                                           (3.18) 

for every , , , 0,1,2,3k i k in¸ = . 

 3.  01 32 02 13 03 21 0l l l l l l+ + =. ȭȭ                                                                                (3.19) 

 Proof. From equivalence (3.4) we obtain       
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( ), , , 0,1,2,3
2

ki i k k i

b
c J c J k i k il= - ¸ =                                                                      (3.20) 

Considering equation (3.20) we get 

( ) ( ) ( ) 0
2

i vk k iv v ki i k v v k k v i i v v i k k i

b
c c c c c J c J c c J c J c c J c Jl l l+ + = - + - + - =è øê ú . 

Thus, we get the first of equations (3.17). Similarly, from the other two equalities of 

equivalence (3.4) we obtain the second and the third equation of (3.17). Since k i̧ in 

equivalence (3.4), the physical quantities , ,k i kin nl l l in equations (3.17) are defined for 

, , , , , 0,1,2,3k i k i k in n n¸ ¸ ¸ =  . 

            Differentiating equation (3.20) with respect to , 0,1,2,3vx v=  we obtain 

 
2

ki k i
i k

v v v

J Jb
c c

x x x

l å õµ µ µ
= -æ ö

µ µ µç ÷
 

and with equation (2.10) we get 

  ( )

( ) ( )

2

2

2 2

ki
i v k vk k v i vi

v

ki
v i k k i i vk k vi

v

ki
v i k k i i vk k vi

v

b b b
c P J c P J

x

b b
P c J c J c c

x

b b b
P c J c J c c

x

l
l l

l
l l

l
l l

µ è øå õ å õ
= + - +æ ö æ öé ùµ ç ÷ ç ÷ê ú

µ è ø
= - + -é ùµ ê ú

µ
= - + -

µ

 

and with equation (3.20) we obtain 

  ( )
2

ki
v ki i vk k vi

v

b b
P c c

x

l
l l l

µ
= + -

µ
 

and with the first of equations (3.17) we obtain 

0

0

i k k i ki

i k k i ki

c c c

c c c

n n n

n n n

l l l

l l l

+ + =

- + =
 

 
i vk k vi v kic c cl l l- =-  

  we get 
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2

ki v
v ki ki

v

bcb
P

x

l
l l

µ
= -

µ
 

 which is equation (3.18). The second equality in equation (3.18) emerges from the 

substitution 

  , 0,1,2,3v v vP c J v= - =  

 according to equation (3.5). 

            Taking into account equation (3.20) we obtain 

  
( )( )( )( )( )( )

01 32 02 13 03 21

2

1 0 0 1 2 3 3 2 2 0 0 2 3 1 1 3 3 0 0 3 1 2 2 12
0

4

b
c J c J c J c J c J c J c J c J c J c J c J c J

l l l l l l+ + =

- - + - - + - - =è øê ú

 

after the calculations.  

            From equation (2.14) it follows that, for 0 0m = , we donôt know if it is 

i k

k i

P P

x x

µ µ
=

µ µ
 

or  

i k

k i

P P

x x

µ µ
¸

µ µ
, , , 0,1,2,3k i k i¸ = . 

Next we study the external symmetry based on equation (3.4), which holds for 0 0m ¸ . In 

chapter 7 we will see the equation of the TSV that holds whether it is 0 0m ¸ or 0 0m = (see 

equations (7.89)). 

 

4. THE UNIFIED SELFVARIATIONS INTERACTION (USVI)  

 

4.1. Introduction  

              The most direct consequence of the law of selfvariations is the emission of STEM in 

spacetime. Through STEM the TSV predicts a common mechanism, a common cause for the 

interactions of the material particles  (Unified Selfvariations Interaction, USVI).  
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            In this chapter we prove the secod theorem of external symmetry which enables us to 

determine the potential field ( ),Ŭ ɓof USVI. The field ( ),Ŭ ɓ is defined for any interaction 

and not only for the electromagnetic and the gravitational interaction. It also satisfies four 

equations which correspond to the four Maxwell equations. These equations, as well as the 

Maxwell equations, are special cases of more general equations as we shall see in the next 

chapter. At the end of the chapter we calculate the field potential. 

            The USVI consists of the sum of three terms. The first term is demonstrated by a 

force parallel to the 4 dimensional momentum of the material particle. This term is always 

non-zero. The second term demonstrates the spacetime curvature and the third the familiar 

from electromagnetism, Lorentz force. 

 

4.2. The Unified Selfvariations Interaction (USVI) 

      According to the law of selfvariations every material particle interacts both with the 

STEM emitted by itself due to the selfvariations, and with the STEM originating from other 

material particles. In the second case, an indirect interaction emerges between material 

particles through the STEM. STEM emitted by one material particle interact with another 

material particle. Through this mechanism the TSV predicts a unified interaction between 

material particles. The individual interactions only emerge from the different, for each 

particular case, physical quantity Q  which selfvariates, resulting in the emission of the 

corresponding STEM.In this chapter we study the basic characteristics of the USVI. We 

suppose that for the generalized particle the conservation of energy-momentum holds, hence 

the equations of the preceding chapter also hold. For the rate of change of the four-vector 

0

1
J

m
 we get  

0

2

0 0 0

1i i i

k k k

J J m J

x m m x m x

å õ µ µµ
=- +æ ö

µ µ µç ÷  

and with equations (2.6) and (2.10) we get 

 
02

0 0 0

1i i
k k i ki

k

J J b b
Pm P J

x m m m
l

å õµ å õ
=- + +æ ö æ ö

µ ç ÷ç ÷
 

and we finally obtain  
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0 0

, , 0,1,2,3i ki

k

J
k i

x m m

lå õµ
= =æ ö

µ ç ÷
.                                                                                      (4.1) 

      According to equation (4.1), when 0kil ¸  for at least two indices , , , 0,1,2,3,k i k i =  

the kinetic state of the material particle is disturbed. According to equivalence (3.14) in the 

internal symmetry it is 0kil =  for every , 0,1,2,3.k i =  Therefore, in the internal symmetry 

the material particle maintains its kinetic state. In an isotropic space we expect that the 

spontaneous emission of STEM by the material particle cannot disturb its kinetic state. 

Consequently, the internal symmetry concerns the spontaneous emission of STEM by the 

material particle in an isotropic space. 

      In contrast, in the case of the external symmetry it can be 0kil ¸  for some indices 

, , , 0,1,2,3k i k i= . Therefore, the external symmetry must be due to STEM with which the 

material particle interacts, and which originate from other material particles. The distribution 

of STEM depends on the position in space of the material particle relative to other material 

particles. This leads to the destruction of the isotropy of space for the material particle. The 

external symmetry factor will emerge in the study that follows. 

      The initial study of the Selfvariations  concerned the rest mass and the electric charge. 

The study we have presented up to this point allows us to study the Selfvariations in their 

most general expression. 

      We consider a physical quantity Q  which we shall call selfvariating ñcharge Q  ò, or 

simply charge Q , unaffected by every change of reference frame, therefore Lorentz-Einstein 

invariant, and obeys the law of Selfvariations, that is equation 

  , 0,1,2,3.k

k

Q b
PQ k

x

µ
= =

µ
                                                                                            (4.2) 

In equation (4.2) the momentum ,k 0,1,2,3kP = , i.e. the four-vector P , depends on 

the selfvariating charge .Q  Two material particles carrying a selfvariating charge of the same 

nature interact with each other when the STEM emitted by the charge 1Q  of one of them 

interacts with the charge Q  of the other. In this particular case, we denote with Q  the charge 

of the material particle we are studying. 

The rest mass 0m  is defined as a quantity of mass or energy divided by 2c , which is 

invariant according to the Lorentz-Einstein transformations. The 4-vector of the momentum 

J  of the material particle is related to the rest mass 0m  through equation (2.7). The charge 
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Q  contributes to the energy content of the material particle and, therefore, also contributes to 

its rest mass. Furthermore, the charge Q  modifies the 4-vector of momentum J  of the 

material particle and, therefore, contributes to the variation of the rest mass 0m  of the 

material particle. Consequently, for the change of the four-vector J  of the material particle 

due to the charge ,Q  the four-vector P  of equation (2.10) enters into equation (4.2). The 

consequences of this conclusion become evident when we calculate the rate of change of the 

four-vector 
1

.J
Q

  

Theorem 4.1 Second theorem of the TSV for the external symmetry: 

ȭȭ1. The rate of change of the four-vector 
1

J
Q

 due to the Selfvariations of the charge Q  is  

given by equation  

, , 0,1,2,3i ki

k

J
k i

x Q Q

lå õµ
= =æ ö

µ ç ÷ .                                                                             (4.3) 

  2.  For k i̧  the physical quantities ki

Q

l
 are given by  

, k i,k, i 0,1,2,3ki
kiza

Q

l
= ¸ =

                                                                                         (4.4) 

where z is the function 

( )0 0 1 1 2 2 3 3exp
2

b
z c x c x c x c x

è ø
= - + + +é ù

ê ú.                                                                       (4.5) 

  3.  For the constants kia  the following equations hold 

       

0

0

0

i vk k iv v ki

i vk k iv v ki

i vk k iv v ki

c a c a c a

J a J a J a

Pa P a P a

+ + =

+ + =

+ + =

                                                                                        (4.6) 

for every , , , , , 0,1,2,3i v v k k i i kn¸ ¸ ¸ = .  

 

  4. , , , 0,1,2,3ik ki k i k ia a=- ¸ =                                                                                  (4.7) 

 

  5. 01 32 02 13 03 21 0a a a a a a+ + =.ȭȭ                                                                                  (4.8) 
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Proof. In order to prove the theorem, we take 

2

1i i i

k k k

J J JQ

x Q Q x Q x

å õ µµ µ
=- +æ ö

µ µ µç ÷  

and with equations (4.2) and (2.10) we get  

2

1i i
k k i ki

k

J J b b
P Q P J

x Q Q Q
l

å õµ å õ
=- + +æ ö æ ö

µ ç ÷ç ÷
  

 

i ki

k

J

x Q Q

lå õµ
=æ ö

µ ç ÷  

which is equation (4.3). Equations (4.2) and (2.10) hold for every ,i 0,1,2,3.k =  Therefore, 

equation (4.3) also holds for every , 0,1,2,3.k i =  

 For , , 0,1,2,3k i k i¸ =  and 0,1,2,3v=  equation (3.18) holds and, since 0Q¸ , we 

obtain  

2

ki v
v ki ki

v

bcb
Q PQ Q

x

l
l l

µ
= -

µ  

and with equation (4.2) we get 

2

2

1

2

2

ki v
ki ki

v v

ki ki
ki

ki v ki

v

bcQ
Q Q

x x

bcQ
Q

Q x x Q

bc

x Q Q

n

n n

l
l l

l l
l

l l

µ µ
= -

µ µ

å õµ µ
- =-æ ö

µ µç ÷

å õµ
=-æ ö

µ ç ÷

 

and integrating we obtain  

( )0 0 1 1 2 2 3 3exp
2

ki
ki

b
a c x c x c x c x

Q

l è ø
= - + + +é ù

ê ú 

where , , , 0,1,2,3kia k i k i¸ =  are the integration constants, and with (4.5) we get equation 

(4.4). Equations (4.6) are derived from the combination of equations (3.17) and (4.4), taking 

into account that 0zQ¸ . Equation (4.7) is derived from the combination of equation 

, , , 0,1,2,3ik ki k i k il l=- ¸ =  with equation (4.4). Simirarly, equation (4.8) is derived from the 

combination of equations (3.19) and (4.4). 

            We will also use equation 
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 , 0,1,2,3
2

k

k

bcz
z k

x

µ
=- =

µ
                                                                                          (4.9) 

which results immediately from equation (4.5).  

For , , 0,1,2,3k i k i= =  equation (4.4) does not hold. So we define the physical 

quantities kT  as given by equation 

, 0,1,2,3kk
k kkT k

zQ

l
a= = = .                                                                                          (4.10) 

Taking into account the notation of equation (4.10) the main diagonal of matrix T  of 

equation (2.12) is given from matrix L 

00 0

11 1

22 2

33 3

0 0 0 0 0 0

0 0 0 0 0 01

0 0 0 0 0 0

0 0 0 0 0 0

T

T

TzQ

T

l

l

l

l

è ø è ø
é ù é ù
é ù é ùL= =
é ù é ù
é ù é ù
ê ú ê ú

.                                                      (4.11) 

We now define the three-vectors Ŭ and ɓ, as given by equations (4.12) and (4.13) 

respectively 

011

2 02

3 03

1
x

y

z

ic

ic
Q

ic

a la

a a l

a la

å õ å õå õ
æ ö æ öæ ö

= = =æ ö æ öæ ö
æ ö æ öæ ö
ç ÷ ç ÷ç ÷

Ŭ                                                                                       (4.12)  

 

321

2 13

3 21

1
x

y

z

Q

b lb

b b l

b lb

å õ å õå õ
æ ö æ öæ ö

= = =æ ö æ öæ ö
æ ö æ öæ ö
ç ÷ ç ÷ç ÷

ɓ .                                                                                         (4.13) 

Vectors Ŭ and ɓ contain all of the physical quantities kil  for , , 0,1,2,3k i k i¸ = since 

ik kil l=- . 

Combining equations (4.12) and (4.13) with equation (4.4), the vectorsŬ and ɓ are 

written in the form of equations (4.14) and (4.15), respectively 

 

011

2 02

3 03

x

y

z

icz

a aa

a a a

a aa

å õ å õå õ
æ ö æ öæ ö

= = =æ ö æ öæ ö
æ ö æ öæ ö
ç ÷ ç ÷ç ÷

Ŭ                                                                                       (4.14) 
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321

2 13

3 21

x

y

z

z

b ab

b b a

b ab

å õ å õå õ
æ ö æ öæ ö

= = =æ ö æ öæ ö
æ ö æ öæ ö
ç ÷ ç ÷ç ÷

ɓ  .                                                                                        (4.15) 

We write equation (2.10) in the form  

 ,k,i 0,1,2,3.i
k i ki

k

J b
P J

x
l

µ
= + =

µ
                                                                                  (4.16) 

The rate of change of the momentum of the material particle equals the sum of the two terms 

in the right part of equation (4.16). For 0k= , and since 
0x ict= , equation (83) gives the rate 

of change of the particle momentum with respect to time ,t  i.e. the physical quantity we call 

ñforceò. By using the concept of force, as defined by Newton, we also have to use the concept 

of velocity. For this reason we symbolize u  the velocity of the material particle, as given by 

equation 

 

1

2

3

x

y

z

uu

u u

u u

å õå õ
æ öæ ö

= =æ öæ ö
æ öæ ö
ç ÷ç ÷

u .                                                                                                        (4.17) 

Also, we define the 4-vector of the four-vector  u  , as given by equation 

 

0

1

2

3

.
x

y

z

icu

uu
u

uu

u u

è øè ø
é ùé ù
é ùé ù= =
é ùé ù
é ùé ù
é ùê ú ê ú

                                                                                                           (4.18) 

            We now prove the following theorem: 

Theorem 4.2. ȭȭ The rates of change with respect to time ( )0t x ict=  of the four-vectors J  

and P  of the momentum of the generalized particle carrying charge Q  are given by 

equations 

 

0 0

i
dJ dQ i i

J zQ u Q c
dx Qdx c c

è ø
Öé ù= - L -

é ù
+ ³ê ú

u Ŭ

Ŭ u ɓ

                                                                    (4.19) 
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0 0

i
dP dQ i i

J zQ u Q c
dx Qdx c c

è ø
Öé ù=- + L +

é ù
+ ³ê ú

u Ŭ

Ŭ u ɓ

.ȭȭ                                                              (4.20) 

  

Proof. The matrix L is given in equation (4.11). By ³u ɓ we denote the outer product of 

vectors u  and .ɓ  

We now prove the first of equations (4.19): 

 

0 0 0 0 0
1 2 3

J J J J Jd
u u u

dt Q t Q x Q y Q z Q

å õ å õ å õ å õ å õµ µ µ µ
= + + +æ ö æ ö æ ö æ ö æ ö
µ µ µ µç ÷ ç ÷ ç ÷ ç ÷ ç ÷

 

  

and using the notation of equation (2.3) we get 

  

0 0 0 0 0
1 2 3

0 0 1 2 3

J J J J Jicd
ic u u u

dx Q x Q x Q x Q x Q

å õ å õ å õ å õ å õµ µ µ µ
= + + +æ ö æ ö æ ö æ ö æ ö
µ µ µ µç ÷ ç ÷ ç ÷ ç ÷ ç ÷

 

 

and with equation (4.3) we get 

 

0 00 10 20 30
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

l l l lå õ
= + + +æ ö

ç ÷
 

0 00 10 20 30
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

l l l lå õ å õ
= - + +æ ö æ ö

ç ÷ ç ÷
 

0 00 01 02 03
1 2 3

0

Jd i
u u u

dx Q Q c Q Q Q

l l l lå õ å õ
= + + +æ ö æ ö

ç ÷ ç ÷
 

0 0 00 01 02 03
1 2 32

0 0

1 dJ J dQ i
u u u

Q dx Q dx Q c Q Q Q

l l l lå õ
- = + + +æ ö

ç ÷
  

( )0
0 00 1 01 2 02 3 03

0 0

dJ dQ i
J u u u

dx Qdx c
l l l l= + + + +  

and with equations (4.10) and (4.12) we have 

 0
0 0 1 1 2 2 3 3

0 0

dJ dQ i i i i
J zQT Q u u u

dx Qdx c c c c
a a a

å õ
= + - + +æ ö

ç ÷
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which is the first of equations (4.19) since  

0 0 0 0

i i
zQT u zQT ic zQT

c c
- =- = . 

We prove the second of equations (4.19) and we can similarly prove the third and the 

fourth: 

 1 2 3
x x x x xJ J J J Jd

u u u
dt Q t Q x Q y Q z Q

å õ å õ å õ å õ å õµ µ µ µ
= + + +æ ö æ ö æ ö æ ö æ ö
µ µ µ µç ÷ ç ÷ ç ÷ ç ÷ ç ÷

  

and using the notation of equations (2.3) and (2.4) we obtain  

1 1 1 1 1
1 2 3

0 0 1 2 3

J J J J Jicd ic
u u u

dx Q x Q x Q x Q x Q

å õ å õ å õ å õ å õµ µ µ µ
= + + +æ ö æ ö æ ö æ ö æ ö
µ µ µ µç ÷ ç ÷ ç ÷ ç ÷ ç ÷

 

and with equation (4.3) we get  

01 311 11 21
1 2 3

0

Jicd
ic u u u

dx Q Q Q Q Q

l ll lå õ
= + + +æ ö

ç ÷
 

01 3 131 1 11 2 21

0

iuJ iu iud

dx Q c Q Q c Q c Q

l ll lå õ
=- + - +æ ö

ç ÷
 

01 3 131 1 1 11 2 21

2

0 0

1 iudJ J iu iudQ

Q dx Q dx c Q Q c Q c Q

l ll l
- =- + - +   

31 1 2
1 11 01 21 13

0 0

iudJ iu iudQ
J

dx Qdx c c c
l l l l= - + - +  

and with equations (4.10), (4.12) and (4.13), we obtain  

( )1
1 1 1 2 3 3 2

0 0

dJ dQ i i i
J zQT Q Q u u

dx Qdx c c c
a b b= - - - -  

which is the second of equations (4.19). Equation (4.20) results from the combination of 

equations (4.19) and (3.5).  

            Using the symbol J  for the momentum vector of the material particle  
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1

2

3

x

y

z

JJ

J J

J J

å õå õ
æ öæ ö

= =æ öæ ö
æ öæ ö
ç ÷ç ÷

J  

and taking into account equations (2.3) and (2.4) and (4.11) the set of equations (4.19) can be 

written in the form  

( )

2

0

1 1

2 2

3 3

dW dQ
W zQc T Q

dt Qdt

T u
d dQ

zQ T u Q
dt Qdt

T u

= + + Ö

å õ
æ ö

= + + + ³æ ö
æ ö
ç ÷

u Ŭ

J
J Ŭ u ɓ

.                                                                       (4.21)      

Equations (4.21) are a simpler form of equation (4.19) with which they are equivalent.  

The rate of change of the four-vector J  of the momentum of the material particle is 

given by the sum of the three terms in the right part of equation (86). The USVI and its 

consequences for the material particle depend on which of these terms is the strongest and 

which is the weakest. 

The first term expresses a force parallel to four-vectorJ  which is always different 

than zero due to the Selfvariations. As we will see next, the second term is related to the 

curvature of spacetime. The third term on the right of equation (4.19) is known as the Lorentz 

force, in the case of electromagnetic fields. In many cases a term or some of the terms on the 

right of equation (4.19) are zero, with the exception of the first term which is always different 

than zero.      

From equation  (4.19) we conclude that the pair of vectors ( ),Ŭ ɓ expresses the 

intensity of the field of the USVI according to the paradigm of the classical definition of the 

field potential.  From equation (2.10) we derive that the physical quantities  , , 0,1,2,3ki k il =  

have units (dimensions) of 
1kg s-Ö . Thus, from equation (4.12) we derive that if Q  is the rest 

mass, the intensity Ŭ has unit of 2m s-Ö . If Q is the electric charge, the intensity Ŭ has unit of

1N C-Ö . Now we will prove that for field( ),Ŭ ɓ the following equations (4.22) hold: 
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Theorem 4.3. ȭȭ For the vector pair ( ),Ŭ ɓ the following equations hold: 

 ( )1 01 2 02 3 03
2

icbz
c c ca a aÐÖ =- + +Ŭ                                 (a) 

 0ÐÖ =ɓ                                     (b) 

 
t

µ
Ð³ =-

µ

ɓ
Ŭ                                    (c)                                       (4.22) 

 

0 01 2 21 3 31

0 02 2 12 3 32 2

0 03 2 13 3 23

2

c c c
bz

c c c
c t

c c c

a a a

a a a

a a a

+ +å õ
µæ ö

Ð³ =- + + +æ ö µæ ö+ +ç ÷

Ŭ
ɓ .ȭȭ                    (d)  

Proof. Differentiating equations (4.14) and (4.15) with respect to , 0,1,2,3kx k=  and 

considering equation (4.9), we obtain equations  

  
2

k

k

bc

x

µ
=-

µ

Ŭ
Ŭ                                                                                                              (4.23)   

  
2

k

k

bc

x

µ
=-

µ

ɓ
ɓ.                                                                                                             (4.24) 

From equations (4.23) and (4.24) we can easily derive equations (4.22). Indicatively, we 

prove equation (4.22b). From equation (4.15) we obtain  

 32 13 21

1 2 3

z z z

x x x
a a a
µ µ µ

ÐÖ = + +
µ µ µ

ɓ   

and with equation (4.9) we get  

 ( )1 32 2 13 3 21
2

bz
c c ca a aÐÖ =- + +ɓ  

and with the first of equations (4.6) for ( )( ), , 1,3,2i v k =  we get  

 0ÐÖ =ɓ . 

The first of equations (4.6) should be taken into account for the proof of the rests of equations 

of (4.22).  
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            Considering equations (4.22) we define the scalar quantity rand the vector quantity 

j , as given by equations 

 

( )1 01 2 02 3 03

0 01 2 21 3 132

0 02 1 21 3 32

0 03 1 13 2 32

2

2

icbz
c a c a c a

c a c a c a
c bz

c a c a c a

c a c a c a

r s s

s

= ÐÖ =- + +

- - +å õ
æ ö

= - + -æ ö
æ ö- - +ç ÷

Ŭ

j

                                                                  (4.25) 

where 0s¸  is a constant. We now prove that for the physical quantities r and j  the 

following continuity equation holds: 

 0
t

rµ
+ÐÖ=

µ
j .                                                                                                              (4.26) 

   Proof. : From the first of equations (4.25) we obtain  

  ( )
t t

t t

r s

r
s

r
s

= ÐÖ

µ µ
= ÐÖ

µ µ

µ µå õ
=ÐÖæ ö

µ µç ÷

Ŭ

Ŭ

Ŭ

 

and with the second of equations (4.25) and equation (4.22d) we get 

  

( )2c
t

t

r
s

r

µ
=ÐÖ Ð³ -

µ

µ
=-ÐÖ

µ

ɓ j

j

 

which is equation (4.26).   

According to equation (4.26), the physical quantity r is the density of a conserved 

physical quantity q  with current density j . The conserved physical quantity q  is related to 

field ( ),Ŭ ɓthrough equations (4.22).We will revert to the issue of sustainable physical 

quantities in the next chapters. 

  The density rand the current density  j  have a rigidly defined internal structure as 

derived from equations (4.25). We now consider the four-vector of the current density j  of 

the conserved physical quantity q , as given by equation 
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0

1

2

3

x

y

z

i cj

jj
j

jj

j j

rè øè ø
é ùé ù
é ùé ù= =
é ùé ù
é ùé ù
é ùê úê ú

                                                                                                           (4.27) 

and the 4 4³  matrix M  

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

a a a

a a a

a a a

a a a

è ø
é ù
- -
é ù=
é ù- -
é ù
- -ê ú

 .                                                                              (4.28) 

Using matrix M  equations (4.25) can be written in the form of equation 

 
2

2

c bz
j MC
s
= .                                                                                                            (4.29) 

 From equations (4.22b,c) we conclude that the potential is always defined in the 

( ),Ŭ ɓ- field of the USVI. That is, the scalar potential  

 ( ) ( )0 1 2 3, , , , , ,V V t x y z V x x x x= =  

and the vector potential A   

( ) ( )
1

0 1 2 3 2

3

, , , , , ,

x

y

z

AA

t x y z x x x x A A

A A

å õå õ
æ öæ ö

= = = =æ öæ ö
æ öæ ö
ç ÷ç ÷

A A A  

are defined through the equations 

 

0
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V V

t x

=Ð³

µ µ
=-Ð - =-Ð -

µ µ

ɓ ȷ

ȷ ȷ
Ŭ

 .                                                                               

We can introduce in the above equations the gauge function .f  That is, we can add to 

the scalar potential V  the term  

 
0

f ic f

t x

µ µ
- =-
µ µ

 

 and to the vector potential A  the term 
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  fÐ  

 for an arbitrary function f   

  ( ) ( )0 1 2 3, , , , , ,f f t x y z f x x x x= =  

without changing the intensity ( ),Ŭ ɓof the field. The proof of the above equations is known 

and trivial  and we will not repeat it here. For the field potential of the USVI the following 

theorem holds: 

Theorem 4.4.  

ȭȭ1.  In the ( ),Ŭ ɓ-field of USVI the pair of scalar-vector potentials ( ),V A  is always defined 

through equations  

 
0

0

ic
V ic A

t x

=Ð³

µ µ
=-Ð - = Ð -

µ µ

ɓ ȷ

ȷ ȷ
Ŭ

   .                                                                               (4.30)                                                                                                                                                                                                    

2.  The four-vector A  of the potential 
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                                                                                                         (4.31) 

is given by equation  
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i
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i

f
z i k

b c x
A

f
i k

x

a µë
+ ¸î µî

=ì
µî =
îµí

                                                                                      (4.32)                                                                            

 where }{0, 0,1,2,3 , 0,1,2,3kc k i¸ Í =  and kf  is the gauge function. 

3.  For }{0, , , 0,1,2,3k ic c k i k i¸ ¸ Í  equation (4.33) holds  
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, 0, , , 0,1,2,3ki

k i k i

k i

z
f f c c k i k i

b c c

a
= + ¸ ¸ = . ȭȭ                                                     (4.33) 
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Proof. Equations (4.30) are equivalent to equations (4.22b, c) as we have already mentioned. 

The proof of equation (4.32) can be performed through the first of equations (4.6). The 

mathematical calculations do not contribute anything useful to our study, thus we omit them. 

You can verify that the potential of equation (4.32) gives equations (4.14) and (4.15) through 

equations (4.30) taking also into account the first of equations (4.6). Ǐ 

      From equation (4.32) the following four sets of the potentials follow:  
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                                                                                                      (4.34) 
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                                                                                                       (4.35) 
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                                                                                                       (4.36) 
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 .                                                                                                     (4.37) 

      Indicatively, we calculate the components 1a  and 1b of the intensity ( ),Ŭ ɓ of the 

USVI field from the potentials (4.34). From the second of equations (4.30) we obtain 

0 1
1

1 0

A A
ic

x x
a

å õµ µ
= -æ ö

µ µç ÷
 

and with equations (4.34) we get  

 0 01 0
1

1 0 0 0 1

2f fz
ic

x x x b c x

a
a

è øå õ å õµ µµ µ
= - +é ùæ ö æ ö

µ µ µ µç ÷ ç ÷ê ú

 

 01
1

0 0

2 z
ic

b c x

a
a

µ
=-

µ
 

and with equation (4.9) we get 

 1 01icza a=  

that is we get the intensity 1aof the field, as given by equation (4.14). 

            From the first of equations (4.30) we have  

 3 2
1

2 3

A A

x x
b
µ µ
= -
µ µ

 

and with equations (4.34) we get 

 03 0 02 0
1

2 0 3 3 0 2

2 2f fz z

x b c x x b c x

a a
b

å õ å õµ µµ µ
= + - +æ ö æ ö
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 03 02
1

0 2 0 2

2 2z z

b c x b c x

a a
b

µ µ
= -

µ µ
 

 and with equation (4.9) we get 

 2 03 3 02
1

0 0

c c
z z

c c

a a
b=- +  

and considering that 
02 20a a=- , we get  
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 ( )1 2 03 3 20

0

z
c c

c
b a a=- + .                                                                                             (4.38) 

From the first of equations (4.6) for ( )( ), , 2,0,3i v k =  we obtain 

  
2 03 3 20 0 32

2 03 3 20 0 32

0c a c a c a

c a c a c a

+ + =

+ =-
 

and substituting into equation (4.38), we see that 

  1 32zb a=  

that is, we get the intensity 1b of the field, as given by equation (4.15). 

           The gauge functions ,k 0,1,2,3kf =  in equations (4.34)-(4.37) are not independent of 

each other. For 0kc ¸  and 0ic ¸  for , , 0,1,2,3k i k i¸ =  equation (4.39) holds  

2

2

4
, 0, , , 0,1,2,3ki

k i k i

k i

z
f f c c k i k i

b c c

a
= + ¸ ¸ = .                                                          (4.39) 

The proof of equation (4.39) is through the first of equations (4.6). The proof is 

lengthy and we omit it. Indicatively, we will prove the third of equations (4.34) from the third 

of equations (4.35) for 1k=  and 0i=  in equation (4.39). 

  For 
0 0c ¸  and 

1 0c ¸  both equations (4.34) and equations (4.35) hold. From equation 

(4.39) for 1k=  and 0i=  we get equation 
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= + .                                                                                                     (4.40)  

From the third of equations (4.35) and equation (4.40) we get 

 

2

1012
2 0 2

1 2 0 1

2

0 1012
2 2

1 2 0 1 2

2 4

2 4

z z
A f

b c x b c c

fz z
A

b c x b c c x

aa

aa

å õµ
= + +æ ö

µ ç ÷

µ µ
= + +

µ µ

 

and with equation (4.9) we obtain 
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( ) 0
2 0 12 2 10

0 1 2

2 fz
A c c
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and since 
10 01a a=- , we get equation 

( ) 0
2 0 12 2 01

0 1 2

2 fz
A c c

bc c x
a a

µ
= + +

µ
.                                                                                   (4.41) 



33 
 

From the first of equations (4.6) for ( )( ), , 0,1,2i v k =  we obtain 

 

0 12 2 01 1 20

0 12 2 01 1 20

0 12 2 01 1 02

0c a c a c a

c a c a c a
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and substituting into equation (4.41) we obtain equation 

 02 0
2

0 2

2 fz
A

b c x

a µ
= +

µ
.                                                                                                     (4.42) 

Equation (4.42) is the third of equations (4.34).  

      According to equation (4.39), if  0kc ¸  for more than one of the constants 

, 0,1,2,3kc k= , the sets of equations of potential resulting from equation (4.32) have in the 

end a gauge function. In the application we presented assuming 
0 0c ¸  and 

1 0c ¸  for a 

specific gauge function 0f  in equations (4.34), the gauge function 1f  in equations (4.35) is 

given by equation (4.40).  

      We conclude the investigation of the potential of the field ( ),Ŭ ɓof USVI by proving 

the following corollary: 

Corollary 4.1.  ȭȭIn the external symmetry, the 4-vector C  of the total energy content of the 

generalized particle cannot vanish: 
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.ȭȭ                                                                                                          (4.43) 

Proof. Indeed, for 0C=  we obtain J P=-  from equation (3.5). Therefore, the four-vectors 

J  and P   are parallel. According to equivalence (3.7) the parallelism of the four-vectors J   

and P is equivalent to the internal symmetry. Therefore, in the external symmetry it is 0C¸ . 

 

A direct consequence of these findings is that the potential of the field ( ),Ŭ ɓof USVI 

is always defined, as given from equation (4.43). This conclusion is derived from the fact that 

at least one of the constants { }, 0,1,2,3kc kÍ is always different than zero. 
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5. THE CONSERVED PHYSICAL QUANTITIES OF THE GENERALIZED 

PARTICLE AND THE WAVE EQUATION OF THE TSV  

 

5.1. Introduction  

             The TSV predicts a wave equation whose special case are the Maxwell equations, the 

Schrödinger equation and other relevant equations The wave equation Yof the TSV is 

related to the conserved physical quantities. We determine a mathematical expression for the 

total of the conservable physical quantities, and we calculate the current density 4-vector j . 

             The density r and the current density j   of the conserved physical quantities have a 

strictly determined structure which relates with the quantum behavior of matter. The physical 

quantities rand j are related with an entirely different way than given by the equation  

r=j u  used by the theories of the previous century. 

 

5.2. The conserved physical quantities of  the generalized particle and the wave equation 

of the TSV 

The generalized particle has a set of conserved physical quantities q  which we 

determine in this chapter. At first, we generalize the notion of the field, as it is derived from 

the equations of theTSV. We prove the following theorem: 

Theorem 5.1.  

ȭȭ1.  For the field ( ),ɝ ɤ of the pair of vectors  
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 where ( )0 1 2 3, , ,x x x xY=Y  is a function satisfying equation 
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 ( )k k

k

b
J P

x
l m

µY
= + Y

µ
                                                                                                 (5.3)                                                                                

( )0,1,2,3, ( , ) 0,0 , ,k lm lm= ¸ Í  are functions of 
0 1 2 3, , ,x x x x , the following 

equations holds 

0

t

ÐÖ =

µ
Ð³ =-

µ

ɤ

ɤ
ɝ

 .                                                                                                                (5.4) 

2. The generalized particle has a set of conserved physical quantities q  with density r and 

current density j   
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2
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c t

r s

s

= ÐÖ

µå õ
= Ð³ -æ ö

µç ÷

ɝ

ɝ
j ɤ

                                                                                                 (5.5) 

where 0s¸  are constants, for which conserved physical quantities the following continuity 

equation holds 

 0
t

rµ
+ÐÖ=

µ
j .                                                                                                                (5.6) 

3. The four-vectors of the current density j   are given by equation 

 ( )
2c b

j M J P
s

l m=- Y +  .ȭȭ                                                                                      (5.7) 

 Proof. Matrix M  in equation (5.7) is given by equation (4.28). We denote J and P  the 

three-dimensional momentums as given by equations 
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 For the proof of the theorem we first demonstrate the following auxiliary equations (5.10)-

(5.15) 
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In order to prove equation (5.10) we get  
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and with the second of equations (4.6) for ( , , ) (1,3,2)i v k = , we have  
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Similarly, from the third of equations (4.6) we obtain equation (5.11). We now get  
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and with the second of equations (4.6) we obtain  
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which is equation (5.12). Similarly, by considering the third of equations (4.6) we derive 

equation (5.13). Equations (5.14) and (5.15) are derived by taking into account equations 

(5.8) and (5.9). 

    Equations (5.4) are proven with the use of equations (5.10)-(5.15). We prove the first as an 

example. From equation (5.2) we obtain 
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and with equation (5.3) we get 
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and with equations (5.10) and (5.11) we obtain  

 0ÐÖ =ɤ . 

From equations (5.4) and (5.5), the continuity equation (5.6) results. The proof is similar to 

the one for equation (4.26). The proof of equation (5.7) is done with the use of equations 

(5.10)-(5.15), and equation (4.28). 

 Field ( ),Ŭ ɓpresented in the previous chapter is a special case of the field ( ),ɝ ɤ  for 

1

2
l m= =-. For these values of the parameteres ,l m we obtain from equations (5.3)   
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and with equation (3.5) we obtain 
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and finally we obtain 

 ( )0 0 1 1 2 2 3 3exp
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z c x c x c x c x

è ø
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ê ú
 

and from equations (5.1),(5.2) and (4.14),(4.15) we obtain  =ɝ Ŭ and =ɤ ɓ. 

From equation (2.10) it emerges that the dimensions of the physical quantities 

, , 0,1,2,3ki k il =  are  

[ ] 1, , 0,1,2,3ki kgs k il -= = . 

Thus, from equations (4.12), (4.13) and (4.14), (4.15) we obtain the dimensions of the 

physical quantities , , 0,1,2,3kiQ k ia = . Furthermore, from equation (4.11) we obtain the 

dimensions of the physical quantities , 0,1,2,3.kT k=  Thus, we get the following relationships  
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ki

k

Q kgs k i k i

QT kgs k

a -

-

= ¸ =

= =
                                                                              (5.16) 

            Using the first of equations (5.16) we can determine the units of measurement of the 

( ),ɝ ɤ-field for every selfvariating charge Q . When Q  is the electric charge, we can verify 

that the field units are ( )1,TV m-Ö . When Q  is the rest mass, the field units are ( )2 1m s s- -Ö , . 

The dimensions of the field depend solely on the units of measurement of the selfvariating  

charge  Q . 

From equation (5.7) and taking into account that ,lmÍ  we can define the 

dimensions of the physical quantities q through the first of equations (5.16). When Q  is the 

electric charge, and for 0s e= , where 0e is the electric permittivity of the vacuum, q  is a 
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conserved physical quantity of electric charge. For 0

e

e
s= , where e  the constant value we 

measure in the lab for the electric charge of the electron, q  is a conserved physical quantity 

of angular momentum. For 0

e

e
s= , q is a dimensionless conserved physical quantity, that 

qÍ  . When Q  is the rest mass, and for 
1

4 G
s

p
= , where G is the gravitational constant, q  

is a conserved physical quantity of mass. Theorem 5.1 reveals the conserved physical 

quantities of the generalized particle.  

One of the most important corollaries of the theorem 5.1 is the prediction that the 

generalized particle has wave-like behavior. We prove the following corollary: 

Corollary 5.1. ȭȭFor function Y the following equation holds 
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                                                                               (5.17) 

, , 0,1,2,3k i k i¸ = .ȭȭ 

  Proof. To prove the corollary, considering that 
0x ict= , we write equations (5.4) and (5.5) 

in the form 
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We will also use the identity (5.19) which is valid for every vector Ŭ  

 ( ) 2Ð³Ð³ =Ð ÐÖ -ÐŬ Ŭ Ŭ.                                                                                          (5.19) 

From the third of equations (5.18) we obtain  
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and using the identity (5.19) we get  
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and with the first and fourth of equations (5.18) we get  
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and we finally get 
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Working similarly from equation (5.18) we obtain  
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Combining equations (5.20) and (5.21) with equations (5.1) and (5.2), we get 
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which is equation (5.17). 

Equation (5.17) can be characterized as ñthe wave equation of the TSVò. The basic 

characteristics of equation (5.17) depend on whether the physical quantity  

 
2 2

2 2

2 2 2 2

0

F
x c t

µ Y µ Y
=Ð Y+ =Ð Y-

µ µ
                                                                                  (5.22) 

is zero or not. 

This conclusion is drawn through the following theorem: 
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Theorem 5.2. ȭȭFor the generalized particle the following equivalences hold 
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if and only if for each , , 0,1,2,3k i k i¸ =  it is 
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if and only if  
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Proof. In the external symmetry there exists at least one pair of indices 

{ }( , ), , , 0,1,2,3k i k i k i¸ Í , for which 0kia ¸ . Therefore, when equation (5.24) holds, then 

equation (5.23) follows from equation (5.17), and vice versa. Thus, equations (5.23) and 

(5.24) are equivalent. When equation (5.24) holds, then the right hand sides of equations 

(5.24) and (5.25) vanish, that is, equations (5.25) hold. The converse also holds, thus 

equations (5.24) and (5.25) are equivalent. Therefore, equations (5.23), (5.24), and (5.25) are 

equivalent. Ǐ 

            In case that 0F= , that is in case that equivalences (5.23), (5.24) and (5.25) hold, we 

shall refer to the state of the generalized particle as the ñgeneralized photonò. According to 

equations (5.25), for the generalized photon the ( ),ɝ ɤ-field is propagating with velocity c  in 

the form of a wave. For the generalized photon, the following corollary holds: 

Corollary 5.2: ȭȭ For the generalized photon, the four-vector j  of the current density of the 

conserved physical quantities q , varies according to the equations  

 

2
2

2 2
0, 0,1,2,3k

k

j
j k

c t

µ
Ð - = =

µ
.ȭȭ                                                                                  (5.26) 

Proof. We prove equation (5.26) for 0k= , and we can similarly prove it  for 1,2,3k= . 

Considering equation (4.27), we write equation (5.6) in the form   
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 0 31 2

0 1 2 3

0
j jj j

x x x x

µ µµ µ
+ + + =

µ µ µ µ
.                                                                                            (5.27)  

Differentiating equation (5.27) with respect to 0x  we get  

0

2

0 31 2

2

0 1 0 2 0 3

0
j jj j

x x x x x x x

å õå õ å õµ µµ µµ µ µ
+ + + =æ öæ ö æ ö

µ µ µ µ µ µ µç ÷ ç ÷ ç ÷
 

0

2

0 31 2

2

1 0 2 0 3 0

0
j jj j

x x x x x x x

å õ å õ å õµ µµ µµ µ µ
+ + + =æ ö æ ö æ ö

µ µ µ µ µ µ µç ÷ ç ÷ ç ÷
 

and with equation (5.24) we get 

0

0

2

0 0 0 0

2

1 1 2 2 3 3

2
20

02

0

0

j j j j

x x x x x x x

j
j

x

å õå õ å õµ µ µ µµ µ µ
+ + + =æ öæ ö æ ö

µ µ µ µ µ µ µç ÷ ç ÷ ç ÷

µ
+Ð =

µ

 

which is equation (5.26) for 0k= , since 
0

x ict= .  

             The way in which equations (5.25) emerge in the TSV is completely different from 

the way in which the electromagnetic waves emerge in Maxwellôs electromagnetic theory [6-

10]. Maxwellôs equations predict the equations (5.25) for 0j = . The TSV predicts ( ),Ŭ ɓ

waves for  0j ¸ , when equation (5.24) is valid. Moreover the current density j in this case 

varies according to equation (5.26). 

             We now prove the following corollary of theorem 5.1: 

Corollary  5.3. ȭȭFor the 4-vector 

 

0

1

2

3

x

x

x

x

x

µYè ø
é ùµ
é ù
µYé ù
é ùµµYè øé ù=é ùé ùµYµê ú
é ù
µ
é ù
é ùµY
é ù
µê ú

                                                                                                                                      (5.28) 

it is 
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2

1
M j

x cs

µYè ø
=-é ùµê ú

                                                                                                                              (5.29) 

where 

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

a a a

a a a

a a a

a a a

è ø
é ù
- -
é ù=
é ù- -
é ù
- -ê ú

 

and j  the 4-vector of the current density of the conserved physical quantities of the 

generalized particle.ȭȭ 

Proof. From equation (5.3) and with the notation of equation (5.28) we have 

( )
b

J P
x

l m
µYè ø

= Y +é ùµê ú
 

and multiplying from the left with the matrix M we get 

( )
b

M M J P
x

l m
µYè ø

= Y +é ùµê ú
 

and with equation (5.7) we have 

2

1
M j

x cs

µYè ø
=-é ùµê ú

 

which is equation (5.29).  

The equations (5.3), (5.7) and (5.29) give the relation of the wave function Y with the 

physical quantities J , P  and  j  of the generalized particle. 

One of the most important conclusions of the theorem 5.1 is that it gives the degrees 

of freedom of the equations of the TSV. In equation (5.7) the parameters 

, , ( , ) (0,0)l m l mÍ ¸  can have arbitrary values or can be arbitrary functions of 0 1 2 3, , ,x x x x . 

The TSV has two degrees of freedom. Therefore, the investigation of the TSV takes place 

through the parameters l and m of equation (5.7). 

If we set ( )( ), , 1,0,b il m =  or ( ), ,0
i

b
l m

å õ
=æ ö
ç ÷

 in equation (5.7), we get equations 

0

0

i
J

x

i

µY
= Y

µ

ÐY= YJ

.                                                                                                                                        (5.30) 
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For ( )( ), , 0,1,b il m =  or ( ), 0,
i

b
l m

å õ
=æ ö
ç ÷

 we have 

0

0

i

i

P
x

µ

ÐY=

= Y

Y

Y

µ

P

.                                                                                                                                        (5.31) 

For l m=  we have 

( ), 0,1,2,3k k

k

b
J P k

x
m

µY
= Y + =

µ
 

and with equation (3.5) we have 

, 0,1,2,3k

k

bc
k

x
m

µY
= Y =

µ
 

and equivalently we have 

0

0

bc

x

b

m

m

µY
= Y

µ

ÐY= YC

.                                                                                                                                     (5.32) 

Taking into account that 0x ict=  and  0

iW
J

c
= , we recognize in equations (5.30) the 

Schrödinger operators. Using the macroscopic mathematical expressions of the momentum J  

and energy W  of the material particle, we get the Schrödinger equation [11-15]. The 

Schrödinger equation is a special case of the wave equation of the TSV. The designation of 

the degrees of freedom l and m determines in a large extend the form of equation (5.7). 

 

6. THE LORENTZ -EINSTEIN -SELFVARIATIONS SYMMETRY  

 

6.1. Introduction  

In this chapter we calculate the Lorentz-Einstein transformations of the physical 

quantities  kil , , 0,1,2,3.k i=  The part of spacetime occupied by the generalized particle can 

be flat or curved. The Lorentz-Einstein transformations give us information about this 

subject. 
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            The spacetime curvature depends on the elements 00 11 22 33, , ,l l l l of the main diagonal 

of the matrix T  of the TSV. We prove that if 0kkl ¸  for at least one  }{0,1,2,3kÍ  spacetime 

is curved. For 00 11 22 33 0l l l l= = = = spacetime may be either curved or the flat spacetime of 

special relativity. 

 

6.2. The Lorentz-Einstein-Selfvariations Symmetry 

We consider an inertial frame of reference ( ), x , y ,zO t¡ ¡ ¡ ¡ ¡ moving with velocity 

( ),0,0u  with respect to another inertial frame of reference ( ), x, y,zO t , with their origins O¡ 

and O  coinciding at 0t t¡= =. We will calculate the Lorentz-Einsteintransformations for the 

physical quantities , , 0,1,2,3ki k il = . We begin with transformations (6.1) and (6.2) 

 

 

2

u
t t x
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g
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= +æ ö
¡µ µ µç ÷
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                                                                                                       (6.1) 
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2
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W W uJ

u
J J W

c

J J
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g
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2
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E E uP

u
P P E

c

P P

P P

g

g
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å õ¡= -æ ö
ç ÷

¡=

¡=

                                                                (6.2) 

 

where 

1
2 2

2
1 .

u

c
g

-

å õ
= -æ ö
ç ÷

 

We then use the notation (2.3), (2.4), (2.5) and obtain the transformations (6.3) and (6.4) 
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.                                                                  (6.4) 

 

We now derive the transformation of the physical quantity 00l . From equation (2.10) 

for 0k i= = we get for the inertial reference frame ( ), x , y ,zO t¡ ¡ ¡ ¡ ¡ 

0
00 0 0

0

J b
P J

x
l

¡µ¡ ¡ ¡= -
¡µ

 

and with transformations (6.3) and (6.4) we obtain 
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and replacing physical quantities 

 

 0 01 1

0 0 1 1

, , ,
J JJ J

x x x x

µ µµ µ

µ µ µ µ
 

  

from equation (2.10) we get  
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2
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and we finally obtain equation 

 

2
2

00 00 01 10 112

u u u
i i
c c c

l g l l l l
å õ

¡= - - -æ ö
ç ÷

. 

 

Following the same procedure for , i 0,1,2,3k =  we obtain the following 16 equations 

for the Lorentz-Einstein transformations of the physical quantities  kil  : 
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                                                                         (6.5) 



48 
 

  

20 20 21

21 21 20

22 22

23 23

u
i
c

u
i
c

l g l l

l g l l

l l

l l

å õ¡= -æ ö
ç ÷

å õ¡= +æ ö
ç ÷

¡=

¡=   .         

The first two of equations (6.5) is self-consistent when equation 

  00 11l l= .                                                                                                                       (6.6) 

 

Then by the second of equations (6.5) we obtain 

 
01 01l l¡= . 

According to equivalence  (3.14) these transformations relate to the external symmetry, in 

which it holds that ik kil l=-  for , , 0,1,2,3i k i k¸ = .  Thus, we obtain the following 

transformations for the physical quantities , , 0,1,2,3ki k il =  
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 .                                                 (6.7) 

                                                                                                                                                         

Taking into account equations (4.4), (4.10) and that the physical quantityzQ is invariant 

under the Lorentz-Einstein transformations, we obtain the following transformations for the 

constants , , , 0,1,2,3ki k i k ia ¸ = and the physical quantities , 0,1,2,3kT k=  
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 .                                                     (6.8) 

 

            Equation (6.6) correlates the physical quantities 00l and 11l  in the same inertial frame 

of reference. Taking into account equation (4.10) we obtain 0 1T T= . Thus, when 

transformations (6.8) hold, 0 1T T=  also holds. The reference frame ( ), , ,t x y z¡ ¡ ¡ ¡ ¡O  moves 

with respect to the reference frame ( ), , ,t x y zO  with constant velocity along the .x -axis. If 

we assume that the motion is along the y - or z -axis, the generalization of equation 0 1T T=  

follows; the Lorentz-Einstein transformations lead to the following equation  

0 1 2 3 0T T T T= = = =.  Thus, we derive the following two corollaries.  

Corollary 6.1. ȭȭ When the portion of spacetime occupied by the generalized particle is flat, 

it is  

0 1 2 3 0T T T T= = = =.ȭȭ                                                                                                     (6.9) 

Corollary 6.2.ȭȭWhen 

0kT ¸                                                                                                                             (6.10) 

for at least one { }0,1,2,3kÍ the portion of spacetime occupied by the generalized particle is 

curver and not flat.ȭȭ 

            Notice that from the way of proof of corollary 6.1 it follows that the converse is not 

true. For external symmetries which have  0 1 2 3 0T T T T= = = =, spacetime may be either flat 

or curved. In chapter 9 we have shown how to check if spacetime is flat or curved for 

external symmetries with 0 1 2 3 0T T T T= = = =. 
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            In the external symmetry it is 0kia ¸  for at least on pair of indices { }, 0,1,2,3k iÍ . 

Thus, in external symmetry it is 0kia = only for some pairs of indices { }, 0,1,2,3k iÍ . The 

Lorentz-Einstein transformations reveal that in flat spacetime this cannot be arbitrary. Letôs 

assume that it is 

02 0a =  

for every inertial frame of reference. Then, we obtain 

02 0a¡=  

and with transformations (6.8) we obtain 

02 21 0
u

i
c

g a a
å õ
+ =æ ö

ç ÷
 

and since it is 02 0a =  we obtain that it also holds 

21 0a = . 

Working similarly with all of the transformations (6.8) we end up with the following four sets 

of equations of external symmetry in the flat spacetime:   
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                                                                                                     (6.11) 
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                                                                                                     (6.12) 
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                                                                                                     (6.13) 
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.                                                                                                    (6.14) 

              As we will see the number of external symmetries in four-dimensional spacetime is 

59. From these 2 4 16 16 38+ + + = cases, 9 are discarded and only 29are external 

symmetries which belong to the set of 59external symmetries. The symmetry that equations 

(6.11)-(6.14) express will  be referred to as the symmetry of the Lorentz-Einstein-

Selfvarlations. These symmetries hold only in case that the part of spacetime occupied by the 

generalized particle is flat. 

 

7. THE FUNDAMENTAL STUDY FOR THE CORPUSCULAR STRUCTURE OF 

MATTER IN EXTERNAL SYMMETRY. THE Ʉ-PLANE. THE SV T-  METHOD  

 

7.1. Introduction  

             The material particles are in a constant interaction between them (via the USVI) 

because of STEM. This interaction has consequences in the internal structure of the 

generalized particle, including the distribution of its total energy and momentum between the 

material particle and the surrounding spacetime. 

The internal structure of the generalized particle is determined by the relations among 

the elements of the matrix T . The same holds for the rest mass 0m of the material particle, the 
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rest energy 0E  of STEM, with which the material particle interacts, and the total rest mass 

0M of the generalized particle. In this chapter, we study this relation among the elements of 

the matrix T . 

               We present the proofs of six fundamental theorems which determine the structure of 

particles which accompany the USVI. In parallel with the theorem proofs we study an 

example of a particular external symmetry. We show the SV M- , qSV  and SV T-  methods 

of the TSV for the study of the corpuscular structure of matter. Especially the SV T-  enables 

us to check the validity of any mathematical equation of the TSV, or other theories, as well as 

the self consistency of the TSV. 

 

7.2. The Fundamental Study for The Corpuscular Structure of  Matter in external 

symmetry. The Ʉ-Plane. The SV T- method 

             We start our study with the proof of the following theorem: 

Theorem 7.1. ȭȭ For the elements of the T  matrix it holds that:  

2 2 2 2 2 2

0 1 2 3 0 1 32 0 2 13 0 3 21 1 2 03 1 3 02 2 3 010T TT T T T T T T T TT TT T Ta a a a a a+ + + + + + =.ȭȭ                          (7.1) 

Proof. We develop equation (2.13), obtaining the set of equations  

0 00 1 01 2 02 3 03
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J J J J

J J J J

l l l l

l l l l

l l l l

l l l l
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- + - + =

- + + - =
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and from equations (4.4) and (4.10) we have 

0 0 1 01 2 02 3 03
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0
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and since it holds that 0zQ¸  , we take the set of equations 



53 
 

 

0 0 1 01 2 02 3 03
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.                                                                                 (7.2) 

The set of equations given in (7.2) comprise a 4 4³  homogeneous linear system of equations 

with unknowns the momenta 0 1 2 3, , ,J J J J . In order for the material particle to exist, the 

system of equations (7.2) must obtain non-vanishing solutions. Therefore, its determinant 

must vanish. Thus, we obtain equation 

2 2 2 2 2 2

0 1 2 3 0 1 32 0 2 13 0 3 21 1 2 03 1 3 02 2 3 01

2

01 32 02 13 03 21( ) 0

T TT T T T T T T T TT TT T Ta a a a a a

a a a a a a

+ + + + + +

+ + + =
 

and with equation (4.8) we arrive at equation (7.1).  

            We formulated theorem 7.1 for  0J¸  in order for the material particle to exist. If we 

formulate the theorem for 0P¸ , then material particle and the STEM trade places in the 

equations and the conclusions of the TSV. 

We consider the  4 4³  N matrix, given as:  

32 13 21

32 03 02

13 03 01

21 02 01

0

0

0

0

N

a a a
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a a a

a a a

è ø
é ù
- -
é ù=
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é ù
- -ê ú

  .                                                                                (7.3) 

Using the matrix N , we now write equation (4.6) in the form of 

0

0

0

NC

NJ

NP

=

=

=

.                                                                                                                          (7.4) 

We now prove Lemma 7.1: 

Lemma 7.1.  ȭȭThe four-vectors , ,C J P  satisfy the set of equations  

2

2
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0

0

N C

N J

N P

=

=

=

.ȭȭ                                                                                                                      (7.5) 
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Proof. We multiply the set of equations (7.4) from the left with the matrix N , and equations 

(7.5) follow.     

Using lemma 7.1 we prove theorem 7.2 : 

Theorem 7.2. ȭȭFor  0M ¸  it holds that: 

1.  0MN NM= =.            (7.6) 

2.   2 2 2M N Ia+ =-            (7.7) 

       2 2 2 2 2 2 2

01 02 03 32 13 21a a a a a a a= + + + + +.          (7.8) 

Here,I  is the 4 4³  identity matrix.  

3.  For  0a¸  the matrix M  has two eigenvalues 1t  and 2t, with corresponding 

eigenvectors  1n and  2n  , given by: 
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                                                                            (7.9) 
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aa a a a a a

a a a a a

=-

è ø+ +è ø
é ùé ù

-é ùé ù= +
é ùé ù -
é ùé ù

-é ùê ú ê ú

.                                                                        (7.10) 

4.  For 0a¸  the matrixN has the same eigenvalues with the matrix M , and two 

corresponding eigenvectors 1n  and  2n  , given by: 

    

1

2 2 2

32 13 21

32 02 21 03 13

1 2

13 03 32 01 21

21 01 13 02 32

0

1

i

i
n

t a

a a a

a a a a a

aa a a a a a

a a a a a

=

è ø+ +è ø
é ùé ù

-é ùé ù= -
é ùé ù -
é ùé ù

-é ùê ú ê ú

                                                                         (7.11) 
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2

2 2 2

32 13 21

32 02 21 03 13

2 2

13 03 32 01 21

21 01 13 02 32

0

1

i

i
n

t a

a a a

a a a a a

aa a a a a a

a a a a a

=-

è ø+ +è ø
é ùé ù

-é ùé ù= +
é ùé ù -
é ùé ù

-é ùê ú ê ú

.                                                                        (7.12) 

5. When }{2 2, , , 0,1,2,3ki k i k ia a¸ ¸ Í  is 

      2 2 2 2 2 2 2

01 02 03 32 13 21 0a a a a a a a= + + + + + =                                                                 (7.13) 

     

2

2

2

0

0

0

M C

M J

M P

=

=

=

 .                                                                                                               (7.14) 

6. For }{2 2, , , 0,1,2,3ki k i k ia a= ¸ Í  it can be 

     2 0a ¸ .˘˘ 

Proof. The matrices M  and N are given by equations (4.28) and (7.3). The proof of 

equations (7.6), (7.7), (7.9), (7.10), (7.11) and (7.12) can be performed by the appropriate 

mathematical calculations and the use of equation (4.8). 

            We multiply equation (7.7) from the right with the column matrices , ,C J P , and 

obtain 

2 2 2

2 2 2

2 2 2

M C N C C

M J N J J

M P N P P

a

a

a

+ =-

+ =-

+ =-

 

and from equations (7.5) we obtain 

2 2

2 2

2 2

M C C

M J J

M P P

a

a

a

=-

=-

=-

.                                                                                                              (7.15)                                                                              

According to the set of equations (7.15), and for 0a¸ , }{2 2, , , 0,1,2,3ki k i k ia a¸ ¸ Í , 

the matrix 2 0M ¸  has as eigenvalue 2 0a ¸ with corresponding eigenvector 0ņ . From 
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equations (7.15) it is evident that the four-vectors , ,C J P  are parallel to the four-vector n, 

hence they are also parallel to each other. This is impossible in the case of the external 

symmetry, according to Theorem 3.3. Therefore, 2 0a =  , so that the matrix 2 0M ¸  does not 

have the four-vector n as an eigenvector. If the case it is 2 0M =  from equations  (7.15) we 

get 

2

2

2

0

0

0

C

J

P

a

a

a

=

=

=

 

and because is 0J¸  we again have 2 0a = . Thus, we arrive at equation (7.13). Then, from 

equations (7.15) we arrive at equations (7.14), since it holds that 2 0a = . 

            For }{2 2, , , 0,1,2,3ki k i k ia a= ¸ Í  it could be 2 0a ¸  and the 4-vectors , ,C J P are not 

parallel. The general proof is tedious and is omitted. We will only refer to the reason why for 

}{2 2, , , 0,1,2,3ki k i k ia a= ¸ Í it can be 2 0a ¸ .  

            Matrix 2M  derives from the equation 

2 2 2

01 02 03 02 21 03 13 01 21 03 32 01 13 02 32

2 2 2

02 21 03 13 01 21 13 01 02 32 13 01 03 32 21

2

2 2 2

01 21 03 32 01 02 32 13 02 21 32 02 03 13 21

01 13 02 32 01 03 32 21

M

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a

a a a a a a a a a

- - - - - + -

- - - - - + - +

=

- + - + - - - - +

- - + - 2 2 2

02 03 13 21 03 13 32a a a a a a

è ø
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù
é ù+ - - -ê ú

. 

In case  }{2 2, , , 0,1,2,3ki k i k ia a= ¸ Í (see chapter 12) all the diagonal elements of matrix 

2M are equal to zero. Consequently, all the equations (7.15) become indentities, so they are 

also valid for 2 0a ¸ . On the contrary for }{2 2, , , 0,1,2,3ki k i k ia a¸ ¸ Í  at least one non 

diagonal element of the matrix 2M is not zero. As a consequence, the equations (7.15) are not 

identities and they are finally valid only for 2 0a = .   

From theorem 7.2 it follows: 
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Corollary 7.1. ȭȭFor the four-vector j  of the conserved physical quantities q  it holds that: 

1. 0Mj = , if  }{2 2, , , 0,1,2,3ki k i k ia a¸ ¸ Í .                                                              (7.16) 

2. 0Nj= .ȭȭ                                                                                                                   (7.17) 

Proof. We multiply equation (5.7) by matrix M from the left and obtain 

( )
2

2 2c b
Mj M J M P

s
l m=- Y +  

and with the second and the third of equations (7.14) we have 

0Mj = . 

We multiply the terms of equation (5.7) from the left with the matrix N , and obtain 

( )
2c b

Nj NM J P
s

l m=- Y +  

and with equation (7.6) we take 

0Nj= .  

In the equations of the TSV there appear sums of squares that vanish, like the ones 

appearing in equations (3.6) and (7.13). Writing these equations in a suitable manner, we can 

introduce into the equations of the TSV complex numbers. From equation (3.6) , and for 

0 0M ¸ , we obtain 

2 2 2 2

0 31 2

0 0 0 0

1 0
c cc c

M c M c M c M c

å õ å õ å õ å õ
+ + + + =æ ö æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷ ç ÷
. 

Therefore, the physical quantities 

0 31 2

0 0 0 0

, , ,
c cc c

M c M c M c M c
 

belong in general to the set of complex numbers . This transformation of the equations of 

the TSV is not necessary. It suffices to remember that within the equations of the TSV there 

are sums of squares that vanish. We now prove theorem 7.3, which also intercorrelates the 

elements of the matrix T : 
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Theorem 7.3.  ȭȭIn the external symmetry and for the elements of the matrix T  it holds that: 

0

, , , , , 0,1,2,3

i kT a

i k k i i k

n

n n n

=

¸ ¸ ¸ =
 .ȭȭ                                                                              (7.18)                                                                          

Proof. We differentiate the second equation of the set of equations (4.6) 

0

, , , , , 0,1,2,3

i k k i kiJ J J

i k k i i k

n n na a a

n n n

+ + =

¸ ¸ ¸ =
 

with respect to , 0,1,2,3jx j= . Considering equations (2.10) and (4.4), we have 

0k j i ji i j k jk ki j j

b b b
P J zQ P J zQ P J zQn n n na a a a a a

å õ å õ å õ
+ + + + + =æ ö æ ö æ ö

ç ÷ ç ÷ ç ÷
 

( ) ( ) 0j i k k i ki k ji i jk ki j

b
P J J J zQn n n n n na a a a a a a a a+ + + + + = 

and with the second equation of the set of equations (4.6), and taking into account that 

0zQ¸ , we obtain 

0

, , , , , , 0,1,2,3

k ji i jk ki j

i k k i i k j

n n na a a a a a

n n n

+ + =

¸ ¸ ¸ =
.                                                                              (7.19) 

Inserting into equation (7.19) successively ( )( )( )( )( ), , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i kn = and 

0,1,2,3j = , we arrive at the set of equations 

  

0 32

0 13

0 21

1 02

1 03

1 32

2 01

2 03

2 13

3 01

3 02

3 21

0

0

0

0

0

0

0

0

0

0

0

0

T

T

T

T

T

T

T

T

T

T

T

T

a

a

a

a

a

a

a

a

a

a

a

a

=

=

=

=

=

=

=

=

=

=

=

=

.                                                                                                                    (7.20) 

The set of equations (7.20) is equivalent to equation (7.18).    
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            Theorem 7.3 is one of the most powerful tools for investigating the external 

symmetry. This results from corollary 7.2 : 

Corollary 7.2. ȭȭFor the elements of the matrix T of the external symmetry the following 

hold: 

1. For every { }, , , , , 0,1,2,3k i k i k in n n¸ ¸ ¸ Í  it holds that 

   

0

0

,

ki

k i

k i

n

a

n

¸ û
î

¸ ÝT =ü
î¸ ý

.                                                                                                    (7.21) 

2. 

   

0 32 13 21

1 02 03 32

2 01 03 13

3 01 02 21

0 0

0 0

0 0

0 0

T

T

T

T

a a a

a a a

a a a

a a a

¸ Ý = = =

¸ Ý = = =

¸ Ý = = =

¸ Ý = = =

  .ȭȭ                                                                                (7.22) 

   Proof. Corollary 7.2 is an immediate consequence of theorem 7.3.  

From theorem 7.3 the following corollary follows, regarding the elements of the main 

diagonal of the matrices of the external symmetry: 

   Corollary 7.3. ȭȭAt least one of the elements of the main diagonal of the matrix T is equal 

to zero.ȭȭ 

Proof. If  0Tn¸  for every }{0,1,2,3nÍ , from equations (7.20)  we obtain 0kia =  for every 

set of indices , , 0,1,2,3k i k i¸ = , and from equation (7.1) we have 

0 1 2 3 0T TT T= . 

This cannot hold, since we assumed that 0Tn¸  for every 0,1,2,3n= . Therefore, at least one 

element of the main diagonal of the matrix T is equal to zero.  

            We present a second way for proving this result. In the case of  0Tn¸  for every   

}{0,1,2,3nÍ , we obtain from equations (7.20) that  0kia =  , for every  , , 0,1,2,3k i k i¸ = . 

Thus, the matrix  T takes the form 
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0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

T

T
T zQ

T

T

è ø
é ù
é ù=
é ù
é ù
ê ú

 . 

From equation (2.13) we take 

0 0 1 1 2 2 3 3 0T J T J T J T J= = = = 

Since we assumed that  

0 1 2 3 0T TT T¸  

we obtain  

0 1 2 3 0J J J J= = = =. 

Thus, the material particle does not exist.  

            The corollary 7.3 follows from the combination of theorems 7.1 and 7.3. We write the 

equation (7.1) 

2 2 2 2 2 2

0 1 2 3 0 1 32 0 2 13 0 3 21 1 2 03 1 3 02 2 3 010T TT T T T T T T T TT TT T Ta a a a a a+ + + + + + = 

in the form 

0 1 2 3 0 32 1 32 0 13 2 13 0 21 3 21 1 03 2 03 1 02 3 02 2 01 3 010T TT T T T T T T T T T T T T Ta a a a a a a a a a a a+ + + + + + = 

and continuing with equations (7.20) we get 

0 1 2 3 0T TT T=  

which implies that not all physical quantities 0 1 2 3, , ,T T T T  can be nonzero. Notice that theorem 

7.1 is a consequence of the relation 0J¸ , which also lies óbehindô the proof of corollary 7.3 

we presented above. 

            We consider now the three-dimensional vectors     

1 32

2 13

3 21

t a

t a

t a

å õ å õ
æ ö æ ö
= =æ ö æ ö
æ ö æ ö
ç ÷ ç ÷

Ű                                                                                                            (7.23) 
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1 01

2 02

3 03

      

n

n

n

a

a

a

å õ å õ
æ ö æ ö
= =æ ö æ ö
æ ö æ ö
ç ÷ ç ÷

n .                                                                                                         (7.24) 

In the case of the T matrices with      ̧Ű 0 and    ̧n 0, we define the vector   ɛ̧ 0 from equation 

1 02 21 03 13

2 03 32 01 21

3 01 13 02 32

  

m a a a a

m a a a a

m a a a a

-å õ å õ
æ ö æ ö
= = -æ ö æ ö
æ ö æ ö-ç ÷ ç ÷

ɛ  .                                                                                    (7.25) 

Combining equations (5.1), (5.2) with equations (7.23) and (7.24) we obtain 

            ic= Yɝ n                                                                                                               (7.26) 

   =Yɤ Ű .                                                                                                                      (7.27) 

The field    ɝis parallel to the vector  n and the field ɤ is parallel to the vector Ű. Moreover the 

only variable quantity of the field  ( ),  ɝ ɤ is the function ( )0 1 2 3, , ,x x x xY=Y . 

            For every vector  

1

2

3

a

a

a

å õ
æ ö
=æ ö
æ ö
ç ÷

Ŭ  

which is determined by the physical quantities of the TSV, we define the physical quantity 

( ) ( )
1 1

2 2 22 2
1 2 3

T a a a= = + +Ŭ Ŭ Ŭ .                                                                                 (7.28) 

Here, the matrix T
Ŭ is the transposed matrix of the column matrix Ŭ. 

            From equations (7.23) and (7.24) we obtain 

01 32 02 13 03 21a a a a a aÖ = + +Ű n . 

Also, from equation (4.8) we have 

0Ö =Ű n .                                                                                                                        (7.29) 

Therefore, the vectors Űand n are perpendicular to each other. Considering also equation 

(7.25), we see that the triple of the vectors { , ,ɛ n Ű} forms a right-handed vector basis. 
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            From equation (7.13) we have 

( )2 2 2 2 2 2

01 02 03 32 13 21a a a a a a+ + =- + + 

and with equations (7.23), (7.24), and using the notation of equation (7.28), we obtain 

2 2=-n Ű  

and finally we obtain 

i=°n Ű .                                                                                                               (7.30) 

From equation (7.25) we have 

( )
22= ³ɛ n Ű 

and since the vectors Űand n  are perpendicular to each other, we obtain from equation (7.29) 

that 

2 2 2=ɛ n Ű 

and using the notation of equation (7.28) we have 

2 2 2=ɛ n Ű 

=°ɛ n Ű 

and from equation (7.30) we take 

2 2i=° =ɛ n Ű.                                                                                               (7.31) 

            In the case of the T matrices, where ¸n 0, and from equation (7.31), it follows that 

0, 0¸ ¸Ű ɛ . In these cases we can define the set of unit vectors { 1 2 3, ,Ů Ů Ů}, given by 

 

1

2

3

0

=

=

=

¸

ɛ
Ů

ɛ

n
Ů

n

Ű
Ů

Ű

n

   .                                                                                                                 (7.32) 
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The triple of vectors { 1 2 3, ,Ů Ů Ů} forms a right-handed orthonormal vector basis. 

            In the cases of the T  matrices with Ű̧ 0, we define with P the plane perpendicular 

to the vector Ű̧ 0. In the cases where moreover ¸n 0, we obtain from equation (7.25) that 

ɛ̧ 0.In these cases the vectors n  and ɛ are perpendicular to the vector Ű, as implied by 

equations (7.25) and (7.29). Therefore, the vectors n  and ɛ belong to the plane P, and they 

also form an orthogonal basis of this plane. We note that the vectors of the TSV, which may 

belong to the plane P, are given as a linear combination of the vectors n  and ɛ. Therefore, 

the condition for Ű̧ 0 is not sufficient, in order for the plane P to acquire a physical 

meaning. Also, we note that because of equation (7.13), the plane P, when it is defined, is 

not a vector subspace of  3 .  

            We now prove theorem 7.4: 

Theorem 7.4.  ȭȭIn the case of the T matrices with Ű̧ 0 and ¸n 0 and ¸° ¸Ű n 0, the 

vectors  

, , , ,ÐYJ P C j  belong to the same plane P.ȭȭ 

Proof. From equations (4.6), for ( )( ), , 1,3,2i kn = , we obtain 

1 32 2 13 3 21

1 32 2 13 3 21

1 32 2 13 3 21

0

0

0

c c c

J J J

P P P

a a a

a a a

a a a

+ + =

+ + =

+ + =

 

and from equations (5.8),(5.9) and (7.23) we get 

0

0

0

Ö =

Ö =

Ö =

Ű C

Ű J

Ű P

                                                                                                                        (7.33) 

where 

= +C J P                                                                                                                      (7.34) 

as implied by equation (3.5). From equation (7.33) we conclude that the vectors , ,C J P , 

being perpendicular to vector  Ű, belong to the plane P. From equation (5.3) and equations 

(5.8) and (5.9) we obtain 
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( )
b

l mÐY= Y +J P . 

Therefore, the vector ÐY, as a linear combination of the vectors ,J P , belongs to the plane 

P. By developing the terms of equation (7.17), the first obtained equation is 

32 1 13 2 21 3 0j j ja a a+ + = 

and using equation (7.23) we have 

0Ö =Ű j .                                                                                                                        (7.35) 

Therefore, the vector j , being perpendicular to the vectorŰ, belongs to the plane P. The 

vectors , , , ,ÐYJ P C j  vary according to the equations of the TSV, while staying on the plane 

P.  

            From this study we can obtain a method about the determination of the four-vectors  

, ,J P C , as well as for the rest masses 0
0 02
, ,
E

m M
c

. This method is applied in the case the 

matrix M does not vanish, that is 0M ¸ . We shall refer to this method as theSV M-  

method. 

The steps of the SV-M  method: 

Step 1. We choose external symmetry matrix T  we want to study. 

Step 2. We apply Theorem 7.3.  

Step 3. We use equation (7.13). 

Step 4. We use equation (2.13), or the equivalent equations (7.2). 

Step 5. We use the second of the set of equations (4.6). 

Step 6. We use the first of the set of equations (7.14), when }{2 2, , , 0,1,2,3ki k i k ia a¸ ¸ Í . 

Step 7. We use the first of the set of equations (4.6). 

Step 8. We use equation (3.5). 

Step 9. We use equation (3.4). 

Step 10. We use equation (2.10) for , , 0,1,2,3k i k i= = . 



65 
 

Step 6 simplifies the execution of operations in some matrices. It is not necessary though 

since itôs overlapped by step 7. 

As an example, we apply this method on the matrix T : 

 

0 01

01 1 21

21 2

3

0 0

0

0 0

0 0 0

T

T
T zQ

T

T

a

a a

a

è ø
é ù
- -
é ù=
é ù
é ù
ê ú

                                                                                   (7.36) 

where, 01 21 0a a¸ . 

From equations (7.20), and since 01 0a ¸  and 21 0a ¸ , we have 0 2 3 0T T T= = =, and 

the matrix (7.36) becomes 

 

01

01 1 21

21

0 0 0

0

0 0 0

0 0 0 0

T
T zQ

a

a a

a

è ø
é ù
- -
é ù=
é ù
é ù
ê ú

.                                                                                    (7.37) 

 

For 1 0T ¸ , according to corollary 6.2 the portion of spacetime occupied by the 

generalized particle is curved. Furthermore, the second term of the second part of the second 

equation in the set of equations (4.21) is nonzero. 

In the case the portion of spactime occupied by the generalized particle is flat, we 

obtain from corollary 6.1 that  1 0T = . Therefore, 0 1 2 3 0T T T T= = = =. In this case, and from 

equation (4.11), we obtain 0L=, and the second term of the second part of equation (4.19) 

vanishes. 

            From equation (7.13) we take 

2 2 2

01 21 0a a a= + = 

21 01ia a=° .                                                                                                                   (7.38) 
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From equations (7.2) we obtain 

1 01

0 01 1 1 2 21

1 21

0

0

0

J

J J T J

J

a

a a

a

=

- + - =

=

  

and since 01 21 0a a¸ , we have that 

1

01
2 0

21

0J

J J
a

a

=

=-
.                                                                                                                (7.39) 

From the second of equations (4.6), for ( )( ), , 3,0,1i kn = we have 

3 01 1 30 0 13 0J J Ja a a+ + = 

and since 

01 30 03 130, 0, 0a a a a¸ =- = = 

we obtain 

3 0J = .                                                                                                                         (7.40) 

From equations (7.39) and (7.40), and from equation (2.4), we get the four-vector J  

0 001

21

1
1

0
0 0

1

0 0
0

i

W
J J J

i c
a

a

è ø
è ø è øé ù
é ù é ùé ù
é ù é ùé ù= = =

- é ù é ù°é ù
é ù é ùé ù
ê ú ê úé ùê ú

 .                                                                             (7.41) 

For the second equality in equation (7.41) we applied the second equation of equations 

(7.38). 

From equations (4.29) and (7.37) we have 

01

01 21

21

0 0 0

0 0

0 0 0

0 0 0 0

M

a

a a

a

è ø
é ù
- -
é ù=
é ù
é ù
ê ú

                                                                                        (7.42) 
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2

01 01 21

2

2

01 21 21

0 0

0 0 0 0

0 0

0 0 0 0

M

a a a

a a a

è ø- -
é ù
é ù=
é ù- -
é ù
ê ú

.                                                                               (7.43) 

From the first of equations (7.14) we see that 

2 0M C=  

and with equations (3.5) and (7.43) we obtain 

2

01 0 01 21 2

2

01 21 0 21 2

0

0

a c a a c

a a c a c

- - =

- - =
  

and taking into account that 01 21 0a a¸ , we obtain  

01
2 0

21

c c
a

a
=- .                                                                                                                 (7.44) 

From the first of the equations (4.6), for ( )( )( )( )( ), , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i kn =  we have 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

c c c

c c c

c c c

c c c

a a a

a a a

a a a

a a a

+ + =

+ + =

+ + =

+ + =

 

and taking into account the zero elements of the matrix T we have 

0 21 2 01

3 01

3 12

0

0

0

c c

c

c

a a

a

a

- + =

=

=

 

and since 01 21 0a a¸  we obtain 

21
2 0

01

3 0

c c

c

a

a
=

=

.                                                                                                                    (7.45) 

The first of equations (7.45) is equation (7.44), because of equation (7.38). From equations  

(3.5) and (7.38), (7.45) we obtain the four-vector C  
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00

11

021
0

01

0 0

cc

cc

C ic
c

a

a

è øè ø
é ùé ù
é ùé ù
é ùé ù= = °
é ùé ù
é ùé ù
é ùé ùê úê ú

.                                                                                                  (7.46) 

Combining equation (3.5) 

P C J= - 

with equations (7.41) and (7.46) we obtain the four-vector P  

( )

0 0

1

0 0

0

c J

c
P

i c J

-è ø
é ù
é ù=
é ù-
é ù
ê ú

.                                                                                                        (7.47) 

            After having determined the four-vectors , ,J P C, we can calculate the rest masses 

0
0 02
, ,
E

m M
c

. From equations (2.7) and (7.41) we get 

0 0m = .                                                                                                                          (7.48) 

From equations (2.8) and (7.47) we have 

0 1E icc=° .                                                                                                                    (7.49) 

From equations (3.6) and (7.46) we also have 

1 0c iM c=° .                                                                                                                   (7.50) 

The calculation of the four-vector j  of the current density of the conserved physical 

quantities q  is done from corollary 7.2. This method is applied for 0M ¸ , and is performed 

in two steps. We shall refer to this method as the 
qSV  -method. 

The steps of the qSV  - method: 

Step 1. We use equation (7.17), or the equivalent equation: 

0

, , , , , k 0,1,2,3

i k k i kij j j

i k k i i

n n na a a

n n n

+ + =

¸ ¸ ¸ =
.                                                                                 (7.51) 
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Step 2. We use equation (5.7). 

            We apply the 
qSV  -method on the matrix T  given by equation (7.37). From equation 

(7.51), for ( )( )( )( )( ), , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3i kn =   we have 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

j j j

j j j

j j j

j j j

a a a

a a a

a a a

a a a

+ + =

+ + =

+ + =

+ + =

 

and taking into account the elements of the matrix T we have 

0 12 2 01

3 01

3 12

0

0

0

j j

j

j

a a

a

a

+ =

=

=

 

and since 01 12 210, 0a a a¸ =- ,̧ we get 

21
2 0

01

3 0

j j

j

a

a
=

=

.                                                                                                                  (7.52) 

The matrix M is given by equation (7.42). Thus, from equations (4.27) and (7.16) we have 

1 01

0 01 2 21

1 21

0

0

0

j

j j

j

a

a a

a

=

- - =

=

 

and since 01 0a ¸ and 21 0a ¸ , we have 

1

01
2 0

21

0j

j j
a

a

=

=-
.                                                                                                                (7.53) 

The first of the equations (7.52) and the second of the equations (7.53) are identical due to 

equations (7.38). From equations (7.52) and (7.53) we obtain the four-vector j  
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0 021

01

11

0 00

1

0 0 0

i

j j j ci ra

a

è ø è øè ø
é ù é ùé ù
é ù é ùé ù
é ù é ùé ù= = =°
é ù é ùé ù
é ù é ùé ù
é ù é ùé ùê ú ê ú ê ú

.                                                                                 (7.54)                                                                                                 

We now summarize the obtained information for the generalized particle of the matrix T of 

equation (7.36): 

0

1

0

0

J J
i

è ø
é ù
é ù=
é ù°
é ù
ê ú

        
( )

0 0

1

0 0

0

c J

c
P

i c J

-è ø
é ù
é ù=
é ù-
é ù
ê ú

        

0

1

0

0

c

c
C

ic

è ø
é ù
é ù=
é ù°
é ù
ê ú

       
0

1

0

0

j j
i

è ø
é ù
é ù=
é ù
é ù
ê ú

                          (7.55) 

0 0m =  , 1 0c iM c=° , 2

0 1 0E icc M c=° =° . 

1 0T ¸ Ý  curved spacetime                                                                                        (7.56) 

flat spacetime Ý  1 0T = . 

From equations  (5.7) and (7.41), (7.47), (7.54) we have

2 2

0 1 01 1 21

c b i c b
j c c

s s
m a m a=- Y =° Y  

and with equation (7.54) we obtain 

01

2

1

21

0

0

c bc
j

a

s
m
a

è ø
é ù
é ù=- Y
é ù
é ù
ê ú

                                                                                                                      (7.57)                                                                       

for the matrix T  of our study. Also, from equations (5.17) and (7.54) we obtain 

2 20
01 21

1

0 0

2 0

0

3

2
2

2

0

0

j
c F i c F

x

j j
i

x x

j

x

F
x

s a s a
µ
=- =°

µ

µ µ
=°

µ µ

µ
=

µ

µ Y
=Ð Y+

µ

.                                                                                    (7.58) 
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Equations (7.57) and (7.58) correlate the function Ywith the four-vector j  of the 

current density of the conserved physical quantities q . These equations hold for the matrix T

of equation (7.37). 

The presented method about the study of the generalized particle is possibly the 

simplest, but surely not the only one. The TSV stems from one equation which nonetheless 

generates an extremely complex network of equations. We present one method, which serves 

as a test for the self-consistency of the TSV. With the same method we can check for 

calculational errors of the obtained equations, as we proceed from one set of equations of the 

TSV into another set. We shall refer to this method as the SV T- -method (Selfvariations 

Test). 

The internal structure of every generalized particle depends on the corresponding 

matrix T . TheSV T-  method consists of the following steps: 

The SV T-  - Method: 

We choose an equation ( )1E , which holds for the matrix T , and for which there exist 

at least two different components of the four-vector J , or one component and the rest mass 

0m . By differentiating  equation( )1E with respect to , 0,1,2,3kx k= we obtain a second 

equation ( )2E .  

With the help of equation (2.10) 

, 0,1,2,3

i
k i ki k i ki

k

J b b
P J P J zQ

x

k i

l a
µ
= + = +

µ

=

 

the constants , , 0,1,2,3ki k ia =  are introduced into equation ( )2E . Equation ( )2E has to be 

compatible with the elements of the matrix T . In the case equation ( )1E contains the rest 

mass 0m  we apply equation (2.6) 

0
0, 0,1,2,3k i

k

m b
P J m k

x

µ
= =

µ
. 

We apply the method for the matrix T of equation (7.37). From equation (7.41) we obtain 
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2 0J iJ=° .                                                                                                                     (7.59) 

This equation contains the components 0 2,J J  of the four-vector J . We differentiate equation 

(7.59) with respect to  , 0,1,2,3kx k= , to obtain 

2 2 0 0k k k k

b b
P J zQ i P J zQa a

å õ
+ =° +æ ö

ç ÷
 

and using equation (7.59) we have  

2 0k kzQ izQa a=°  

and since 0zQ¸ we get 

2 0, 0,1,2,3k ki ka a=° = .                                                                                               (7.60) 

In equation (7.60) we insert successively 0,1,2,3k=  

For 0k= we obtain 

02 00 0i iTa a=° =° 

which holds, since 02 00, 0Ta = =. 

For 1k=we get 

12 10ia a=°   

and since 10 01a a=- , we get 

12 01

2 2

01 21 0

ia a

a a

=°

+ =
 

which are equations (7.38). 

For 2k= we obtain 

22 20

2 20

a ia

T ia

=°

=°
 

which holds for the matrix T , since 02 20, 0a T= =. 
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For 3k= we have 

 
32 30

32 03

i

i

a a

a a

=°

=
 

which holds for the matrix T , since 32 030, 0a a= =. 

            For the matrix we study it holds that Ű̧ 0 and ¸n 0 and ¸° ¸Ű n 0,and therefore 

plane P is defined. From equations (7.32) we have 

1

2

3

0

1

0

0

0

0

0

i

i

å õ
æ ö
=æ ö
æ ö
ç ÷

å õ
æ ö
=æ ö
æ ö
ç ÷

å õ
æ ö
=æ ö
æ ö
ç ÷

Ů

Ů

Ů

.                                                                                                                       (7.61) 

From equations (7.46) and (7.61) we have 

1

0 1 20 1

0

c

c ci ic

å õ
æ ö
= ° =°æ ö
æ ö
ç ÷

+C Ů Ů.                                                                                            (7.62) 

Equations (7.62) contains the components ( )0 1,ic c° of the vector C with respect to the vector 

basis ( )1 2,Ů Ůof the P-plane. Considering that the vectors 1 2,Ů Ů are perpendicular to each 

other, we obtain from equation (7.62) 

1 0

2 1

ic

ic

Ö =°

Ö =

Ů C

Ů C
 

and from equations (7.49) and (7.50) we have 

 
1 0

0 1
2 0 2

ic

E ic
M

c c

Ö =°

Ö =° =° =°

Ů C

Ů C
                                                                                         (7.63) 

The material particle exists for 0J¸ ,  hence from equation (7.41) we have 
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0 0J ¸ .                                                                                                                                                    (7.64)                                                                                                                                                   

From the equations (7.41) and (7.46) it follows that for 1 0c ¸  the 4-vectors J  and C  are 

parallel, which is impossible in symmetry for the matrix T of our study. Therefore it is  

1 0c ¸                                                                                                                                                       (7.65)  

for the symmetry of equation (7.37).                                                                        

             From equation (3.4) we have 

( ), , 0,1,2,3
2

ki i k k i

b
c J c J k il= - =  

and with equation (4.4) we have 

( ), , 0,1,2,3
2

ki i k k i

b
zQ c J c J k ia = - =                                                                                         (7.66) 

For 0, 1k i= = in equation (7.66) we have 

( )01 1 0 0 1
2

b
zQa c J c J= -  

and because of 1 0J =  according to equation (7.41) we have 

0 01

1

2
J zQ

bc
a= .                                                                                                                                    (7.67) 

Similarly for 2, 1k i= = in equation (7.66) we have 

2 21

1

2
J zQ

bc
a= .                                                                                                                                    (7.68) 

Considering that 1 3 0J J= = according to equation (7.41), from equations (7.67) and (7.68) 

we have 

01

211

02

0

J zQ
bc

a

a

è ø
é ù
é ù=
é ù
é ù
ê ú

.                                                                                                                                (7.69) 

Eq. (7.69) expresses the contribution of the charge Q  to the 4-vector of momentum of the 

material particle. 

            From equation (2.10) for 0k=  and taking into account equation 

00 0 0zQTl = = 
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we obtain 

0
0 0

0

J b
P J

x

µ
=

µ
 

and with equation (7.69) we obtain 

( )
0

0

zQ b
P zQ

x

µ
=

µ
 

0

0 0

Q z b
z Q P zQ

x x

µ µ
+ =

µ µ
 

and with equation (2.6) we obtain 

0 0

0

b z b
z P Q Q P zQ

x

µ
+ =
µ

 

0

0
z

x

µ
=

µ
 

and with equation (4.9) we obtain 

0 0c =  

and the equations (7.55) and (7.62), (7.63) written in the form 

 

01

211

02

0

J zQ
bc

a

a

è ø
é ù
é ù=
é ù
é ù
ê ú

   

1

0

0

0

c
C

è ø
é ù
é ù=
é ù
é ù
ê ú

   

P C J= -
                                                                                                                                              (7.70)                                                                                                                                            

01

2

1

21

0

0

c bc
j

a

s
m
a

è ø
é ù
é ù=- Y
é ù
é ù
ê ú

  

2

1 0 1 0 0 1 00, 0, ,c m c iM c E icc M c¸ = =° =° =° 
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1 2

1

0

0

c

c

å õ
æ ö
= =æ ö
æ ö
ç ÷

C Ů 

1

0 1
2 0 2

0

E ic
M

c c

Ö =

Ö =° =° =°

Ů C

Ů C
 

for the symmetry of equation (7.37). 

            We note again that formulated the TSV for 0J¸  in order for the particle to exist. If 

we formulate the TSV for 0P¸ , the particle and the STEM exchange places in the equations 

and the conclusions of the TSV. For example the symmetry of equation (7.37) we studied, the 

fifth of the equations (7.70) becomes 

1
0 0 0, 0

ic
m M E

c
=° =° = 

when we perform the study of the TSV for 0P¸ . 

              From equations (2.12) and (4.4), (4.10) we have 

 

0 01 02 03

01 1 21 13

02 21 2 32

03 13 32 3

T

T
T zQ

T

T

a a a

a a a

a a a

a a a

è ø
é ù
- -
é ù=
é ù- -
é ù
- -ê ú

.                                                                                            (7.71) 

Eq. (7.71) gives the external symmetry matrices as a function of the constants 

, , , 0,1,2,3ki k i k ia ¸ =  and the physical quantities zQ and , 0,1,2,3k kkT ka= = .                                                                                                       

              The physical quantities q appear in the part of spacetime where the USVI prevails, and 

as they are conserved they have the characteristics of a material particle. The mathematical 

expression of the 4-vector of the current density of the conserved physical quantities q is an 

important issue for the TSV. 

              The qSV  method gives a mathematical expression of the 4-vector j , correlating the 

components of the 4-vector. The expression for the matrix T of equation (7.37) we have 

studied is given by equation (7.54). Equation (5.17) correlates the 4-vector j  with the wave 

function Y. The correlation for the matrix T of equation (7.37) we have studied is given by 

equation (7.57). We observe that equation (7.57) does not contain the degree of freedom l of 
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equation (5.17), but only the degree of freedom m. This is not a random fact valid for the 

matrix we have studied, but is predicted by the next theorem: 

Theorem 7.5  

1.  ȭȭThe 4-vector j  of the current density of the conserved physical quantities q  of the 

generalized particle is given by the equation  

( )( )
2bc

j J MC
s

m l m=- Y - L +                                                                                                (7.72) 

wherel and m the two degrees of freedom of the TSV and 

0

1

2

3

0 0 0

0 0 0

0 0 0

0 0 0

T

T

T

T

è ø
é ù
é ùL=
é ù
é ù
ê ú

 

01 02 03

01 21 13

02 21 32

03 13 32

0

0

0

0

M

a a a

a a a

a a a

a a a

è ø
é ù
- -
é ù=
é ù- -
é ù
- -ê ú

 

the fundamental matrices L and M of the TSV. 

2. 
2

0
bc

J j MC
s

mL = Ý =- Y.˘˘                                                                                                (7.73) 

Proof. From equation (3.5) we have 

P C J= - 

and replacing the momentum P in equation (5.7) we have 

( )( )
2c b

j M J C J
s

l m=- Y + - 

( )( )
2c b

j M J C
s

l m m=- Y - + 

( )( )
2c b

j MJ MC
s

l m m=- Y - + .                                                                                             (7.74) 

From equations (7.71) and (4.11), (4.28) we have 
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( )T zQ M= +L 

and from equation (2.13) we have 

( ) 0zQ M J+L = 

and since 0zQ¸  we have 

( ) 0M J+L = 

0MJ J+L = 

and finally we get 

MJ J=-L                                                                                                                                            (7.75) 

From equations (7.74) and (7.75) we get equation (7.72). The equation (7.73) follows from 

the equation (7.72) for 0JL =.  

               As we shall see next the relation 0JL =is valid for a large number of external 

symmetry matrices. For these matrices Nr. 2.of theorem 7.5 is valid. 

              From equation (7.37) we have 

1

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

T

è ø
é ù
é ùL=
é ù
é ù
ê ú

 

and with equation (7.41) we have 0JL =for the symmetry we have studied. Next from 

equations (7.42) and (7.46), equation (7.57) follows from the relation (7.73). 

              We now prove the following corollary of theorem 7.5: 

Corollary 7.4. ȭȭIn flat spacetime the 4-vector j  of the current density of the conserved 

physical quantities  q  of the generalized particle is given by equation 

 
2bc

j MC
s

m=- Y .˘˘ 

Proof. From corollary 6.1 and equation (4.11) it follows that in flat spacetime we have 0L= 

and therefore Nr. 2.of theorem 7.5 is true. 

            The next theorem 7.6 relates the four-vector  J  with the elements of the main 

diagonal of the external symmetry matrix T . 
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Theorem 7.6.  ȭȭFor every external symmetry matrix T it holds that 

2 2 2 2

0 0 1 1 2 2 3 3 0T J T J T J T J+ + + =.ȭȭ                                                                                      (7.76) 

Proof. Since the material particle exists, at least one component of the four-vector J is 

nonzero. We prove the theorem for  0 0J ¸ . The proof for 0, 1,2,3iJ i¸ =  follows similar 

lines. For 0 0J ¸ , we obtain from equations (7.2) 

( )

( )

( )

0 0 1 01 2 02 3 03

01 1 1 2 21 3 13

0

02 1 21 2 2 3 32

0

03 1 13 2 32 3

0

0

1

1

1

J T J J J

J T J J
J

J J T J
J

J J J T
J

a a a

a a a

a a a

a a a

+ + + =

= - +

= + -

= - + +

                                                                                   (7.77) 

and replacing the terms 01 02 03, ,a aa  in the first of equations (7.77) we obtain 

 

( ) ( )

( )

1 2
0 0 1 1 2 21 3 13 1 21 2 2 3 32

0 0

3
1 13 2 32 3 3

0

0

J J
J T J T J J J J T J

J J

J
J J J T

J

a a a a

a a

+ - + + + -

+ - + + =

 

2 2 2

0 0 1 1 1 2 21 1 3 13 2 1 21 2 2

2

2 3 32 3 1 13 3 2 32 3 3 0

J T J T J J J J J J J T

J J J J J J J T

a a a

a a a

+ - + + +

- - + + =
 

2 2 2 2

0 0 1 1 2 2 3 3 0T J T J T J T J+ + + = .  

             An immediate consequence of theorem 7.6 is corollary 7.5. 

Corollary 7.5. ȭȭFor every matrix T of the external symmetry the following holds 

0 1 2 3

0 1 2 3

0

0
0

T T T T
T T T T

m

= = =û
Ý = = = =ü

¸ ý
.ȭȭ                                                                  (7.78) 

Proof. For 0 1 2 3T T T T= = = we obtain from equation (7.76) 

( )2 2 2 2

0 0 1 2 3 0T J J J J+ + + = 

and with equation (2.7) we have 
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2 2

0 0 0T m c = .                                                                                                                   (7.79) 

Since  0 0m ¸ , from equation (7.79) we have 0 0T = . Since 0 1 2 3T T T T= = =, we obtain  

0 1 2 3 0T T T T= = = =.  

We calculate the number of the external symmetry matrices. This number is 

determined by theorem 7.3 and corollaries 7.1 and 7.4. Also notice that the external 

symmetry matrices are non-zero. Applying simple combinatorial rules, we see that altogether 

there exist 

0 14N =  

external symmetry matrices with 0kia =  for every , , 0,1,2,3k i k i¸ = . These matrices 

contain non-zero elements only on the main diagonal. The number 1N  of matrices with one 

element }{0, , , 0,1,2,3ki k i k ia ¸ ¸ Í  is 

1 6N = . 

The number of matrices with two elements, }{0, , , 0,1,2,3ki k i k ia ¸ ¸ Í is 

'

2 27N =  

with three elements it is 

'

3 20N =  

with four elements it is 

'

4 15N =  

with five elements it is 

5 6N =  

with six elements it is 

6 1N = . 

From equation (2.13) and the second of the equations (4.6) we can prove that some of these 

matrices give the four-vector 0J= , thus are rejected. Therefore, we obtain 
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0

1

'

2 2

'

3 3

'

4 4

5

6

14

6

4 24

8 12

12 3

6

1

N

N

N N

N N

N N

N

N

=

=

= - =

= - =

= - =

=

=

. 

Thus the total number TN  of external symmetry matrices is 

0 1 2 3 4 5 6 66TN N N N N N N N= + + + + + + =.                                                              (7.80) 

    The matrix  0T=  is unique 

1ON =  

and according to theorem 3.3 this matrix expresses the internal symmetry. Therefore, the total 

number of the matrices of the internal and external symmetry predicted by the Law of 

Selfvariations is 

67OT O TN N N= + =.                                                                                                   (7.81) 

    There exist 

 16 50J TN N= - =                                                                                                       (7.82) 

external symmetry matrices with different four-vectors , , ,J P C j .  

            We now prove for example that the following matrix 

0 01 03

01 1 21 13

21 2

03 13 3

0

0 0

0

T

T
T zQ

T

T

a a

a a a

a

a a

è ø
é ù
- -
é ù=
é ù
é ù
- -ê ú

 

is not an external symmetry matrix. Applying theorem 7.3 for the above matrix we have 

0 1 2 3 0T T T T= = = = 

and therefore it takes the form 
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01 03

01 21 13

21

03 13

0 0

0

0 0 0

0 0

T zQ

a a

a a a

a

a a

è ø
é ù
- -
é ù=
é ù
é ù
- -ê ú

 

and with equation (2.13) we obtain 

1 01 3 03

0 01 2 21 3 13

1 21

0 03 1 13

0

0

0

0

J J

J J J

J

J J

a a

a a a

a

a a

+ =

- - + =

=

- - =

 

and since 

01 03 13 21 0a a a a̧  

we have 

0 1 2 3 0J J J J= = = = 

which is impossible since there is no material particle in this case.  

We present now a notation for the matrices of the external symmetry.  In every matrix 

T we use an upper and a lower index. As lower indices we use the pairs 

( ), , , , 0,1,2,3k i k i k i¸ =  of the constants 0kia ¸ , which are nonzero. These indices, which 

appear always in pairs, are placed in the order of the following constants: 

01 02 03 32 13 21, , , , ,a a a a a a, which are nonzero. As upper indices we use the indices of the 

nonzero elements of the main diagonal, in the following order: 0 1 2 3, , ,T T T T . For example, the 

matrix T given in equation (7.37) is denoted as 10121T .  

With this notation, the external symmetry matrices are given from the following seven 

sets W: 
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{ }

{ }

{

0 1 2 3 01 02 03 12 13 23 012 013 023 123

0

01 02 03 23 13 12

1 01 02 03 32 13 21

0 0 0 3 2 1

2 0102 0103 0103 0203 0203 3213 3213 3221 3221 1321 13210102

1 1

0113 0113 0121 01

, , , , , , , , , , , , ,

, , , , ,

, , , , , , , , , , , ,

, , ,

T T T T T T T T T T T T T T

T T T T T T

T T T T T T T T T T T T

T T T T

W =

W =

W =

}

{
}

{ }

2 2 3 3

21 0232 0232 0221 0221 0332 0332 0313 0313

0 1 2 3

3 010203 010203 011321 011321 023221 023221 033213 033213

010221 010313 020332 321321

4 01023213 01033221 02031321

5 01020332

, , , , , , , ,

, , , , , , , ,

, , ,

, ,

T T T T T T T T

T T T T T T T T

T T T T

T T T

T

W =

W =

W ={ }

{ }

21 0102033213 0102031321 0102321321 0103321321 0203321321

6 010203321321

, , , , ,T T T T T

TW =

 .                           (7.83) 

We note that in the 4-dimensional spacetime the matrix 321321T  of the set 3W  is discarded by 

the SV T-  method. The application of the SV T-  method to set 5W  is of particular interest, 

as we will see in chapter 14.  

            The internal symmetry expresses the spontaneous isotropic STEM emission from a 

material particle because of the selfvariations. The external symmetry emerges when the 

material particle interacts via the USVI with other material particles and this is equivalent 

with the destruction of the spacetime isotropy. The rest mass of the material particle and of 

the STEM  in the first case, as well as the rest mass which stems from the USVI in the second 

case, is given by the equations (2.7) and (2.8). The equations (7.69) and (7.70) 
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                                                                                                  (7.84) 
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give the 4-vectors J  and P  of USVI, and via equations (2.7) and (2.8) we get equations 

(7.48), (7.49) and (7.50). The rest mass of the material particle which emerges as a 

consequence of the USVI is  

0 0m = ,  

while we have 

 2

0 0 1 0E M c icc=° =° ¸ 

 for the symmetry 1

0121T  we have studied.  

               In equations (7.84) we see the term 

()

01

211

02

0

J Q zQ
bc

a

a

è ø
é ù
é ù=
é ù
é ù
ê ú

 

which is responsible for the external symmetry. That is the momentum of the USVI that is 

added to the momentum of the internal symmetry destroying the parallel property of the 4-

vectors J , P  and C . This term is zero if and only if, it is 0Q= , i.e. in the case where the 

material particle does not curry some charge Q  of the interaction. For 0Q=  and from 

equation (7.84) it follows that 0J=  andP C= , i.e. internal symmetry arises according to 

theorem 3.3. 

               With the knowledge of the external symmetry term we can express the 4-vectors  J  

and P  of the particle-STEM system when the material particle is involved in an interaction . 

From equations (3.12), (3.13) and (7.46), (7.69) we get the 4-vectors J  and P  as given by 

the equations 
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                                                                                                        (7.85) 
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for the symmetry 1

0121T . 

                It is easy to find out via equation (3.4) that the equations (7.85), as well as the eqs. 

(7.84), correctly give the physical quantities , , , 0,1,2,3ki k i k il ¸ = . This is expected since 

internal symmetry  cannot affect the physical quantities  , , , 0,1,2,3ki k i k il ¸ = . Thus we can 

calculate the constants , , , 0,1,2,3ki k i k ia ¸ =  and the physical quantities , 0,1,2,3kT k=  

either through equations (7.84) or through equations (7.85). The TSV equations are valid for 

equations (7.84) as well as for equations (7.85).  

               For 0Q=  from equations (7.85) we have 

1

1

0

1

01

0

0

01

0

c
J

c
P

è ø
é ù
é ù=
é ù+F
é ù
ê ú

è ø
é ù

F é ù=
é ù+F
é ù
ê ú

 

that is we get equations (3.12) and (3.13) with 0 2 3 10, 0c c c c= = = .̧ Therefore when the 

material particle does not interact with other material particles, internal symmetry arises in 

both cases. Also the equations (7.85) give the rest mass  

0
0

1

M
m =°

+F
 

of the material particle, as follows from equation (2.7). The interaction (USVI) in which the 

material particle is involved does not affect its rest mass, as given by equation (3.10). 

               Every external symmetry has its own 4-vector C  and its own term ()J Q . In every 

external symmetry there exist equations corresponding to equations (7.84) 

() ()P Q C J Q= -  

for the USVI particle and to equations (7.85) 

()

()

1

1

1

J C J Q

P C J Q

= +
+F

F
= -
+F

                                                                                                      (7.86) 

for the material particle. 
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               From equations (2.7) and (2.8) another important conclusion follows. In internal 

symmetry the material particle and STEM exchange roles if mutually exchanged 

0 0 0
0 1 2 3 0 0 0 1 2 3 02
, , , , , , , , , , , 0,1,2,3k k

k k

m E Eb b
J J J J m P m P P P P J E k

x c x

å õ å õµ µ
= «½­ = =æ ö æ ö

µ µç ÷ ç ÷
.  (7.87) 

According to theorem 3.3 in internal symmetry the 4-vectors J  and P are parallel which 

implies that they have the same form. Hence the mutual exchange (7.87) has no consequences 

in internal symmetry. If we assume that one of the 4-vectors J  and P corresponds to the 

material particle, then the other corresponds to  STEM. This fact can also be seen from 

equations (3.9)-(3.13) of the theorem 3.3, which can be written in an equivalent form. 
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. (7.88) 

The different appearance of the 4-vectors  J  and P  , and the rest masses  0m  and 0

2

E

c
 in 

theorem 3.3 is superficial. Their form depends on whether we use equation  F or eq. *F  to 

write them. 

            In external symmetry the mutual exchange (7.87) is not enough for the role exchange 

of the material particle and STEM. From equations (7.85) it follows that the role exchange of 

the material particle and STEM via equations (7.88) can only be realized with the 

simultaneous change of sign of the charge Q  ( )Q Q­- . 

              Combining equations (2.10), (3.5) and (4.4),  and with equation (2.13) we have 
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i
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J b
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a
µ
= + =

µ

+ =

=

 .                                                                                          (7.89) 
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It is easy to find out that the TSV can be formulated starting from eqs. (7.89). The equations 

(7.89) give the Selfvariations of the 4-vectors J  and P . They are more general than equation 

(2.6) since they give the TSV equations independent of whether the rest mass 0m  of the 

material particle is zero or not.  We have chosen to start the formulation of the TSV from 

equation (2.6), which gives the equations of the TSV for 0 0m ¸ , for the reason that there is 

no other way to approach equations (7.89). Moreover their physical content would not be 

clear. 

            Based on the theorems of the TSV we can study all external symmetry matrices. The 

combination of methods SV M- and qSV  with which we studied the symmetry 1

0121T  can be 

applied to any external symmetry of the set 1 2 3 4 5 6W ÇW ÇW ÇW ÇW ÇW. We will also 

apply this method in chapter 9 in our study of the symmetries of the set 3W . Equally well we 

can study any external symmetry with a second method based on equations (7.20), (7.2), 

(4.6), on the SV T-  method, on equation (7.17), on corollary 5.1 and on corollary 5.3. This 

second method we present in the chapters 12, 13, 14 and 15 where we study the symmetries 

of the sets 1W , 4W , 5W and 6W . Generally we can say that the first method  deepens the 

understanding of the relations between the physical quantities which emerge from the TSV. 

With the second method the study of the external symmetry is completed faster and more 

elegant. 

 

 

8. THE SET 0W  

 

8.1. Introduction  

            In this chapter we study the  T  matrices, which have all their elements equal to zero, 

except the elements on the main diagonal. Thus we study matrices of the form 

0

1

2

3

0 0 0

0 0 0
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i.e. the elements of the set 0W . 

              In the symmetries of the set 0W  the rest mass of the particle which accompanies the 

USVI may be non-zero. In all external symmetries this property can be found only in the sets 

0W and 1W . 

8.2. The Symmetries T=zQȿ 

             From equations (4.11) we obtain 

0
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3

0 0 0

0 0 0

0 0 0

0 0 0

T

T
T zQ zQ

T

T

è ø
é ù
é ù= L=
é ù
é ù
ê ú

.                                                                                   (8.1) 

From equations (4.28) ,(7.3) and (8.1) we have 

0

0

M

N

=

=
.                                                                                                                            (8.2) 

The matrices M and N are zero; as a consequence the matrices of the symmetries T zQ= L  

share common properties, which we shall study in the following. 

According to corollary 7.4 , at least one of the diagonal elements of the matrices of 

equation (8.1) is zero. Also they cannot be all zero, since in the case of the external symmetry 

it holds that 0T¸ . Therefore, there is a number of 

0

4 4 4
14

1 2 3
N

å õ å õ å õ
= + + =æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷

 

different matrices for which the relation T zQ= L holds. 

A common characteristic for the 14 kinds of symmetries T zQ= L is that =Ű 0, and 

therefore the plane P is not defined. Similarly, the vectors 1 2 3, ,Ů Ů Ů of equations (7.32) are 

not defined. 

A fundamental characteristic of the symmetries T zQ= L is that the four-vector  j  of 

the conserved physical quantites q  vanishes. Combining the first of equations (8.2) with 

equation (5.7) we obtain 
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0j = .                                                                                                                              (8.3) 

Therefore, in the part of spacetime occupied by the generalized particle, there is no flow of 

conserved physical quantities q . 

Another common characteristic is that the rest mass  0m  of the material particle can 

be diferent from zero 

0 00 0m m= Ù  ̧                                                                                                             (8.4) 

for all 14 matrices of the symmetry. The form of the four-vector J is different for each matrix 

of the symmetry.  

We calculate now the four-vector of momentum J of the matrix 12T . According to 

our notation we have 

112

2

1 2
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0

T
T zQ

T

TT

è ø
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ê ú

¸

.                                                                                              (8.5) 

From equation (2.13), and since 1 2 0TT ¸ ,  0 3 0T T= = , we obtain for the four-vector 

J , in the form 

0

3

0

0

J

J

J

è ø
é ù
é ù=
é ù
é ù
ê ú

.                                                                                                                        (8.6) 

Combining equations (2.7) and (8.6), we obtain for the rest mass 0m  the equation 

2 2 2 2

0 0 3m c J J- = +.                                                                                                             (8.7) 

We apply now the SV T-  method : 

We differentiate equation (8.7) with respect to , 0,1,2,3kx k=  and taking into account 

equations (2.6), (2.10) and (4.4) we obtain 
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2 2

0 0 0 0 3 3 3k k k k k

b b b
P m c J P J zQ J P J zQa a

å õ å õ
- = + + +æ ö æ ö

ç ÷ ç ÷
 

and from equation (8.7) we have 

0 0 3 3 0k kzQJ zQJa a+ = 

and since 0zQ¸ , we have 

0 0 3 3 0, 0,1,2,3k kJ J ka a+ = = .                                                                                         (8.8) 

We insert successively 0,1,2,3k= into equation (8.8), hence: 

For 0k= we have 

0 0 3 03 0J T Ja+ = 

which holds since for the matrix 12T  it is 0 03 0T a= =. 

For 1k=we have 

0 10 3 13 0J Ja a+ = 

which holds since for the matrix 12T  it is 10 13 0a a= =. 

For 2k= we have 

0 20 3 23 0J Ja a+ = 

which holds since for the matrix 12T  it is 20 32 0a a= =. 

For 3k=  we have 

0 30 3 3 0J J Ta + = 

which holds since for the matrix 12T  it is 30 3 0Ta = =. 

According to the proof of equation (8.7) it is possible that0 0J =  or 3 0J = , but it is 

not possible that 0 3 0J J= =, since in this case the material particle does not exist. Therefore 

from equation (8.7) we conclude that 

{ }0 0 3 00 0m m J iJ¸ Ù = Ø =°.                                                                                      (8.9) 
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Simirarly we can prove that relations analogous to relation (8.10), hold for all matrices of the 

symmetry T zQ= L. 

For the matrix 12T it is 1 0T ¸ . Therefore the part of spacetime occupied by the 

generalized particle in the symmetry 12T is curved, according to corollary 6.2. 

Because of equation (8.3) the wave equation (5.17) holds identically ( )0 0= . Therefore for 

the symmetries T zQ= L the study of the wave behavior of matter is done via equation (5.3). 

            Starting from equation (8.7) and applying the same method of proof as for equations 

(4.19) and (4.20) we obtain 

0 0
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=                                                                                                                (8.10) 
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for the symmetry 12T . From equations (8.6) and (8.10) we obtain 
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and finally we obtain 
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  .                                                                                                    (8.12) 

Thus the four-vector J is given by equation 
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as implied by equation (8.6). Therefore, for the symmetry 12T the momentum of the material 

particle is proportional to the charge  Q . This feature is a common characteristic for all 

matrices of the symmetry T zQ= L. 

            Combining equations (3.5) and (8.13) we have 
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 .                                                                                              (8.14) 

Now from equations (4.2) and (8.14) we have 
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From the identity 

, , , 0,1,2,3
k i i k
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and equations (8.15) we have after the calculations 
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and because of 

  ( ) ( )0 3, 0,0s s¸  

we finally get 

1 2

0 3 3 0

0c c

c cs s

= =

=
.                                                                                                                   (8.16) 

From equations (8.15) and (8.16) we have 
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From equation (8.17) we have 
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                                                                         (8.19) 

where 12 12, 0K KÍ ¸constant. For 0 3 0s s¸ the equations (8.18) and (8.19) are equivalent, 

because of the second equation of (8.16). 
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            From equation (8.14) and the first equation of (8.16) we have 
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From equation (3.5) and the first equation of (8.16) we have 
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            From equations (8.18), (8.19) and (8.13) we have 
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                               (8.22) 

and from equations (8.21), (8.13) and (8.18), (8.19) we have 
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.                     (8.23) 

            From equations (8.21), (8.22) and (8.23) it follows that the 4-vectors , ,J P C  are 

parallel. According to the equivalence (3.4) and equation (4.4) this parallelism is expected for 

the symmetries T zQ= L, since it is 0, , , 0,1,2,3ki k i k ia = " ¸ = . However the parallelism of 

the 4-vectors , ,J P C we have met in the theorem 3.3 as a characteristic of internal symmetry. 

Hence we will finish the chapter for the symmetries T zQ= L with the refutation of this 

apparent inconsistency. 

            From equation (8.13) we get  1 2 0J J= = for the symmetry  12T , hence the initial eq. 

(2.7) is written 

2 2 2 2

0 3 0 0J J m c+ + =.                                                                                                      (8.24) 
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Subsequently we perform the same procedure as for the proof of equation (2.10), from 

equation (2.7). After the calculations and because in symmetry 12T  it holds that 

0, , , 0,1,2,3ki k i k ia = " ¸ =   equation (8.5) follows from equation (8.24). During the 

procedure of proof, the physical quantities 1T and 2T do not follow from equation (8.24). In 

contrast from equation (2.7) for 1 20, 0J J¸ ¸and  0, , , 0,1,2,3ki k i k ia = " ¸ =  we get

1 2 0T T= =, as is predicted from the internal symmetry theorem 3.3. Exactly at this point we 

find the differences of the symmetries T zQ= L with internal symmetry. In internal 

symmetry it is 0 1 2 3 0T T T T= = = =, and according to corollary 6.1 the part of spacetime 

occupied by the generalized particle may be a plane. Moreover space is isotropic, in the part 

of spacetime occupied by the generalized particle. The momentum vectors J ,P  and C are 3-

dimensional, and it is not possible to let vanish some component 1 2 3, ,J J J  of the momentum 

from equation (2.7), with an appropriate rotation of the reference system we use. There is a 

very specific inertial reference frame in which 1 2 3 0J J J= = =([5], chapter 5.3). In contrast 

with the symmetries T zQ= L spacetime is curved as implied by the corollary 6.2. Moreover 

in symmetries T zQ= Lspace is intensely anisotropic, in the part of spacetime which is 

occupied by the generalized particle.  According to equations (8.21), (8.22) and (8.23) the 

momentums C , J  and P in symmetry 12T are 1-dimensional, towards the direction of the 

axis 3x z= . The intense anisotropy of space, in the part of spacetime which is occupied by 

the generalized particle, is a basic characteristic of the symmetry T zQ= L. This anisotropy 

varies for the symmetries of the set 0W  in equation (7.83). One symmetry T zQ= L is 

characterized by the symmetries of the 4-vector J which are absend in the equation (2.7). For 

symmetry  12T the components are 1J  and 2J . 

            From equations (8.13) and (8.24) we have 

( )
( ) ( )

2 2 2 2 2

0 3 0

0 3
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, 0,0
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s s

+ + =

¸
.                                                                                              (8.25) 

Equation (8.25) gives the contribution of charge Q to the rest mass 0m of the material particle. 

            We now calculate the distribution of the total rest mass 0M of the generalized particle 

between the material particle and STEM. From equations (8.22) and (8.24) we have 
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and from equations (8.21) and (3.5) we have 
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and finally we get 
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                                                                           (8.26) 

Analogous from equations (8.23), (2.8), and (3.5) we have 
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                                                                       (8.27) 

Equations (8.26) and (8.27) give the distribution of rest mass 0M between the material 

particle and STEM. The study of the remaining 13 symmetries T zQ= L is done in the same 

way as the one we demonstrated for symmetry 12T . 

We now set 12K K=- in equations (8.22) and (8.23), where K  the constant of 

equation (3.9). Comparing equations (8.22), (8.23) and (3.9), (3.12), (3.13) we come to the 

conclusion that the external symmetry 12T  can emerge from the internal symmetry for 

1 2 0J J= =. This can occur when an external cause blocks the emmision of STEM along the 

axes 1x  and 2x . In this way the isotropic emmision of the internal symmetry is converted into 

the anisotropic external symmetry 12T . In general the following corollary of theorem 3.3 

holds: 

Corollary 8.1 : ȭȭThe external symmetry T zQ= L can emerge from the internal symmetry 

when the components of the momentum  J of the material particle are in less than four axes 

}{, 0,1,2,3ix iÍ . These axes define the kind of external symmetry T zQ= L that results.ȭȭ 
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              We present the method which can produce the symmetry 12T from internal symmetry. 

We consider a case where an external cause can block the STEM emission in external 

symmetry, on the axes 1x  and 2x . In this case we have 

 1 2 0P P= =.                                                                                                                  (8.28) 

Now from equations (3.13), (3.12) and (8.28) we have 

 
1 2

1 2

0

0

c c

J J

= =

= =
 .                                                                                                                 (8.29) 

From the combination of equations (8.28), (8.29) with equations (3.12), (3.13), (3.10), (3.11) 

there arise the corresponding equations (8.22), (8.23), (8.26), (8.27) with 12K K=-. 

            Using function F of equation (3.9) for 1 2 0c c= = , and 12K K=-  equations (8.22), 

(8.23), (8.26) and (8.27) are written in the form 

1 2

, i 0,1,2,3
1

0

i
i

c
J

c c

= =
+F

= =

                                                                                                                        (8.30) 

1 2

, i 0,1,2,3
1

0

i
i

c
P

c c

F
= =
+F

= =

                                                                                                                        (8.31) 

0
0

1 2

1

0

M
m

c c

=°
+F

= =

                                                                                                                         (8.32) 

2

0
0

1 2

1

0

M c
E

c c

F
=°

+F

= =

.                                                                                                           (8.33) 

            Corollary 8.1 gives us a mechanism through which the symmetry T zQ= L can 

emerge. The external cause is necessary, since the internal symmetry expresses the 

spontaneous isotropic emmision of STEM due to the selfvariations. 

            We note again that formulated the TSV for 0J¸  in order for the particle to exist. If 

we formulate the TSV for 0P¸ , the particle and the STEM exchange places in the equations 

and the conclusions of the TSV. 

               From the combination of equations (3.5), (5.3) and (8.30), (8.31) we get 
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( )0

0 1

1

cb

x

b

l m

l m

+ FµY
= Y

µ +F

+ F
ÐY= Y

+F
C

.                                                                                             (8.34) 

            By setting 

( )0 1 2 3, , ,
1

G G x x x x
l m+ F

= =
+F

                                                                              (8.35) 

equation (8.34) is written in the form 

0

0

b
Gc

x

b
G

µY
= Y

µ

ÐY= YC

 .                                                                                                                                    (8.36) 

From identity 

0Ð³ÐY=  

and with the second of equations (8.36), we get 

0GÐ ³ =C  

and consequently vector GÐ   is written in the form 

b
G gÐ = C                                                                                                                          (8.37) 

where ( )0 1 2 3, , ,g g x x x x= . 

From equations (8.36) and (8.37) we get the wave equation of the TSV for the symmetry 

T Q= L,  as given by equations 

( )

0

0

2 2
2 2

2

b
Gc

x

b
G g

b
G g

µY
= Y

µ

Ð Y= + Y

Ð =

C

C

.                                                                                                          (8.38) 

The third of the equations (8.38) correlates the functions  G  and g . One of the pairs of 

functions G  and g is given by the equations  
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1

k

k

b
G

b
g k

-

å õ
=æ ö
ç ÷

å õ
= æ

Ö

Ö
ö

ç ÷

r C

r C
                                                                                                                                 (8.39) 

where ( )1 2 3, ,x x x=r  and kÍ  constant. From equations (8.38) and (8.39) we have 

0

0

2 12 2
2

2

k

k k

bc b

x

b b b
k

-

µY å õ
= Yæ ö

µ ç ÷

å õå õ å õ
Ð Y= + Yæ öæ ö æ öæ öç ÷ ç ÷ç ÷

Ö

Ö Ö

r C

rC C r C
.                                                                      (8.40) 

Equations (8.38) have general validity in the symmetry T zQ= L. Every symmetry 

T zQ= Lis defined by the constants , 0,1,2,3ic i= , which go to zero. The same holds for 

function ( )0 1 2 3, , ,x x x xY=Y . In the symmetry 12T  it is ( )0 3,x xY=Y . The symmetries of 

the set 1W  have 0j =  and therefore the wave equation Y does not relate to any flow of 

conserved physical quantities q . 

 

 

9. THE SET 3W . 

 

9.1. Introduction . 

In this chapter we study the generalized particle of the matrices 

0 01 02 03

010

010203

02

03

01 02 03 0

0 0 0

0 0 0

0 0 0

0

T

T T zQ

T

a a a

a

a

a

a a a

è ø
é ù
-
é ù= =
é ù-
é ù
-ê ú

¸

 

and 
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01 02 03

01

010203

02

03

01 02 03

0

0 0 0

0 0 0

0 0 0

0

T T zQ

a a a

a

a

a

a a a

è ø
é ù
-
é ù= =
é ù-
é ù
-ê ú

¸

 

of the set 3W . The study of the remaining symmetries of the set  

{ }0 1 2 3

3 010203 010203 011321 011321 023221 023221 033213 033213 010221 010313 020332 321321, , , , , , , , , , ,T T T T T T T T T T T TW = is done 

in the same way with the study we present in this chapter. We note that in the 4-dimensional 

spacetime the matrix 321321T  of the set 3W  is discarded by the SV T-  method. 

 

9.2. The  Symmetries 0

010203T  and 010203
T . 

            From equation (7.71) for 32 13 21 0a a a= = = we get           

0 01 02 03

01 1

02 2

03 3

01 02 03

0 0

0 0

0 0

0

T

T
T zQ

T

T

a a a

a

a

a

a a a

è ø
é ù
-
é ù=
é ù-
é ù
-ê ú

¸

.                                                                                    (9.1) 

From theorem 7.3 we have that for this matrix it is  

1 2 3 0T T T= = = 

and thus it is written in the form 

0 01 02 03

01

02

03

01 02 03

0 0 0

0 0 0

0 0 0

0

T

T zQ

a a a

a

a

a

a a a

è ø
é ù
-
é ù=
é ù-
é ù
-ê ú

¸

 .                                                                                   (9.2) 

From the matrix in equation (9.2) we obtain the symmetries 
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0 01 02 03

010

010203

02

03

01 02 03 0

0 0 0

0 0 0

0 0 0

0

T

T T zQ

T

a a a

a

a

a

a a a

è ø
é ù
-
é ù= =
é ù-
é ù
-ê ú

¸

                                                                        (9.3) 

01 02 03

01

010203

02

03

01 02 03

0

0 0 0

0 0 0

0 0 0

0

T T zQ

a a a

a

a

a

a a a

è ø
é ù
-
é ù= =
é ù-
é ù
-ê ú

¸

.                                                                       (9.4) 

First we study the symmetry 0

010203T . For this symmetry it is 0M ¸  , hence we apply 

the SV M- -method. From equation (7.3) we have 

2 2 2

01 02 03 0a a a+ + =.                                                                                                         (9.5) 

From equations (7.2) we obtain 

0 0 1 01 2 02 3 03

0 01

0 02

0 03

0

0

0

0

J T J J J

J

J

J

a a a

a

a

a

+ + + =

=

=

=

 

and since 01 02 03 0a a a̧  and 0 0T ¸ we have 

0

1 01 2 02 3 03

0

0

J

J J Ja a a

=

+ + =
.                                                                                               (9.6) 

From the second of the equations (4.6), and for ( )( )( )( )( ), , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3in k=  we 

obtain 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

J J J

J J J

J J J

J J J

a a a

a a a

a a a

a a a

+ + =

+ + =

+ + =

+ + =
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2 01 1 02

3 01 1 03

3 02 2 03

0

0

0

J J

J J

J J

a a

a a

a a

- =

- =

- =

.                                                                                                           (9.7) 

From equations (9.6), (9.7), and since it holds that 01 02 03 0a a a ¸ , we have 

0

02
2 1

01

03
1

01

0J

J J

J J

a

a

a

a

=

=

=

.                                                                                                                    (9.8) 

From equations (9.8) we obtain the four-vector ()J J Q=   

() 02

1

01

03

01

1

0

1

0

J J Q J

J

a

a

a

a

è ø
é ù
é ù
é ù

= = é ù
é ù
é ù
é ù
ê ú

¸

                                                                                                      (9.9) 

From equations (4.28) and (9.3) we have 

01 02 03

01

02

03

0

0 0 0

0 0 0

0 0 0

M

a a a

a

a

a

è ø
é ù
-
é ù=
é ù-
é ù
-ê ú

                                                                                        (9.10) 

2 2 2

01 02 03

2

2 01 01 02 01 03

2

01 02 02 02 03

2

01 03 02 03 03

0 0 0

0

0

0

M

a a a

a a a a a

a a a a a

a a a a a

è ø- - -
é ù

- - -é ù=
é ù- - -
é ù

- - -é ùê ú

 

and with equation (9.5) we obtain 

2

01 01 02 01 032

2

01 02 02 02 03

2

01 03 02 03 03

0 0 0 0

0

0

0

M
a a a a a

a a a a a

a a a a a

è ø
é ù

- - -
é ù=
é ù- - -
é ù
- - -ê ú

.                                                                     (9.11) 
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From the first of the equations (7.14) and the equation (9.11), we get after the calculations 

1 01 2 02 3 03 0c c ca a a+ + =.                                                                                                (9.12) 

From the first of the equations (4.6), and for ( )( )( )( )( ), , 0,1,2 , 0,1,3 , 0,2,3 , 1,2,3in k=  we 

obtain 

0 12 2 01 1 20

0 13 3 01 1 30

0 23 3 02 2 30

1 23 3 12 2 31

0

0

0

0

c c c

c c c

c c c

c c c

a a a

a a a

a a a

a a a

+ + =

+ + =

+ + =

+ + =

 

2 01 1 02

3 01 1 03

3 02 2 03

0

0

0

c c

c c

c c

a a

a a

a a

- =

- =

- =

.                                                                                                          (9.13) 

From equations (9.12) and (9.13) we have 

02
2 1

01

03
3 1

01

c c

c c

a

a

a

a

=

=

.                                                                                                                    (9.14) 

From equations (9.14) we obtain the four-vector C  

0

1

02
1

01

03
1

02

0 0

c

c

cC

c

c

a

a

a

a

è ø
é ù
é ù
é ù
=é ù
é ù
é ù
é ù
ê ú

¸

.                                                                                                                (9.15) 

From equation (3.5) and equations (9.9) and (9.15) we obtain the four-vector ()P P Q=  




