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ABSTRACT

With the term fiLaw of Selfvariationso we
rest mass anthe absolute value of thedectric charge of material partisldn this articlewe
present the basic theoretical investigation of the law of selfvariations. We arrive at the central
conclusion that the interaction of material particles, the corpuscular structure of matter, and
the quantum phenomena can be justified by the law of @&lfions. We predict a unéd
interaction betweeparticles with a unified mechanisitin¢ Unified Selfvariationinteraction,
USVI). Every interaction islescribed by the three distinct terms witktinct consequences
in the USVI. The thory predict a wave equation, whose special cases are the Maxwell
equdions, the Schrédinger equatiand the related wave equations.efheory provides a
mathematical expression fany conservable physical quantity, ahd curent density 4
vectorin every caseThe corpuscular structure andwesbehaviour of matter and thelation
between this emerge cleadpdthe theory also predicthe rest masses ofaterial particles.
We prove arcinternal symmetry» theorem which jifits the cosmological datdhe study

we present can be the basis for further investigation of the theory anddisgiquences
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1. INTRODUCTION

The theoretical foundation of physics as developed in thegastiry, summed up
mainly in special and general theory of relativity and quantum mechanics. The great advances
in theoretical physics is mainly attributed to these two theories. There are however good
reasons to consider seriously that these two the@gsnot be the fundamental theories of
physics. The incompatibility between them, the failure to find a deeper cause of quantum
phenomena and the multiple assumptions, imposed by the experimental data, for the

development of quantum mechanics, are justesohthese reasons.

These weaknesses of theoretical physics have led to build the confidence that the
deepenunderstanding of physical reality is impossible. Spearheading this argument was the
lack of understanding of quantum phenomena. @heeyears Einstein's view that we should

seek and understand the cause of quantum phenomena was ignored and passed to the margin

A question that arises is whether there s@minentfundamental law in nature. A
law which has the potential teproduce our basic knowledge in physics. If indeed there is
sucha law in nature then a continuing reduction of the axioms of theoretical physics is
expected to converge to this law. \Mesensucha studybelow.

Thepresenstudy is foundedn threeaxioms: The principle of the conservation of the
four-vector of momentum, the equation of the Theory of Special Relativity for the rest mass
of the material particleand the law of Selfvariations.

With the term fiLaw of Selfvariationso we
rest mass anthe absolute value of thedectric charge of material particlEhe lawis
consistent with the principles of conservation of energy, momentum, angular monsedu
electric charge. It is also invariant under the Lordfitrstein transformations.

The most directonsequence of theveof Selfvariations is that energy, momentum,
angular momentum aralectric chargéwhen the material particle is electrically opped)of
particles are distributed in the surrounding spacetifoeexample, to compensate the
increase (in absolute value) of the electric charge of the electrqmartide emitsa
correspondingpositive electric charge tathe surrounding spacetim®therwise, the
conservation of the electric charge is violated. Similarly, the increase of the rest mass of the

material particle invol v asweldsmomégdumithesi ono of



spacetime surrounding the material parti¢gpacetimenergymomentumSTEM). Later
we will see that STEM contains charge in cose the particle is chargethw of

Selfvariationgquantitativelydescribeghe interaction of material piEcles with the STEM

Every material particle interacts both with B€EM emitted by itself due to the
selfvariations, and with th8 TEM originating from other material particles. The material
particle and th&TEM with which it interacts, comprise a dynamic system which we called
Agener al i zletldepresantricle wd steidythis continuoudnteraction The
conclusiongesulting from the law of Selfvariations will be referred to as "the Theory of
Selfvariations” (TSV).

The main conclusion reached is that the three axiomssemeproduce all of our
basic knowledge in physics. In particular they predict and justify the particle stratture
matter, the interactions ghfrticles, the quantum effects and the cosmological data. Moreover
an exceptionally large number of new statermattout physical reality can be derived from

these axioms.

The TSV predicts a commonathanism for the interaction pérticles which is the
Unified Selfvariation Interaction (USVI). The USVI implies that each interaction consists of
three components wittlifferent characteristics. One of these components corresponds to our
familiar Lorentz force as known from electromagnetism, one component corresponds to the
curvature of spaetme, while the existence of theitthcomponentvas totally unknown to

us befoe the formulation of the TSV.

The TSV predicts a wave equation whose special cases are the Maxwell's equations,
the Schrddinger equation and the associated wave equations. We determine a unified
mathematical expression for all conserved physical quangtid calculate the corresponding
4-vector for the current density. Both the density and the current density of conserved
physical quantities have a O6crystallined str

matter.

The equations of the TSV predicstictly determined structure of matter. They
highlight both the particulate structure and the wave behavior of matter and the relationship

between them.



We prove a theorem, the internal symmetry theorem, which predicts and justifies the
cosmological dataVe will show that for observations done at cosmological scale, our

observation instruments directly record the consequences of Selfvariations.

2. THE BASIC STUDY OF THE STRUCTURE OF THE GENERALIZED PARTICLE

2.1 Introduction

In thischaptemwe give the mathematical formulation of the law of selfvariations for

the rest mass and we determine the fundamental physical quahtities= 0,1, 2, 2which

are obtained from the laworthe formulation of the equations the following notation is
used:

W = the energy of thparticle

J = the momentum of thparticle

m, = the rest mass of thgarticle

E = the energy of the STEMteracting with theoarticle

P = the momentum of the STEMteracting with thearticle

E, = the rest energy of the STEMteracting with theparticle.

With the above symbolisnthe law of Selfvariations for the rest mass is given by equations
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The conclusionsesulting from the law of Selfvariations will be referred to as "the
Theory of ®lIfvariations” (TSV). In the beginninge present the TSV in inertial frames of

reference.

2.2. The basic study of the internal structure of the generalized particle

We congiler aparticle with rest massy, , 0 and we denotéd, the rest energy dhe

STEM interacting with the pacle. The rest mas#&y, and the rest energly, given by

equations (2.1) and (2.2) respectivigcording to special relativifit-4])

mect = W? - &J°2 2.1)

E02 - EZ _CZPZ (2 2)
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where Cis thelight constantacuum velocity of lightand i is the imaginary unit? = 4.
Using this notationthe law of Selfvariations anefjuationg2.1) and (2.2arewritten
in the form of equation@.6), (2.7) and (2.8)
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However equations (2.7), (2.8main valid in the case whem, =0,E, =0.
After differentiating equation (2.%yith respect tox,,k =0,1,2,3 we obtain
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T TS %,

and with equation (2.6) we obtain
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We now symbolize

Wi %PKJi =/,, ki=0123. (2.10)

With this notation, equatiof2.9) can be written in the form
ol ot I+ I/, +3:/ 5 =0, kK=0,123. (2.12)

We now need thé3 4 matrix T as given by equation
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From m, =0 in equation (2.7)ve getagain equations (2.11) and (2.13).

Proof. For m, = 0in equation (2.7yve get
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andsymbolizing
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we get again equations (2.11) and (2.13)

We nowprove the following theorem:

Theorem 2.5 Bor k , i,k,i 1{0,1,2,3 it hold that
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for at least one paifk,i).k, i,k,i {0,1,23it holds that

(2.15)

(2.16)

Proof. Indeed, by differentiating equation (2.6) with respecktd =0,1,2,3 we get

and using the identity
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and with equationf2.6) we have
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and with equation(2.6) we have
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from whichwe obtain redtions (2.15 and (2.16.o



3.PHYSICAL QUANTITIES &, , k, i = AND THE CONSERVATION
PRINCIPLES OF ENERGY AND MOMENTUM

3.1.Introduction

The physical quantitieg,;, k,i =0,1,2,% are related to the conservation of energy and

momentum of the generalized particle. Tinigestigatiorwe will presenin this section

We present the internal symmetry, which expresses the isotropy of spacetime, and
the external symmetrylich expresses the anisotropy of spacetime. Irctiapteiwe two of
the fundamental theorems of TSV: the theorem of internal symmetry aficstiileeorem of

external symmetry.

3.2.Physicalquantities 8, , K, i = and the conservation principles of energy and

momentum

We start our study with the proof of the following theorem:

Theorem3.16For m, , Oandwhenthe generalized particle conserves its momentum along
the axesx,i1=0,1,2,%, that is

J +P = oconstan (3.1)

then the following equation holds
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Proof. Combiningrelation (2.15) with equatior§3.1) we obtain
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and with equation (2.10) we get
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whichis equation (3.2). The rest of equations (3.2) are derived takinggontant equation
(3.1).Equation (3.2) holds fok , i, k,i $9,1,2,5%, since equation (2.14), from which

equation (3.2) results is an identity k =iand gives no information in this case.
We now prove the following theorem:
Theorem 3.2. TSV theorem for the symmetry of indices:

0 Bor m, , 0 andwhenthe generalized particle conserves its momentum along thexaxes

and X, with k , i, the following equivalences hold

1L/0,={ U3R AR Ul %J &GP =F (3.3)
2. 1= - L/.:E(J P -JR) Q(N ¢Y) iﬂ( eP ch. (3.4)
ik i ki oh ki 1k 2% % i i

k,i=0,1,2,3,k ,i.0 0
Proof. The theorem is an imadiate consequence eduation 3.2

We now consider the fowrector C, as given by equation

€Co
é
R
€c,
é
&C;

(3.5)

—— = - - e~

When the generalized particle conserves its momentum along every axis, then-thezfour
C is constant. Also, we denobd, the total rest mass of the generalized patias given by

equation
C'C=¢ ¢ € ¢ Mec’ (3.6)

whereC' is thetransposeaf the column vectoC.
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For reasons that will become apparent later in our study, we give the following

definitions: We name the symmetfy = [, k i, k,i 8/1,2,¢internal symmetry, and the

symmetry/, = -/, k i, k,i 0,2,%external symmetry. We now prove the following

theorem:

Theorem 3.3.Internal Symmetry Theorem:

0 Bor m, , 0 andwhenthe generalized particle conserves its momentum in every axis, the

following hold:
1./, = [ forevery k,i=0,1,2,3 U J, P andC are parallel
U P= B whereF i C. (3.7)

2. For F = 1or F =0 the following equatioshold

= (,2 0:
EO erb WIO (3.8)
m="M, & 0=
respectively.
3. ForF . tandF O the following equations hold:
e b
Fo=Kexpg —(c% ax o% 6 (3.9)
Ile
= ° 3.10
™ 1+ F ( )
g = F Mc’ (3.11)
1+ F '
c . .
J =——,i 9,1,2,c (3.12)
1+ F
p=F% i 9122 (3.13)
1+ F
where K is a dimensionless constant physical quantity.
We have /, =/, for everyk,i=0,1,2,¢
U (3.14)

~ o~

/; =0 foreveryk,i=0,1,2,2.0 0
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Proof. Equivalerce (3.7) resulimmediately from equivaleng®.3).For F = 1 from the
last of equivalence (3.7) we obtaih=- J and from equabns (2.7),(2.8)and (3.5), (3.6)ve
obtain

E=npc @M, &

whichis the first of the equation8.8). For F =0from the lasof equivalence (3.7) we
obtain P=0 and from equabns (3.5, (3.6) and (2.ywe obtain

mp=M; &, &
which is the second of the equations (3.8).

ForF . fandF ,O from the last of equivalence (3.7) we obtath=F J, for

everyi =0,12,3 and with equation (3.1)J, + P =c¢ we initially obtain equations (3.12) and
(3.13). Then, combining egtions (2.7) and (3.12) we get

1
(F+1)

M+ (@ G +)=0

and with equation (3.6) we obtain equation

myc” - >=0 (3.15

and we finally have

M

— o 0
™ T F

which is equation (3.10). Similarly, combining equations (2.8) and (3.13) we obtain equation
(3.11). We now prove that functida is given by equation (3.9).

Differentiating equation (3.15) with respectxg v=0,1,2,and considering

eguation (2.6) we obtain

2.2
Dpnpes M BF
h (F +1)° 1,

and with equation (3.15) we have
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2.2
EPV M002+Mc uF
(R ) (F Jﬂ)uxv
HF_ Db
—= —P( F1
M hV( )l-

and with equation (3.13) fdr=v we arrive at equation

MF_ b
Ll v 0:1,2,3 3.16
-G F (3.16)
By integration of equation (3.16) we obtain

F Kexp8 (Coxo G Gk G

where K is the integration constant, which is equation (3.9).

Combining equations (2.10), (3.12) and (3.13kfer0,1, 2,2 we obtain

/i =B _:R(J
X,

/=

H
X,

~
=
I
~
=
T o
I
N
x|=
-

We formulated internal symmettigeoremfor J ;| O in order for the material particle
to exist. If we formulate the theorem f&, O, thematerial paticle and the STEM exchange

placesn the equations and the conclusions of the TSV.

Following we do the study based case 3. of the internal symmetry theorem. Téat
in thecasewhereF | fandF  0.Thestudyofthecasess , f*andF ,O,i.e of

equationg3.8) are not considered the present publication
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According to the previous theorem, internal symmetry is equivalent to the parallelism

of the fourvectors], P. Starting from this conclusion we can determine the physical content

of the internal symmetry.

In an isotropic space the spontaneemsssion of STEMy the material particle is
isotropic. Due to the linearity of the LorerEanstein transformations, this isotropic emission
has as a consequence the parallelism of thevectorsJ, P ([5] par. 5.3). Thus, the
theorem of internal symmetry 3.3 holds for the spontaneoussion of STEMy the

material particle due to Selfvariations .

In the followingchaptes, we will make clear that the internal symmetry refers to a
spontaneous internal increase of the rest mass and the electrical charge of the material
particles, independent of any external causes. The consequences of this increase is the
cosmological datas we'll see ilChapterl6. Also, the internal symmetry is associated with
Heisenberg's uncertainty principle

We dart the investigation of the #tnal symmetry with the proof of the following

theorem:

Theorem 3.4. First theorem of theTSV for the external symmetry: 6 Bor m, , 0 and

whenthe generalized particle conserves its momentum along every axis, and the symmetry
/.. =-1, holds for everyk , i,k,i 9,1,2, then:

clu*tG f, o f &
1' ‘]i/vk+‘]k (v +‘Jv k/ ©: (317)

I:?/vk-}-l:)k (v +R/ k/ 6:

foreveryi, v,v k,k |, k,i,v O#,2,%

2. ﬂz%ﬂ/m'%/m:'%%/wg—;/n (3.18)
X,

for everyk, i,k,i,n =0,1,2,%
3' /01 42+ 04 13/+ 03 41 @: 6 6 (319)

Proof. From equivalence (3.4) we obtain
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/kiz%(qjk '9\1)1k Jki 0,28 (3.20)

Considering equation (3.20) we get
G/u*G G W/ “QQ(‘%JV GJd) &t6d cd & & cPgo.

Thus, we get the first of equations (3.17). Similarly, from the other two equalities of
equivalence (3.4) we obtain the second and the third equation of (3.17) kSiride

equivalence (3.4), the physical quantities, {, in equations (3.17) are defined for

n.oki Lk ki, 70,2,

Differentiating equation (3.20) with respectxp v =0,1,2,3 we obtain

W, beé ab 5 _ &b o0
Ll B PJ, +/, 6 CasPJ +/,
™ Zhgc(i:af; ka kee;; 9Ju
W, beéb

L ey J)+c/ /,

W, _b_ b

Pi-Zp_— 3)+ (el /
IJX, h VZh( Ck ) ( vk Ckw)

and with the first of equations (3.17) we obtain

|nk+ck(n+c /@:
|nk_Ck //i7 +ani/ &

Glu - Gl =-¢/y

we get



which is equation (3.18). The second equality in equation &h@&rges from the

substitution
P =c-3J,,v=0123
according to equation (3.5).
Taking into account equation (3.20) we obtain

/Ol 42+ 04 13/+ 03 él F

Z ek w3)(ed oY) fed sd(cd o) (e fH £ 9go

after the calculationss

From equation (2.14) it follows thafor m;, =0, we donidst know i f

w_R

W M

or

B ik 01,2
W~ M

Next we studythe exernal symmetry based oguation (3.4), which holds fam, , 0. In
chapter7 we will see the equation of the TSV that holds whetherritis Oor m, =0 (see

equatiors (7.89)).

4. THE UNIFIED SELFVARIATIONS INTERACTION (USVI)

4.1.Introduction

The most direct consequence of the law of selfvariations is the emission of STEM in
spacetime. Through STEM the TSV predicts a common mechanism, a common cause for the

interactions of the material particlébnified Selfvariations Interaction, USYI

16



In thischaptemwe prove the secdtheorem oexternal symmetry which enables us to

determine the potential fielfl, §of USVI. Thefield (U, § is defined for any interaction

and not only for thelectromagnetic and the gravitational interaction. It also satisfies four
equations which correspond to the four Maxwell equations. These@wgjais well as the
Maxwell equationsare special cases of more general equations ahallesee in the next

chapter. A the end of the chapter we calculate the field potential.

The USVI consists of the sum of three terms. The first term is demonstrated by a
force parallel to the 4 dimensional momentum of the material particle. This term is always
nonzero. The secongrm demonstratefié spacetime curvature and the third familiar

from electromagnetism, Lorentz force.

4.2. The Unified Selfvariations Interaction (USVI)

According to the law of selfvariations every material particle interaatts with the
STEMemitted by itself due to the selfvariatioasid with the STEMriginating from other
material particles. In the second case, an indirect interaction emerges between material
particlesthrough the STEMSTEMemitted by one material parécinteract with another
material particle. Through this mechanism the TSV predicts a unified interaction between
material particles. The individual interactions only emerge from the different, for each
particular case, physical quantiy which selfvariates, resulting in the emission of the
corresponding STEMN thischaptemwe study the basic characteristics of the USVI. We
suppose that for the generalized particle the conservation of emerggntum holds, hence

the equations of the precediolgapteralso hold. For the rate of change of the feector

iJ we get

MAago_ I pm, 1w

—a&_ 0 >
MX cMy+ My X My KX
and with equations (2.6) and (2.10) we get

nals_  Jb 1 &b )
6= L RmM+—5RJ +/
Mge”_bg r‘rﬁh My mogef;kl klg

and we finally obtain
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According to equation (4.1), whef), , O for at least two indiceg,i, k,i =0,1,2,3,

Eik
|- QI Ot

H
WX, ¢

the kinetic state of the material particle is disturbed. According to equivalence (3.14) in the

internal symmetry it i, =0 for everyk,i =0,1,2,3. Therefore, in the internal symmetry

the material particle maintains its kinetic state. In an isotropic space we expect that the
spontaneousmission of STEMy the material particle cannot digh its kinetic state.
Consequently, the internal symmetry concerns the spontaasossion of STEMy the
material particle in an isotropic space.

In contrast, in the case of the external symmetry it can beo for some indices

k,i, k,i=0,1,2,% Therefore, the external symmetry shbe due to STEMith which the

material particle interacts, and which originate from other material particles. Thieutisn
of STEMdepends on the position in spacehs iaterial particle relative to other material
particles. This leads to the destruction of the isotropy of space for the material particle. The
external symmetry factor will emerge in the study that follows.

The initial study of the Selfvariationsoncerned the rest mass and the electric charge.
The study we have presented up to this point allows us to study the Selfvariations in their
most general expression.

We consider a physical quantwhi ch we shall caQod, sed f var
simply chargeQ, unaffected by every change of reference frame, therefore Ldferdizein

invariant, and obeys the law of Selfvariations, that is equation

E—EPQ k=0,123. (4.2)
X,

In equation (4.2) the momentuR, k=0,1,2,5, i.e. the fowvector P, depends on
the selfvariating charg®. Two material particles carrying a selfvariating charge of the same
nature interact with ehcother wherthe STEM emitted by the charg®, of one of them

interacs with the chargeQ of the other. In this particular case, we devaté Q the charge

of the material particle we are studying.

The rest mas#y, is defined as a quantity of mass or energy divided’hwhich is
invariant according to the LorenEinstein transformations. Thewéctor of the momentum

J of the material particle is related to the nestssm, through equation (2.7). The charge

18



Q contributes to the energy content of the material particle and, therefore, also contributes to

its rest mass. Furthermore, the cha@enodifies the 4vector of momentumJ of the
material particle and, therefore, contributes to the variation of the restpasshe

material particle. Consequently, for the change of theweuator J of the material particle
due to the charg®, the fourvector P of equation (2.10) enters into equation (4.2). The

consequences of this conclusion become evident when we calculate the rate of change of the
1

four-vector —J.
Q

Theorem 4.1Second theorem of the TSV for the external symmetry:

0 1 The rate of change of the feuectoréJ due to the Selfvariations of the charQeis

givenby equation

uajJo_/, L
B o=t ki=0123
% ¢R2 Q . (4.3)

2. For k | i the physical quantitie% are given by

ﬁ:zaﬂ, k >i’k’i @:,1;2i3
5 (4.4)

where z is the function

—epS P 2
z=epg o (GoX% +CX +C,X, +C3X3)H_ s

3. For the constants,; the following equations hold

Ga+tGa *Ga €
‘Jiavk+‘]ka\/ +‘]V%i & (46)
Ra,+Ra, +Ra &

foreveryi, v,v k,k |, i,ky7 0,2,
4.a, = -g,k i,ki 07,2 4.7)
5' aOl %2+ é l§+ 03321 5@:6 6 (48)
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Proof. In order to prove the theorem, we take

WALS 340 14
w02 QP Qux,

and with equations (4.2) and (2.10) we get

pnal 6 Jb 14b

@ § 5, RQ ¥=RJI /t
x$Q 2 Qh T Qg T
walk o/

weQ 2 Q

which is equation (4.3). Equations (4.2) and (2.10) hold for ekgry0,1,2,3. Therefore,
eqguation (4.3) also holds for evekyi =0,1,2,3.
For k, i, k,i=0,1,2,3 andv=0,12,3 equation (3.18) holds and, sin@, 0, we

and with equation (4.2) we get
QW -

Q bg
=/ == Z*Q/
IJX, ki M, 2hQ4|

and integrating we obtain

ﬂ =a, expe _b

o 8271(% &X G% G¥%)

wherea, ,k , i,k,i =0,1,2,3 are the integration constants, and with Y48 get equation

(4.4). Equation$4.6) are derived from the combination of equations (3.17) and (4.4), taking

into account thazQ, 0. Equation (4.7) is derived from the combination of equation
/.= -,k ki O, 2,with equation (4.4). Simirarly, equation (4.8) is derived from the
combinationof equations (3.19) and (4.4).

We will also useequation

20



K _ ﬁz,k 8,127 (4.9)
X, 2h

which results immediately from equation (4.5).
For k =i,k,i =0,1,2,3 equation (4.4) does not hold. So define the physical

quantitiesT, as given by equation
T =a L k 61,2: (4.10)
k kk ZQJ 1= &

Taking into account the notation of equation (4.10) the main diagonal of matyfx

equation (2.12) is given from matrix

&, 0 0 0 gTeO0 0 O
10 7, o oY €T, 0 O

L =Le? fu u=6 . (4.12)
zQé0 0 /, O U 00T, O
€0 0 0 /,4 080 0T,

We now define the threeectorsU andb, as given by equatiorfd4.12) and (4.13)

respectively

sa, oda, 0 dic |,
0=2%. 8%% 8%3‘3 o (4.12)
&, 2%, O &/,
&b, Gab, © & l,
b=, b 8é$1! : (4.13)
D, 0m, 0789,

VectorsU andb contain all of the physical quantiti€s, for k | i,k,i =0,1,2,Zsince
Iy = - -
Combining equations (4.12) and (4.13) with equation (4.4), the véttordb are

written in the form of equation®.14) and (4.15), respectively

éal (jéax 6 é%l

- k=S 0.

U:%}2 graeay lezié (4.14)
@, 0@ 0 @,
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ab, 6&b, 0 &g,
oee, O _ee
b=50, ool 6%ed - (4.15)
&, 0, 0 &,
We write equation (2.10) in the form
W _bpyy/ ki=0123 (4.16)
WX, h

The rate of change of the momentum of the material particle equals the sum of the two terms
in the right part of equation (4.16). Fk=0, and sincex, = ict, equation (83) gives the rate

of change of the particleamentum with respect to tintei.e. the physical quantity we call

Af orceo. By using the concept of force, as
of velocity. For this reason we symboligethe velocity of the materigdarticle, as given by
equation

, Gau,

8%& . (4.17)

0%,

c
I
‘BB
N

w

Also, we define the4ector of the fowvector u , as given by equation

S
@,
()

.
(e el el el el

(E\ [N 8\ CDsC(‘D\

(4.18)

N

R2 D~ D DD @
N
x
ocoocoon

We now prove the following theorem:

Theorem 4.2.6 Bhe rates of change with respect to tinﬁxo = ict) of the fourvectors J

and P of the momentum of the generalized particle carrying ch@gee given by

equations

dj_ dQ . |  SLw

W9y T u Ll (4.19)
dx, Qdx C c gO+ ud
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dP_ _dQ; 1,9 uLIGﬁ w55 (4.20)
dx,  Qdx C eU+ U

Proof. The matrixL is given in equation (4.11). By3 b we denote the outer product of

vectorsu and b.

We now prove the first of equations (4.19):

oud, 4

& 1)
Yg— = a2 W
:Ht_@e +IXQ(;2_§)F1Q QZLHQ
and using the notatiaof equation (2.3) we get

|cdaJo.uaJo paJo uaJo paj, o

_| —_—
o F0 Y e B Y i T i T T i T
and with equation (8) we get

icd &J, 8_. /OO u@+u2/ﬂ+u3/—
dx, $Q 2 Q ‘Q °Q

d aJ o_/__i_é /1°+u/ﬁ+u@§
d><oae<3° c&Q Qg tq?

o

d 83,6/

19 3,00 Vo, i& Lo, Lo,y fud
Q dx, Q dXo Q c¢ Q Q Q=
dJ d i
d_Xz :aiJo +/ +E(u1/01+u2/02 +u3/03)
and with equiions (4.10) andg4.12) we have
dJ, _ dQ
—2 =] ¥ — —_
a7 S (ﬁg B, e - Y3
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which is the first of equations (4.19) since

[ [ .
--zQTy = - zQTic =2Qj.
c c
We prove the second of equations (4.19) and we can similarly prove the third and the

fourth:

daJ d6_paJ o, palJodo palJo  padl o

daj),0_pal) e palo p&J06 o pala
aF Y I &Y T &Y

and using the notation of equations (2.3) and (2.4) we obtain

icd&dJ, Sicu J& 6 pJ & ouJ A&
& Sy & T 0 ¥ o "Fulo

and with equation (8) we get

icd aJlQ:icﬁ+ulg+uzg+u ﬁ

%0 Q 'Q 'Q °Q

d 83,5 iU/ Lo oty

g7 ¢cQ Q ¢ Q ¢Q
1d), 4 dQ_ iw/y Ty Wy iU/
Qdx, Qdx, ¢ Q Q ¢ Q ¢ Q

dJl_ dQ J _ﬁ/11+/01_&/21+&/13
C C

TR
and with equations (4.10), (4.12) and (4.13), we obtain

d _ dQ , i T I ]
@—Qd%% 20T - @, —dus u-)

which is the second of equations (4.19). Equation (4.20) results from the combination of

equations (4.19) an@®.5).o

Using the symbol for the momentum vector of the material particle
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aJ, 6aJ,
— oee
=3, geey
0
@3 +8?]z
and taking into account equations (2.3) and (2.4) and (4.11) the set of equations (4.19) can be

written in the form

aw_ dQ J ¢
it~ ooy 2T U0
anu, o : (4.21)
dJ _ dQ 6 o
=3 2Q%Lu o €U0 u )
dt  Qdt o, 5

Equations (4.21) are a simpler form of equation (4.19) with wihiejrare equivalent.

The rate of change of the feuector J of the momentum othie material particle is
given by the sum of the three terms in the right part of equation (86). The USVI and its
consequences for the material particle depend on which of these terms is the strongest and

which is the weakest.

The first term expresses a¢erparallel to fouwvectord which is always different
than zero due to the Selfvariations. As we will see next, the second term is related to the
curvature of spacetime. The third term on the right of equation (4.19) is knowa lasrémtz
force, in the case of electromagnetic fields. In many cases a term or some of the terms on the
right of equation (4.19) are zero, with the exception of the first term which is always different

than zero.

From equation (4.19) we conclude that the pair of vec(tﬁré) expresses the

intensity of the field of the USVI according to the paradigm of the classical definition of the

field potential. From equation (2.10) we derivettthephysical quantities/,;,k,i =0,1,2,
have units (dimensions) &g G *. Thus, from equation (4.12) we derive thaQfis the rest
massthe intensityU has unit ofmGs?. If Qis the electric charge, the intensityhas unit of

N GC . Now we will prove that for fieIéIU, [) the following equations (4.22) hold
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Theorem 4.3.0 Bor the vector pai(U, !) the following equations hold:

20 “(aay c.a. c a) (a)
Po6 G (b)
D U :% © (4.22)

bz 8C @y, +C, &, 1C; G g
D = Tay CH, € g5 00 (d)
géaos"'cz‘%s s 3 9
Proof. Differentiating equations (4.14) and (4.15) with respect tok =0,1, 2,z and

considering equation (4.9), we obtain equations

W bay (4.23)
WX, 2h
Wb _ b (4.24)
X, 2n

From equations (4.23) and (4.24) we can easily derive equations (4.22). Indicatively, we

prove equation (4.22b). From equation (4.15) we obtain

. Lz A 2
bOoO &,— ag— g—
2 px, M, Xy

and with equation (4.9) we get

" bz
b o :Ef;(clasz C, &; Cs%')

and with the first of equations (4.6) ffirv,k) = (1,3 2) we get
bo G

The first of equations (4.6) should be taken into account for the proof of the rests of equations
of (4.22).o
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Considering equations (4.22) we define the scalar quantégd the vector quantity

j, as given by equations

. icbz
r=sbW =-(ca, car Gag

zbzé- Gdn "G & &a,

Egcoaoz & &, G,
Eoas Ga, ta,

(4.25)
j=s

1-0:0: O: Ot

wheres ;| O is a constant. We now prove that for the physical quantitiesd j the

following continuity equation holds:
%§+D®:O. (4.26)

Proof. : From the first of equations (4.25) we obtain

r=sbw

W_ o
—=s5s—( b

pt n VLI))
W 3. M
P _pH Lr
t g;% f

which is equation (4.26)o

According to equation (4.26), the physical quantityis the density of a conserved
physical quantityq with current densityj . The conserved physical quantiyis related to
field (U, Bthrough equations (4.22).We will revert to the issue of sustainable physical

guantities in the né chaptes.

The densityr and the current densityhave a rigidly defined internal structure as
derived from equations (4.25)Ne now consider the fowrector of the current density of

the conserved physical quantiy as given by equation
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el, @ @fC
€ U
e uex (4.27)
e, uej,
VR
éJS l'J @Jz

j:

and the43 4 matrix M

(‘? 0 gy a, &
e
- a 0 -
M =€ o o8 (4.28)
@'aoz a, 0 - &
e
&4y ~4; @ 0

Using matrixM equations (4.25) can be written in the form of equation

2
j=2 ;hbz MC . (4.29)

From equations (4.2 we conclude that the potential is always defined in the

(U, B-field of the USVI. That is, the scalar potential

V=V (6% Y, 2) =V (%, %0 X0 % )

and the vector potentiah
A=A(tLXY,2) A(% % % %) A b o

are defined through the equations

o
1

b 3

_\@w_ :\/_lg_hl
it K

U

We can introduce in the above equations the gauge fun€tidinat is, we can add to

the scalar potentia¥ the term

and to the vector potentidl the term
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bf

for an arbitrary functionf

f=f(txy,2 =f(% % %, %)

without changing the intensit&l [)of the field. The proof of the above equations is known

and trivial and we will not repeéthere For the field potential of the USVI the following

theorem holds:

Theorem 4.4.

8% Inthe (U, B-field of USVI the pair of scalavector potential{V,A) is always defined

through equations

b= b 3

U

2. The fourvector A of the potential

é u 2V,
Al Zh &
eA H

is given by equation

e2nh a, pf
IF_‘<'Z+_k
_1 0 G X
A_ll-lf
2k fori=k
[ 15

whereg, , 0,k {0,1,2,3 | =0,1,2, and f, is the gauge function

3. Forgg, 0,k ,ik,i {0,1,2,3 equation (4.33polds

o B joop dCH
i %

0,£2,.0 0

(4.30)

(4.31)

(4.32)

(4.33)
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Proof. Equations (4.30) are equivalent to equations (4.22b, c) as we have atrexaiityned.
The proof of equation (4.32) can be performed through the first of equations (4.6). The

mathematical calculations do not contribute anything useful to our study, thus we omit them.

You can verify that the potential of equation (4.32) gives égusi(4.14) and (4.15) through

equations (4.30) taking also into account

From equation (4.32) the following fosets of the potentials follow:

C, .0
_ Mo
X,
2hza, M
A=—-"2+220 (4.39
b c,
p =273 , My
b ¢ X
Asz@ﬂ+u_f0
b ¢, X
¢.0
A):%ﬁ_'_u_fl
b ¢ W
_ W
A=—2 (4.3
(2
AZ:Eﬁ+u_fl
b ¢ px
ASZ@@-FH_H
b ¢ X
c,,0
2hz a pf
Ab:_ﬂ-}-_z
b c, px
2hza,, M
A=—-—F2+2 (4.39
b ¢,
_ M,
AZ__
X,
%:%g'*&
b c, px
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c, 0
%@+u_f3

e T
2hz a f

A=E Czuﬁxl . (4.37)
2hz a f

AT e
f

Indicatively, we calculate the componemtsand b, of the intensity(U, § of the

USVI field from the potentials (4.34From the second of equations (4.30)ok¢ain
dup, pA S

a _|C&—- —0
ch W+

and with equations (443 we get

_..Gu é‘ufo(j H étham ufow
a=1Cé—e— 0", T
X gl = o b 6 Xy
al:_|cﬁﬂﬁ
G WX

and with equation (4.9) we get
a,=icz g,
that is we get the intensity, of the field, agjiven by equation (4.14).

From the first of equations (4.30) we have

poHA A
(LT 0
and with equations (4.34ve get
b= M aZh2a03 ﬂ g W28z g, f,
e b g S B¢ xu

:ﬁﬂﬁ%‘% _KB
" b bg oK

and with equation (4.9) we get

b, = Célos 7 Clg D2 7
G G

and considering that,, =- a,,, we get
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Z
b1= ?(Cz @ G %) (4-3&
0

From the first of equations (4.6) fd,v,k)=(2,0,3) we obtain
Co8s + Cy8y + Gy, =0
Co8p3 + Gy = - Gy,
andsubstituting into equation (4.38ve see that
b, = za,,
that is, we get the intensit§, of the field, as given by equation (4.15).
The gauge functions, ,k =0,1,2,3 in equations (4.34(4.37) are not independent of

each other. Fog, , 0 andc , O for k, i,k,i =0,1,2,3 equation (4.3pholds
f,=f +———,cc 0k iki 0%2,. (4.39
G

The proof of equation (4.3%s through the first of equations (4.6). The proof is
lengthy and we omit it. Indicatively, we will pve the third of equations (4.8#om the third
of equatims (4.39 for k=1 andi =0 in equation (4.9).

Forc,, 0 andc,, 0 both equations (4.34) and equations (4.35) hold. From equation

(4.39 for k=1 andi =0 we get equation

2
f=t, 2% (4.49
b” ag
From the third of equations (4.B&nd equation (4.4Qve get
o 2 ~
Ag=@ﬁ+ingo+4hzzﬂ8
b ¢ ¢ b cc +
p =222 Mo A 2 12
b ¢ W b” o
and with equation (4.9) we obtain
p=22an o 2120,
b ¢ ux b gg
2hz Ui}
Az :ﬁ(coalz' C2a10)+E0
and sincea,, = - a,,, we get equation
2nhz uf,
=——(ca,, ¥ += 4.4
A =g (% a) (4.4
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From the first of equations (4.6) fd,v,k)=(0,1,2) we obtain

Cody, TG0 HCay, =0
Codyp TG0y =- Cay
Cody, T C8y = Cay,

andsubstituting into equation (4.%tve obtain equation

SN '

Equation (4.4is the third of equations (4.R4

According to equation (4.39f c_, 0 for more than one of the constants
c..k =0,1,2,3, the sets of equations of potential resulting from equation (4.32) have in the
end a gauge function. In the application we presented assuming andc, , 0 for a
specific gauge functiorf, in equations (4.34 the gauge functiorf, in equations (4.35s
given by equation (4.40co
We conclude the investigation of the potential of the f(&ld §of USVI by proving

the following corollary

Corollary 4.1. 6106 the external symmetry, thevgctor C of the total energy content of the

generalized particle cannot vanish:

€, g¢0

e
c =62
ec,
€
&G,

00 (4.43

coocoo
%{D\ 8\ MDD~

Proof. Indeed, forC =0 we obtainJ =- P from equation (3.5). Therefore, the fetsctors
J and P are parallel. According to equivalence (3.7) the parallelism of thevieators J
and P is equivalent to the internal symmetry. Therefore, in the external symmeti§ it 3.

O

A direct consequence of these findings is that the potential of the{tielfjof USVI
is always defied, as given from equation (4)43his conclusion is derived from the fact that

at least one of the constargs ki {0,1,2,3is always different than zero.
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5. THE CONSERVED PHYSICAL QUANTITIES OF THE GENERALIZED
PARTICLE AND THE WAVE EQUATION OF THE TSV

5.1.Introduction

The TSV predicts a wave equation whopecsal case are the Maxwell equatiotiee
Schidingerequationand other eélevantequationsThewaveequation Y of theTSV is
related to the conserved physical quantiti¥s. determine a mathematical expression for the

total of the conservable physical quantities, and we calculate the current deresitpd) .

Thedensity r andthecurrentdensityj of the conserved physical quantities have a

strictly determined structure which relates with the quantum behavior of matter. The physical

quantitiesr and j are related with an entirely égrent way than gien by the equation

j = ru usedby thetheoriesof the previouscentury

5.2. The conserved physical quantities of the generalized particle and the wave equation
of the TSV

The generalized particle has a set of conserved physical quagtiibeeh we

determine in thighapter At first, we generalize the notion of the field, as it is derived from

the equations of theTSWe prove the following theone:

Theorem 5.1.

85 For thefield (3; ¥ of the pair of vectors

ay,
a=ic ¥, (5.1)
S5

e,
v= VA, (5.2)
R

whereY =Y (%, %,%,,%;) is a function satisfying equation
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B D63, +mR)v (5.3)
WX, n

k=0123 (/,m, (0,0), /,m C are functions ofx,, x,x,,x,, thefollowing
equations holsl

b® &

: 54
P 33\. :& ( )

2. The generalized particle has a set of conserved physical quaqtiiigs density 7 and

current densityj

r= sb30
(5.5)

: a 3
=sCxb ¥
: & c’pt

wheres | O are constantdpr whichconserved physical quantities the éoling continuity

eqguation holds
W ipg=o0. (5.6)
pt

3. The fourvectors of the current density are given by equation

sc’b
/)

j= M(/J #).838 (5.7)

Proof. Matrix M in equation (5.7) is given by equation (4.28). We dedated P the

threedimensional momentums as given by equations

=

(5.8)

[

1
WS ¥
|-O:0: O: Ot

w

(5.9)

Y
1

i

1-0O:0: O: Ot

For the proof of the theorem we first demonstrate the following auxiliary equations (5.10)
(5.15)
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a8, 0
.50
.S

a3, 0
G50
S

a0,

J3§O28=-J

Gt ?
&8y, 0

Gouo

aay, 0

(0]
0 30

G

aa;, 0

p3 %028:' %%38

g

é-azz(_j é-‘]zazl - J3a13(_~?

J3 %s 8: 33332 - ‘]13218
8%219 8%]1313 B J23329

éasz 6 éPzazl - Psamfj

p3 %1382%332 B Plazlg .
8%219 @313' P261329

In order to prove equation (5.10) we get

aay, 0

: 0]
J @13 o: ‘]1332 + ‘]2313 + J3a21

g

and with the second of equations (4.6) fiow, k) =(1,3,2) , we have

ad,

18,
&,

1-O:0: O: Ot

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

Similarly, from the third of equations (4.6) we obtain equation (5\W/&)now get



éam 6 eol‘]2""03 - Jsaoz 6 é*]zaos + Jsazo 6

J3 %02 8: 23301 - ‘JlaOS 8: Ssam + JlaSO 8
8%032 @1302 - Jzam 9 @1302 + ‘]2310 9

and with the second of equations (4.6) we obtain

éamq a?1"10332(_??
Oo_¢ee 0]

J3 2(:::):333*]0313(:)
G ? &2, 2

which is equation (5.12). Similarly, by considering the third of equations (4.6) we derive
equation (5.13). Equations (5.14) and (5.4f%) derived by taking into account equations
(5.8) and (5.9).

Equations (5.4) are proven with the use of equations 510%). We prove the first as an
example. From equation (5.2) we obtain

885,
P& = 8,0
Cany
and with equation (5.3) we get
p ob 2
D& =/ Sai—m P
& 2 a3

and with equations (5.10) and (5.11) we obtain
b® G

From equations (5.4) and (5.5), the continuity equation (5.6) results. The proof is similar to
the one for equation (4.26). The proof of equation)(s.done with the use of equations
(5.10)(5.15), and equation (4.28).

Field (U, Bpresented in the previoebapteris a special case of the fie{d; ¥ for

/= m= % For these values of the parametefess we obtain from equations (5.3)
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LY ba l‘J 1P o}
AT R
Ee S0 R Y

and with equation (3.5) we obtain

wY_ b
X, 2h

and finally we obtain
e b
Y=z expg (0% % ¥ 6ff

and from equation&.1),(5.2) and (4.14),(4.15) we obtaan= land¥ = b.

From equation (2.10) it emerges that the dimensions of the physical quantities
/4,k,i=0123 are
[/c]=kos' ki 0,1,2,%

Thus, from equations (4.12), (4.13) and (4.14), (4.15) we obtain the dimensions of the

physical quantitie®a,;, k,1=0,1,2,% Furthermore, from equation (4.11) we obtain the

dimensions of the physical quantiti€s k =0,1,2,3. Thus, weget the following relationships

[Qa,]=kgs' k ,iki 61,23
[QT] = kas', k 0,1,2,3.

(5.16)

Using the first of equations (5.16) we can determine the units of measurement of the
(3~, w)-field for every selfvariating charg® . WhenQ is the electric charge, we can verify
that the field units arév C"Dn‘l,T) . WhenQ is the resmass, the field units ar(en(”]s‘z, s‘l).
The dimensions of the field depend solely on the units of measurement of the selfvariating

charge Q.

From equation (5.7) and taking into account thati C we can define the
dimensons of the physical quantitieghrough the first of equations (5.18YhenQ is the

electric charge, anaf s = ¢, whereg, is the electric permittity of the vacuumg is a
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. : : he

conserved physical quantity of electric charge. Far—2 , wheree the constant value we
e

measure in the lab for theeetric charge of the electron,is a conserved physical quantity

e . : , . :
of angular momentuntor s =2, gis a dimensionless conse/physical quantity, that
e

ql C . WhenQ is the rest mass, andrfs :i, whereG is the gravitational constan,
v

is a consered physical quantity of mas§heorem 5.1 reveals the conserved physical

guantities of the generalized particle.

One of the most important corollaries of the theorem 5.1 is the prediction that the

generalized particle has waiike behavior. Weprove the following corollary:

Corollary 5.1. 6 For functionY the following equation holds

o 2 ~ . .
sczakigg)zY+“Y28:&_&
: u:oi P (5.17)
& WY 6_ [ 1
scla, DY - =4l 2k
SN TS AT

k,i, ki=0123.00

5

Proof. To prove the corollary, considering that=ict , we write equations (5.4) and (5.5)

in the form
Pe =-]j
sc
D® &
D 3 _lcpy : (5.18)
X,
P 3y =1_2] _I-Ei
SC CLLX,

We will also use the identity (5.39vhich is valid for every vectod
bs P8 £DPP G . (5.19)

From the third of equations (5.18) we obtain
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p: P = oy

icp
p: pg =M
¥

and using the identity (5.19) we get

) ro WL
o(p9 o H )

and with the first and fourth of equations (5.18) we get

o

8 0 . 8 o5 W 0y
pe.- O > R
(;aescJO 9 e o
and we finally get
2 . o .
pa 2 O W g (5.20)

1 scﬁ

Working similarly from equation (5.18) we obtain

2
P2y +L|:><§ :5—1CZ 5. (5.21)

Combining equations (5.20) and (5.21) with equations (5.1) and (5.2), we get

0

a Y0 |
B
¢

ki, ki 0,127

2

B
) [e.S]
o +SC K M

- O: O

which is equation (5.17).

Equation (5.17) can be characterizedias h e wav e e quadheibasic of t

characteristics of equation (5.17) depend on whether the physical quantity
2
Y
F=8 vy & %Dﬁé‘ (5.22)
Hox) c

iS zero or not.

This conclusion is drawn through the following theorem:
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Theorem 5.2.6 For the generalized particle the following equivaleniceld

2
Y _o (5.23)

DY - v =

if and only if for eachk | i, k,i =0,1,2,3 it is

Hi M (5.24)
X KX
if and only if
2
%3 - ‘:3; 8
cut z =
, 00 (5.25)
py -HY
c’ut?

Proof. In the external symmetry there exists at least one pair of indices
(ki), k, i, kil {0,123}, for whicha, , 0. Therefore, when equation (5.24) holds, then

equation (5.23) follows from equation (5.17), ancewersa. Thus, equations (5.23) and
(5.24) are equivalent. When equation (5.24) holds, then the right hand sides of equations
(5.24) and (5.25) vanish, that is, equations (5.25) hold. The converse also holds, thus
equations (5.24) and (5.25) are equival@tierefore, equations (5.23), (5.24), and (5.25) are

equivalent. I

In case that =0, that is in case that equivalences (5.23), (5.24) and (5.25) hold, we

shall refer to the state of the generalized
equations (5.25), for the generalized photon(ﬂaew)-field IS prop@ating with velocityc in

the form of a wavek-or the generalized photon, the following corollary holds:

Corollary 5.2: 6 Bor the generalized photon, the ferector j of the current density of the

conserved physical quantiti€s varies according to the equations
TS .
D?j, - cz—utkzzo’ k=0,1,23.0 0 (5.26)

Proof. We prove equation (5.26) fok =0, and we can similarly prove it fdr=1,2,3.

Considering equation (4.27), we write equation (5.6) in the form
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&+&+&+&:0_ (5.27)
Mo G X X

Differentiating equation (5.27) with respectxg we get

o
o
o

Wio, M AaWw 0 pap,0 payd_.
2 &0 & 0 & 0=
HXS WX o+ 1 gHX + HX X +
Wi, HaW 0 paw,0 pap,o_,
—a 0t ——ae 0 a&_ 0~
IJX Hxlguxo MG cHX = X X =
and with equatioi(5.24) we get
uzjo+£awo L M A0 p a0
a&_0 &0 & _ 0~
IJX X X+ X X+ [ g HIXs

which is equation (5.26) fok =0, sinceX =ict.o
The way in which equations (5.25) emerge in the TSV is completely different from
theway i n which the el ectromagnetic wal@-es eme]
10]. Maxwelld s e osradici theequationg5.25)for j =0. The TSV predicts(U,
wavesfor j, 0, when equatiorf5.24)is valid. Moreover the current densityn this case
varies according to equati¢.26).

We now prove the following corollary of theores.:

Corollary 5.3. 6 For the 4vector

=
<

2%

D
<

(@[]
[vNeNoNoNeNoNoNoNoNoY

(5.28)

E('wb\ Vi
SRR

itis
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s g 1 .
M — E 5 (5.29)

) é’aoz a, 0 - &
e
&4y ~4g; @ 0

and j the 4vector of the current density of the conserved physical quantities of the
generalized particlé. 6

Proof. From equatiorf5.3) and withthe notation of equatiofb.28)we have

LY gb
Eux Hn

and multiplying from the left with the matrid we get

Y(/3 +m)

MY 2D w5 +m)

ux Hn
andwith equation(5.7) we have
HYg 1,
Eix H sc

which is equatiorf5.29) o

M

Theequationg5.3), (5.7) and (5.29) give the relation of the wave funciomvith the
physical quantities], P and j of thegeneralized patrticle.

One of the most important conclusions of the theorem 5.1 is that it gives the degrees
of freedom of the equations of the TSV. In equation (5.7) the parameters
/, mC,( /) 7(0,0)can have arbitrary values or can be arbitrary functiong o, x,, X.

TheTSV hastwo degrees of freedomherefore, the investigation of the TSV takes place

through the parameters and /77 of equation (5.7).

If we set(/, )=(10,) or(/, /)p%,o in equation (5.7), we get equations
¢
IJ_Y:IEJO Y
Wo (5.30
PY =J Y
h

43



For (/, m)=(0,1i) or (/, /)FS@'B we have
¢
ﬂ:%% Y
o (5.30)
PY =PY
h

For / = rwe have

Y_b .
u@:%mY(Jk R).k 61,25

and with equatioi(3.5) we have

BY P& vk 81,2,
T

and equivalently we have

H_Y:b%mY
. . (5.3
PY =m €

7

Taking into account thax, =ict and J, = ﬂ, we reognize in equations &0) the
c

Schrédinger operators. Using the macroscopic mathematical expressions of the modentum
and energWV of the material particle, we get the Schrddinger equtityl5]. The
Schrédinger equation is a special case of the wave equation of th@ Ai&designation of

the degrees of freedorh and m determinesn a large extend the form of equati&n?).

6. THE LORENTZ -EINSTEIN -SELFVARIATIONS SYMMETRY

6.1.Introduction
In this chaptewe calculate the LorenZinstein transformations of the physical
quantities /;, k,i =0,1,2,3 The part of spacetime occupied by the generalized particle can

be flat or curved. TheorentzEinstein transformations give us information about this

subject.
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The spacetime curvature depends on the elemignts(,, ,4, .. of the main diagonal
of the matrixT of the TSV We prove that if/,, , O for at least onek i {0,1, 2,:} spacetime

iscurvedFor /= [, =, =/ 0 spacetime may be either curved or the figtcetime of

special relativity.

6.2. The Lorentz-Einstein-Selfvariations Symmetry

We consider an inertial frame of referer@gt, %,y ,iz) moving with velocity

(u,0,0) with respect to another inertial frame of refereﬁl(é,x,y, Z) , with their originsOj

and O coincidingat ti=t . We will calculate the LoreniEinsteintransformations for the

physical quantitied ;, k,i=0,1,2,%. We begin withtransformations (6.1) and (6.2)

H_ & MO
i I
H_ & pu
__g +
i EH ¢ty (6.1)
H__H
Wi M
H__H
Wi M
Wi=g(W -ul) Ei=g(E -uR)
Ji=g@, W  PRi=ggh —E
¢ ¢ ¢ ¢ (6.2)
Jyl_Jy Pyi:Py
J,i=J, Pi=P
o 2 '1
Whereg:gg iz 2
(5: -

We then use the notation (2.3), (2.4), (2.5) and obtain the transformations (6.3) and (6.4)
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a .
A uu
Wi cH% Py
a
0% o
Wt ¢ (6.3)
H__H
woi B
M H
i WX
U ._ a5 .u
= -i— RPi= -1—P
Jol =9, IC 0 gééoo ot
U ._ a5 .u
Ji=gg, 4-J Pl'-ggﬂ =R (6.4)
3i=1, Pi=P
3=, Pi=P,

We now derive the transformation of the physical quantjty. From equation (2.10)

for k=1 9 we get for the inertial reference frarﬁ(t XY ,iZ)

, b, ..
/ool_& _hpo‘]'o

DX

and with transformation&.3) and (6.4) we obtain

_ Ay .u pd, .u. b, &.u o au o}
I = Goo— A—— @, i—J Pei—P, J J --
00 (,‘|Jxo Clﬁ‘igo Clgh gtgecl (Qébél 9
fi= g UMW U U L bpy guby gubyy O quJ
i, cp cop & xph c o

and replacing physical quantities

Wy W,
T S

x|

from equation (2.10) we get
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. b ub .U .ub . u 4 b
ol = GG RIo *+of PP 10l P01 gy
u? b .ub .ub d b
" Rl Rl TR R

and we finally obtain equation

. a .U . u E
/oo|: é&m/'|_ 01/|_ 10 C2 1 -
c C C

Following the same procedure flri =0,1, 2,2 we obtan the following 16 equations

for the LorentzEinstein transformations of the physical quantitigs :

. a .U . u
[ ool = é&EoJ A= wli— 5 'Ez‘ 11
C C C

c
. a u . u
/01'= .68901/ t— ooll— 11 %; 10
c C C

- u 0
/ol = &OJ_I_ 12/'.'
(; C -

o

: . u 0
/od = &014_ 13/('j
g C -

. a u . u
/101— é%u/ 1— 5 fi+ 00
c C C

A5 als,

. a u . u
/11': .56911/ "'E 10 /HE 01 00
C (6.5)
. 3 .U 0
/0= &12’ T 02/'_'
¢ ¢ -

o

: .U 0
/4= &13/-*_ 03/C_')
(; C -
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o

c

lzoi: &2({ 4= 21/
C C
. 5 U
/21|: &21/ t— 20/
C C
/22i: 42
[y = Ly

The first two of equations (6.5) is selbnsistent when equation

lo= 1 (6.6)

Then by the second of equations (6.5) we obtain

Tod = -

According to equivalence (3.14) these transformations relate to the external symmetry, in

which it holds that/, = -/ for i k,i,k =0,1,2,% Thus, we obtain the following

transformations for the physical quantitigs k,i =0,1,2,¢

/01i: 61
- . U
/02| %02/ "'E 21/
/ooi: 60 3 u
s /oslz%oJ"_ 13/
li= 1, c c 6.7)
/22i: 42 /szi: éz
I = ks /14 = %13/+% 03/;
. 5 .u
/21': %21/"5 02/

Taking into account equations (4.4), (4.10) and that the physical que@tityinvariant
under the LorentEinstein transformations, we obtain the following transformations for the

I,k,i 90,1,2,%and the physical quantitieg, k=0,1,2,¢

5

constantsa,;, k
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_a . u
aoz' - %o@ +E 214

Ti=T, ' o u
s aoslzéoé'l_ 138

Ti=T ¢ c

(6.8)
Tz' = Tz azl = &,

T =T ad= G.at- .a

C C

. a . u
ayl = G A1 oza

C Cc

Equation (6.6) correlates the physical quantifigand /,, in the same inertial frame
of reference. Taking into account equation (4.10) we oldigmT,. Thus, when
transformations (6.8) hold, =T, also holds. The reference frar@(t , X,y iz) moves
with respect to the reference frar@&(t, X, Y, z) with constant velocity along the -axis. If

we assume that the motion is along theor z-axis, the generalization of equatidp=T,

follows; the LorentzEinstein transformations lead to the following equation

T,=T, =T, % 0. Thus, we derive the following two corollaries.

Corollary 6.1. 6 When the portiomf spacetime occupied by the generdiparticle is flat,

it is

T,=T, =, £ 056 (6.9)
Corollary 6.2.0\WWhen

T,.0 (6.10)
for at least onek | {0,1, 2,:} the portionof spacetime occupied by the generadi particle is
curver and not lto 6

Notice that from the way of proof of corollary 6.1 it follows that the converse is not
true. For external symmetries which halie=T, =T, % 0, spacetime may be either flat
or curved. Irchapte® we have shown how to check if spacetime is flat or curved for
external symmetries witfi, =T, =T, £ O.
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In the external symmetry itig,, , O for at least on pair of indicels, il {0,1,2,1}.

Thus, in external symmetry it ig,; = Oonly for some pairs of indicels, il {0,1,2,3. The

LorentzEi nstein transformations reveal t hat i n

assume that it is

a,=0

for every inertial frame of reference. Then, we obtain
a, =0

and with transformations (6.8) we obtain

0%g+it ad0
g (o] -

and since it is2,, =0 we obtain that it also holds

a, =0.

Working similarly with all of the transformations (6.8) we end up with the following four sets

of equations of external symmetry in the flat spacetime:

=, % O
Ua, ©

T
0
0
0 (6.11)
0
0
0

a,,= (6.12)
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a,,=0 (6.13

w., 0 Ug, 6 . (6.14)

As we will see the number ekternal symmetrieim four-dimensionakpacetimeas
59. Fromthese2+4 46 6 3écases9 are discarded and onBOare external
symmetries which belong to the setGexternal symmetrie§.he symmetrythatequations
(6.11)(6.14)expreswill bereferredto asthesymmetryof the LorentzEinstein
SelfvarlationsThese symmetries hold only in case tiwt part of spacetime occupied bg th

generalized particle is flat.

7. THE FUNDAMENTAL STUDY FOR THE CORPUSCULAR STRUCTURE OF
MATTER IN EXTERNAL SYMMETRY. THE Y-PLANE. THE SV- TMETHOD

7.1.Introduction

The material particles are in a constant interaction between(thanmeUSVI)
becausef STEM. This interaction has consequences in the internal structure of the
generalized particle, including the distribution of its total energy and momentum between the

material particle and the surrounding spacetime.

Theinternalstructureof the generalzed particleis determinedy therelationsamong

theelementf thematrix T . The same holds for the rest maggof the material particle, the
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rest energyk, of STEM, with which the material particle interacts, and the total rest mass
M, of the generalized particlén this chapteywe studythis relationamong the elements of
the matrixT .

We present thproofs of six fundamental theorems which determine the structure of

particles which accompany the USVI. In parallel with the theorem proofs we study an

example of a particular external symmetry. We showSke M, SV, and SV- T methods

of the TSV for the study of the corpuscular structure of matspecially theSV- T enables
us to check the validity of any mathematical equation of the TSV, or other theories, as well as

the self consistency of the TSV.

7.2. The Fundamental Study for The Corpuscular Structure of Matter in external
symmetry. TheYd-Plane The SV- Tmethod

We start our study with the proof of the following theorem:

Theorem7.1.6 Bortheelementf the T matrix it holdsthat

Qu

TLLL+ L% +LLd, ALa ®L'g TH°g T& .0 (7.1)

Proof. We developequation(2.13),obtainingthe setof equations

‘Jo/00+‘]1 /01 +, Jz ¥, 03/ 0=
- ‘]o/01 +'J1 /11 "]2 Jl ‘]"3' 13/ 0
"]o/oz +‘]1 /21 '}2 Jz J's 32/ 0
- ‘]0/03 'Jl 43 "}2 é ‘]'5 33/ 0

and fromequationg4.4) and(4.10)we have

JOZQ-E+ *1 Z(am +‘1 Z@oz +3] ZQ@s 0=
- ‘Joz@m +'Jl ZQT "l Z%l '§ Z% 0
- ‘JOZQ%Z +‘1 ZQ% +‘! ZQzT 3; ZQ@ 0
- ‘JoZans 'AZQQ3 't]z ZQ@Z :Q ZQ?T 0

and $nceit holds thazQ, O , wetake the set of equations
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JolotJday H,a, 4;@ 0=
- ‘Joa01 +‘J1T1 t]2 & ‘]'5 @& 0
- Joaoz +Jl &, ‘-}2T2 J's @ 0
- ‘]0303 'Jl ZE "]'2 % ‘]"STs 0

(7.2)

Thesetof equationgyivenin (7.2) comprisea 42 4 homogeneoubnearsystemof equations

with unknownshemomentald,, J,, J,, J;. In orderfor the materialparticleto exist the

systemof equationg7.2) mustobtainnonvanishingsolutions Therefore, its determinant

must vanish. Thysve obtainequation

TO-I—l-r2T3+-|;)Tﬁ232 +-I_O-I_Zél3 -H-OTS %l -FiTZ 2% -I_J.-H-Sz(ﬁ TZ:F32
Hay & * @ 1@ teA)a 0=

and withequation(4.8) we arriveatequation(7.1).o

We formulated theorem 7.1 fod , O in order for the material particle to exist. If we
formulate the theorem fdP , O, then material particle and the STEM trade places in the
eqguations and the conclusions of the TSV.

We consider the43 4 N matrix, givenas

(E;‘ 0 A3 4, a4
e
N —_é 2 0 " s 6

> (7.3)
€ a; 28 0 -]
e
&dn & 0
Using the matrixN , we now write equation(4.6) in theform of
NC=0
NJ=0. (7.4)
NP=0
We now proveLemmar.l
Lemma 7.1. 6 The fourvectorsC, J, P saisfy the set of equations
N?C=0
N’J=0.8 & (7.5)
N°P=0
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Proof. We multiply the setof equationg7.4) from the left with the matrixN , and equations
(7.5) follow. o

Usinglemma7.1we provetheorem7.2:

Theorem 7.2.6For M | O it holds that:

1. MN=NM 9. (7.6)
2. M2+N? =22 (7.7)
a’=4 +3 +*a %a jfas. (7.8)

Here,l is the 43 4 identity matrix.

3. For a, 0 the matrixM has two eigenvalue§ andf,, with corresponding

eigenvectorsn, and n, , given by:

t,=i a
(5:0 g e‘301+ ‘%2 + éé
e u
n, ziga()l u eaos 43~ & A (7.9)
a 2‘302 H ’:‘? dy) G- @ 4
&z 0 @aoz - & 4
t,= 1 a
0 g &+, +a
e u. e
=L@ gl Auds & A2 (7.10)
2 Py N p
a ?02 3 a eam a.- & &
&z U o, - & 14

4. For a, 0 the matrixN has the same eigenvalues with the malifix and two

corresponding eigenvectors and n, , given by:

t,=i a
0 g @,+4 +3
nlzlgaﬂ Leﬂoz 8- & & (7.11)
a gaw 3 é Aos &= 6 A
& 0 @am 43~ & 4
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0 o ea,+dq +3
> Y 6
_lgaSZ b Ao &~ & 8- (7.12)
n=-¢€ W=
a€a13 u 6??&03%2- @ A
¢ u e
&y 0 e ds- & 4
5.Whena®, 4.k ,iki {0123is
a’=g +8 +a %a Faj+a (7.13)
M?2C =0
M2J=0 . (7.14)
M?2P=0

6.Fora’= 4.k ,ik,i {0,1,23itcan be

a’, 0"~

Proof. ThematricesM and N are given by equatior(g.28)and(7.3). The proof of
equations (7.6), (7.7§7.9),(7.10),(7.11) and7.12)can be performed by the appropriate
mathematical calculations and the use of equdti@®).

We multiply equation(7.7) from the rightwith the column matrice€, J, P , and
obtain
M?C+N?C =a’C
M2J+N?J =a%]
M?P+ N’P = a’P

and fromequations (7.5) & obtain

M?C= a’C
M2J= a?]. (7.15
M?’P= a’P

Accordingto the se of equationg7.15) andfor a , 0,2, &,k ,i,k,i {I’O,1,2,$,

thematrix M? | 0 hasaseigenvaluea® , Owith correspondingigenvector? ;| 0. From

55



equationg7.15)it is evidentthatthefour-vectorsC, J, P are parallel to the foewectorn,
hence they are also pdsllto each other. This is imgsible in the case of the external
symmetry, according to Theorem 3Therefore a® =0 , so that thanatrix M? | 0 does not

have the fouwectorn as an eigenvectolf the case it isM > =0 from equatios (7.15)we

get

a’c=0
a’J=0
a’P=0

and because i§ , 0 weagain havea® = 0. Thus we arriveatequation(7.13).Then from

equationg7.15)we arrive at equation(@.14), since it holds that* =0.

Fora’= g4,k ,ik,i {0,123 itcould bea?, 0 and the 4vectorsC, J, P are not
parallel. The genergroof is tedious and is omittede will only refer to the reason why for

a’= 4.k ,iki {01,23itcanbea’, 0.
Matrix M? derives from the equation

A 2
g' any "%2 'éi of 28 0383 4 a A 565" 28 @ 13 Ay,

e

A 2 2 2

gaoz%l' @ 4 S0l ud3 4 g 2 ae,i" 138 Q1703 aazaé
M2 =g

e

e 2 2 .

é'amaﬁl Tt & 4 “0dppd tp & ay ?E'QI &- Ay, 53 A13&

&

e 2. 2 . 2
€40 43~ & 4 - 01ao3a+32 @ ao'zaos'a‘%?, @ - @ T 18 Txk

Incase a’= &,k ,ik,i {I'O,1,2,$(see chapter 12l the diagonal elements of matrix

M *are equal to zero. Consequently, all the equations (7.15) become indentities, so they are

also valid fora® , 0.0On the contrary foe® , &,k ,i,k,i {I'O,l,Z,}B atleast one non

diagonal element of the matrii *is not zero. As a consequence, the equations (7.15) are not

identities an they are finallyvalid only for a* =0.o

Fromtheorem?.2it follows:
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Corollary 7.1. 6 Forthefour-vector j of the conserved physical quantitiest holds that:
1.Mj=0,if a*, &k ,iki {0123 (7.16)
2.Nj=0.8 & (7.17)
Proof. We multiply equation(5.7) by matrix M from the left and obtain

scb

Mj = ) #°P)

and withthe secondandthethird of equationg7.14)we have
Mj=0.
We multiply thetermsof equation(5.7) from the left with the matrixN , and obtain

2
Nj = SZb NM (/3 48)

and with equatioii7.6) we take
Nj=0.o

In theequationf the TSV thereappearsumsof squareshat vanishlike the ones
appearing in equations (3.6) and (7.13). Writing these equatiorglitelemanner, we can
introduce into the equations of the TSV complex numbers. From equation (3.6) , and for

M, . O, we obtain

2 2 2

Q

Mo

Therefore, the physical quantities

L]

Ol

@

2,

(0]

.y + O
aM o Ve

)G
M ,c

v &Q)o

vOSBQ-'*

G &G & G
M,c M, M,c' M,c

belong in general to the set of complex numbeérsThistransformatiorof the equationof
the TSV is not necessary. It suffices to remember that within the equations of thth@&®V
are sums of squares that vanish. Mdev provetheorem?7.3,which alsointercorrelateshe

elementf thematrix T :
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Theorem 7.3. 610 theexternalsymmetryandfor the elementsf thematrix T it holds that:

U
U

Ta, =0
,'a”k - 06 (7.18)
i,n nkk ii, k 0:,2:

Proof. We differentiate the second equation of the set of equations (4.6)

‘Jiank+‘Jk an +‘J n@ Q:
i.n onkk i, k 02/

with respectox;, j =0,1, 2,5 Consideringequationg2.10)and(4.4), we have

o

L

3 o b
ge’; J+zQ% 0+|4 %g -|zQJka %agngg” Z'Q Aao

b
Epj(Jiank"';L‘-'Tin +J nl&c") 'ZQ( k‘%jia it ﬁ aki+j )an@

and with thesecondequationof the setof equationg4.6),and taking into account that

zQ, 0, we obtain

a, Efi + i4 jka+ki c’r’ na@:
i.n onkk ii, k,j 04127

5

(7.19)

Inserting into equatio(i7.19)successivelyi,n,k)=(0,1,9 ( 0,1, 3 (, 0,2)3(, 1,2)and

j =0,1,2,3, wearrive at the set of equations

TOaSZ = o
T0a13 = O
T0a21 = 0
TlaOZ = O
Ta,=0
145, =0 (7.20)
TavOl 0
T,8,,=0
Ta13 0

=0
T =0
T.az21 0

Thesetof equationg7.20)is equivalento equation(7.18).o
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Theorem 7.3s one of the most powerful tools for investigating the external

symmetry. Thigesultsfrom corollary 7.2

Corollary 7.2. 6 For the elementf thematrix T of the externasymmetry the following
hold:

1. Foreveryk, i,n .k, n ik,i, 70,12} itholds that

a , OQ
k.i 4YT e (7.21)
i
n, k,|y
2,

T,. 0 Ya, =3, =4
T..0 Ya, =a, =&
T,.0 Ya, =3, =a
T,,0 Ya, =g, =4

Qu
Qu

(7.22)

o 0o o 9

Proof. Corollary7.2is animmediateconsequencef theorem7.3.o

Fromtheorem7.3the following corollaryfollows, regardingthe elements of the main

diagonal of the matrices of the external symmetry:

Corollary 7.3. 6 At least one offteelementf the maindiagonalof the matrix T is equal

to zerad 0

Proof. If T, O for everynl {0,1,2,1} , from equationg7.20) we obtaina,; =0 for every

set of indicesk , i,k,i 90,1,2,%, and from equatiof.1) we have

T, T,T,=0.

This cannothold, sincewe assumedhat T, , O for everyn =0,1,2,Z. Therefore, at least one
element of the main diagonal of the maffixs equal tozero.

We presenta secondway for proving this result. In the case &f , 0 for every
ni {0,1,2,(} , we obtain from equations (7.20) that, =0 , for every k , i,k,i =0,1,2,%.

Thus thematrix T takestheform
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&, 0 0 0

é

0 T, 0 0
T=2zQ¢

€0 0 T, O

€0 0 0 T,

Fromequation(2.13)we take
T,Jo=TJ =LJ, FI O
Sincewe assumedhat
T LT, O
we obtain
J=J 3, 3, 0.
Thus the materialparticledoesnot exist.o

Thecorollary7.3follows from the combination of theorerisl and7.3. We write the
equation(7.1)

TILL+ L% +Lhd:, K8 ®L'a TH '@ TE D

in the form

TILLTL+Ta,ha, T, &l, @ 1, .d; »na ¥ I8 o3 @t oJ 80 18 o] 3 60
andcontinuingwith equatiors (7.20)we get

T TTT,=0

which implies that not all physical quantiti&s T,, T,, T, can be nonzerdoticethattheorem

7.1lisaconsequencef therelationJ , O,wh i ¢ h al s othd proefsf cayoiaeyh3i n d 0

we presented above

We considemow thethreedimensionalectors

i, 6 &
0=%, §: & (7.23)
%8 F
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in 6 ag
0 _ee
nz@z 5 e (7.24)
& 2 af

In the caseof the T matriceswith U, and n, 0, wedefine the vectore , (from equation

inz 8 ‘@ 4-  of 124
E=4N & fg 8 -,8,4a. (7.25)
(?73 9 % A~ o 24

Combiningequationg5.1),(5.2) with equationg7.23) and (7.24yve obtain
3=icYn (7.26)
¥= YL. (7.27)
Thefield z-is parallelto the vector n and the fieldy is parallel to the vectol). Moreover the
only variable quantity of the field3; 7 is the functionY = Yx,, X, %, %)
Foreveryvector
a,

0-%

&
&,

N

which isdetermined by the physical quantities of the T&€,define the physical quantity

L 1
101=( 0 )@ {a € &2 (7.28)
Here thematrix U' is thetransposednatrix of the column matrix.

Fromequationg7.23)and(7.24)we obtain

WOnaya 4.4 #.
Also, from equatior{4.8) we have

Udn 6. (7.29)

ThereforethevectorsUand nareperpendicular to each oth&onsideringalsoequation

(7.25) wesee that the triple of the vectdrs, n } forms a righthanded vector basis.
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Fromequation(7.13)we have
aq+d, +@ - wa i)
and withequationg7.23),(7.24) and using the notation of equatigh28) we obtain
IniF= 41U
and finally we obtain
In= ¢4 (7.30)
From equation (7.25) we have
e?=(ns3 )t

andsincethevectorsUandn are perpendicular to each other, vidkain from equation (7.29)
that

e’=H 4

andusing the notation of equation (7.28) have

e 1=l APl 18

e ll= 9 il I€

and fromequation (7.30) we take

lell= 0 A Il 19. (7.31)

In thecaseof the T matriceswhere||n||, 0, and from equatiof7.31), it follows that

10|, 0| 4| .0.Inthesecasesve candefinetheset of unitvectors {Q, y s}, given by

° €
0=
lel
o n
0=
In . (7.32)
4o O
10l
Inil, O
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Thetriple of vectors{ U, 1J ,} formsaright-handedrthonormalectorbasis

In the cases of th& matriceswith U, 1, we definewith P theplaneperpendicular
to the vectorU, . In the casesvhere moreoven , 0, we obtain from equation (7.2®)at

e , (Inthesecaseghevectorsn ande areperpendicular to the vectat, asimplied by
equations (7.25) and (7.29)hereforgthevectorsn and¢ belongto theplaneP , and they

also form an orthogonal basis of this plane. We note that the vectorsi@¥hehich may

belong to the plan® , are given as a linear combination of the vectoende . Therefore

theconditionfor U, tis not sufficient, in order for the plarfeé to acquire a physical
meaning Also, we note that because of equation (7 t@plane P , when it is definedis

not a vector subspace dk>.
We now provetheorem?.4:

Theorem 7.4. 316 the caseof the T matrices withU, tandn, OandU, °n _,the

vectors

J,P,C,j,P Y belong to the same plarie.0 0
Proof. Fromequationg4.6), for (i,n,k)=(1,3,2, we obtain

Cla 32 + C2 43 +C3 % @:
‘Jla32+ ‘J2 QIB +‘]3 % &
I:3.a32 + PZ Q3 +P3 % @

and fromequationg5.8),(5.9)and(7.23)we get

udc e

UdJ e (7.33)
UoP 6

where

C=J P (7.34)

asimplied byequation(3.5). From equation (7.3%)e concludethatthevectorsC,J,P,

being perpendicular teector U, belong to the plan® . From equation (5.3nd equions
(5.8) and (5.9) we obtain
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bY =;-’ {3+ nP).

Therefore, the vectdd Y, as a linear combination of the vectdr$, belongs to the plane

P . By developing the terms of equation (7.1 first obtaineegquations

Ayt dd, + 45 ©

and usingequation (7.23) we have

Udj e. 5 (7.3

Thereforethevector j , beingperpendiculato the vectorU, belongsto theplaneP . The
vectorsJ,P,C,j,DB Y vary accordingto theequation®of the TSV, while staying on the plane

P .o

Fromthis studywe canobtaina methodaboutthe determinatiorof thefour-vectors

E,

J,P,C, aswell asfor therestmassesm,,—,
C

M, . This method is applied in the case the

matrix M does not vanistthat isM | 0. We shallreferto this methodastheSV- M

method

The stepsof the SV-M method:

Step 1 Wechooseexternalsymmetry matrixT we want to study

Step 2 We apply Theorem 7.3.

Step 3 We use equation (7.13).

Step 4 We use equation (2.13), or the equivalent equations (7.2).

Step 5 Weusethesecondf the set okquationg4.6).

Step6. We use the fist of the set of equation.(4), whena®, &,k ,ik,i {i0,1,2,$.
Step 7.We usehe first of the set oéquatios (4.9.

Step 8 We use equation (3.5

Step 9.We use equation (3.4

Step 10.We use equation (2.10) far=1i,k,i =0,1,2,%.
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Step 6simplifiesthe execution of operations in some matrices. It is not necessary though

since itbés overl|l apped by step 7.

As anexamplewe applythis methodon thematrix T :

(7.36)

where a,, a,, O.

Fromequationg7.20),andsincea,, , 0 anda,,, 0, wehaveT, =T, =, &, and

the matrix (7.36) becomes

e0 a, 0 O
é
- a T - 0
T=zQ¢ %0 = h (7.37)
€0 a, 0 O
€0 0 0 0

For T,, O, accordingto corollary6.2 the portionof spacetimeccupiedby the

generalizegarticleis curved Furthermorethe second term of the second part of the second

equation in the set of equations (4.&lhonzero

In the casethe portion of spactimeoccupiedby the generalizegarticleis flat, we

obtainfrom corollary6.1that T, =0. Therefore T, =T, =, % 0. In this case andfrom

equation(4.11),weobtain L =0, andthe secondermof the secondpartof equation(4.19)

vanishes

Fromequation(7.13)we take
a’=4 +3 &

a,= 14g,. (7.38)
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Fromequationg7.2) we obtain

J1a01:O
- Joam +‘]1T1 ‘Jz &, 0:
Jlau:o

and sincea,, g,, 0, wehave that

. (7.39)

J, = ﬂ‘]0

From the second of equatiof#6), for (i,7,k)=(3,0,)we have

Jant+tdig, K, & &

and since

a,.0,8 =-g 0F a0

we obtain

J;=0. (7.40)

Fromequationg7.39)and(7.40),andfrom equation(2.4), wegetthe fourvector J

el g .
¢y u eleo e
é u € Yyw of
J=3é a, =,6 U= "¢e. (7.41)
&— 1 €iuc ¥E
é du gy €5 U e
7z ~ eo u Oe
eo H

For the second equality in equation (7.41) we applied the second equation of equations
(7.38).

Fromequationg4.29)and(7.37)we have

&0 a, 0 O
é
- a 0 - 0
M =€ o % (7.42)
€0 a, 0 O
€0 0 0 0
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2"351 0 "% 4 0

0 0 0 0
0.
0

2_é

M —2_801 4 0 g (7.43)
& 0 0 0

From the firstof equations (7.14) we see that
M?C=0
and withequationg3.5)and(7.43)we obtain
- 3,Cy 88C, &
- 8,@,,C, -&,C, &
and taking into account that, g,, 0, weobtain
c,= 2ug. (7.44)

a,

[y

From the first otheequationg4.6),for (i,7,k)=(0,1,3 (0,13 ( 0,2)3(, 1,2) wehave

COa12+C2 %l -Icl éO 6:
C0a13+c3 %l +Cl % @

C0823+C3 %2 -+C2 é) @
Cla23+c3 42 +C2 él ©:

and taking into account ttmeroelementsf the matrix T we have

- Gl "C2 &, e
Cag = 0
C3312=O

and sincea,, a,, 0 we obtain

C:ﬁco
2 ay, . (7.45)
¢ =0

Thefirst of equationg7.45)is equation7.44), because of equati¢n38).Fromequations
(3.5)and(7.38),(7.45)we obtain the fourvector C
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e G gec

e ueé
¢ & ueh
C=éa, % it . (7.46)
-G ué
¢ ue
€ 0 HEO

Combining equatiof3.5)
P=C -J

with equationg7.41)and(7.46)we obtain the fouvector P

@ (7.47)

After havingdeterminedhefour-vectors J, P, C, we can calculate the rest masses

%,C—ES , M,. From equations (2.8nd(7.41)we get

m, =0. (7.48)
Fromequationg2.8)and(7.47)we have

E, = fcg. (7.49)
Fromequationg3.6)and(7.46)we also have

¢ = M. (7.50)

The calculationof thefour-vector | of the currentdensityof the conserveghysical
quantitiesq is done fromcorollary7.2 This method is applied fav1 , 0, and is performed

in two steps. We shall refer to this method as 8\¢ -method
The steps of theSV, - method:

Stepl. We use equation (7.1,79r the equivalent equation:

o . &
.JIaﬂk Jk aﬂ -I:l nl@ ) (751)
i,n nkk ii, /& O0f,2,:
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Step 2.We use equation (5.7

We applythe S\, -methodonthematrix T given by equation (7.37). From equation

(7.51) for (i,7,k)=(0,1,9 (0,13 ( 0,2)3(, 1,2) wehave

j0a12+j2%1 -Ijl % @
j0a13+j3%l -|jl @) ©:
j0a23+j3%2 -lj 2 % &
jlaZ3+j34.2 -lj 2 @I. G

and taking intaccounthe elementof thematrix T we have
j0a12 + J 2 %1 :O

jSaOl = 0
j3a12 = O

and sincea,, , 0, g, = -@ 0, weget

j :ﬁj

2 a, °. (7.52)
j3=0

Thematrix M is given by equatiofi7.42). Thus, from equations (4.27) and (7.16) weshav
j1a01 = O

- joam 'j2a21 &
ha, =0

and sincea,, , Oanda,,, 0, wehave

=0

i, = a01j . (7.53)
22— o
a,,

Thefirst of theequations (7.52) and the secondiaequations (7.53) are identical due to
equations (7.38). From equations (7.52) and (7.53) we obtain thedotar |
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el g el g ie
é u é5 u é
e% & %
I=l,€a, WH,€i urc 1B (7.54)
S u e u é
€% é u e
E0 H €0 H Og

We now summarizeéhe obtainednformationfor the generalizegarticleof the matrix T of
equation(7.36):

el & G- J, &c, el
é é é é
-0 2 0
3=3€>  p=é G —e% oy e (7.55)
&i éri(c,- Jo) €ic, €i
&0 g 0 g0 g0
m=0,c= Mg, E,= fcqg =M,C.
T, O0Y curvedspacetime (7.56)

flat spacetimey T, =0.

From equations (5.9nd(7.41),(7.47),(7.54) we have

sc?b i £°b
lo= 7 M, g = i;

aﬁzi

and with equation (B4) we obtain

&,
2 € 0
- SCBG e (7.57)
h ea,,
é
a0

for the matrixT of our study Also, from equatbns (5.17) and (7.54) we obtain

Ho - 5c2F g, = BF

KX
Ho_ ¢ B
e B (7.58)
&:O
KX
2
F=8 vH
HXo
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Equationq7.57)and(7.58)correlatethefunction Y with thefour-vector | of the
current density of the conserved physical quantijieSheseequationshold for thematrix T

of equation(7.37).

The presented method about the study of the generalized particle is possibly the
simplest, but surely not the only offidhe TSV stems from one equatishich nonetheless
generates an extremely complex network of equations. We present one method, whagh serv
as a test for the setonsistency of the TSWVith the same method we caheck for
calculational errorsf the obtained equations, as we proceed from one set of equations of the
TSV into another seWWe shallreferto this methodasthe SV- T-method(Selfvariations
Test).

Theinternalstructureof everygeneralizegarticledepend®n the corresponding

matrix T . TheSV- T methodconsistf the following steps:
The SV- T - Method:
We choose an equatidiE, ), which holdsfor thematrix T, and for which there exist

at least two different components of the feerctor J , or one component and the rest mass

m, . By differentiating equatior( El)with respecto x,k=0,1,2,%we obtainasecond

equation(E,).

With the help of equation (2.10)

4. 2RI 703

WX, 7
k,i=0,1,2,3

theconstantsa,;, k,i = 0,1, 2,% are introducedhto equation(E, ) . Equation(E, ) hasto be
compatiblewith theelementof thematrix T . In the caseequation(El) containstherest

massm, we apply equation (2.6)
Hm, _ b -
—=—RJm, k 90,1,2,%

W, A

We applythe methodfor thematrix T of equation(7.37). From equation (7.4%)e obtain
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J,= 13,. (7.59)

This equationcontainsthe components],,, J, of the fourvector J . We differentiate equation

(7.59)with respect tox,,k=0,1,2,5, to obtain

L]

b

b
%PKJZ +zQa,, =

R 24,

il

and wsing equatior{7.59)we have

zQa,, = 1zQg,

and snce zQ, Oweget

a.,= 13,k &12.: (7.60)
In equation(7.60)we insert successively=0,1, 2,3
For k =0we oltain

a,= tg, 4T,

which holdssincea,, =0,T, =0.

For k =1we get

a,= 14,

and sncea,, = -g,, weget

a12 = ? %1
ag+ &, B

which are equation&.38).

For k =2we obtain

which holdsfor thematrix T, sincea,, =0,T, =0.
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For k =3we have

a32 = ? a:EO
a32 =+l %3

which holdsfor thematrix T, sincea,, =0, g, 0.

Forthe matrix we studyit holdsthat U, tandn, OandU, °n _,andtherefore

plane P is defined From equations (7.32) weave

o

L
I

(7.61)

(<]

= Ne
1 I
VAP B WD 2 BHB Y

Fromequationg7.46)and(7.61)we have

o

a G
e
C=21%
2
¢ 0

0: O: Ot

O Se)+c, [, (7.62)

-O

Equations(7.62)containsthecomponents(° ico,cl) of thevector C with respect to the vector

basis(q, Qof the P -plane Consideringhatthevectorsq, gare perpendicular to each
other,we obtain from equation (7.62)

goc =ic

UocC k&,

and fromequationg7.49)and(7.50)we have

goc =ic

o x i 7.63
0L.OC =M, %o IC, . ( )

The material particle exists far, 0, hence from equation (7.#te have
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J,. 0. (7.64)

From theequations (7.4)and (7.46)t follows that forc, , O the 4vectorsJ andC are

parallel, which is impossible in symmefior the matrixT of our study Therefore it is
c¢.O0 (7.65)
for the symmetryof equation(7.37).

Fromequation(3.4) we have

b

/ ="
ki Zh

(cJ ¢d) ki 812,:

and withequation(4.4) we have
b . ;
zQa,, =§(q; -¢J), ki 81,2 (7.66)
For k=0,i =in equation(7.66) we have
2Qa,= 2 (¢4 -6 J)
2h
and because al, =0 according teequation(7.41) we have
2h
J, = be zQa,,. (7.67)
Similarly for k=2,i = in equation(7.66) we have
2h
J, :EzQan. (7.68)

Considering thatl, = J, 9 according teequation (7.41), fromequations(7.67) and (7.68)
we have

&y,
e
0
3=21 8% (7.69)
bC.I. ?21
g0

Eq. (7.69) expresses the contribution of the ch&de the 4vector of momentum of the
material particle.

From equation (2.10) fok =0 and taking into account equation

/yo=2QT, ©

74



we obtain

and with guation (7.69) we obtain

and with equation (2.6) we obtain
ZE FBQ+ QE _—.p FO) ZC
h X

E =0
KX,
and with guation (4.9) we obtain

¢ =0

and the equations (7.58hd (7.62), (7.63Written in the form

&,
e
>0
3=21 58
bC.I. ?21
g0
e0
e
c=€
€0
&0
P=C -J
&,
2 @O
_ Ssc qu ¢
h %21
&0

Gq.0m 0, =iMcE iesg° M3B

(7.70)
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ac, 0
— O_.p
C—z) 8:‘31Uz
R 9
goce
o s E . ic.
Goc=m, = ﬁ"

for the symmetrpf equation(7.37)
We note again that formulated the TSV fbr O in order for the particle to exist. If
we formulate the TSV foP , 0, the particle and the STEM exchange places in the equations
and the conclusions of the TSMor examplethe symmetryof equation(7.37)we studied, the
fifth of the equation$7.70)becomes

i _
m= S =M,E o

when weperform the study of the TSVii® , O.

Fromequations(2.12) and (4.4)4.10) we have

@;‘ T do 2 &

é
- a T -
T=zq¢ 9 1 R 8 (7.71)
e a, @ Tz - &
é
€4y ~4s g T,
Eq. (7.71) gives the external symmetry matrices as a function of the constants
a. Kk, i,k,i ¥0,1,2,and the physical quantitieQ andT, =a,,,k ,1,2,%

5

Thephysicalquantitiesg appeatin the partof spacetimavherethe USVI prevails and
astheyareconservedheyhavethe characteristicef a materialparticle The mathematical

expression of the-dector of the current density of the conserved physical quangiteean

important issue for the TSV.

The SV, method gives a mathematical expression of thector j, correlating the

components of the-dector. The expression for the matibof equation(7.37) we have
studied is given by equation (7.54). Equat{®al7) correlates the-dector j with the wave

function Y . The correlation for the matrix of equation(7.37) we have studied is given by
equation (7.57). We observe that equa(itd7) does not contain the degree of freedorof
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equation(5.17), but only the degree of freedom This is not a random fagtlid for the
matrix we have studied, but is predicted by the next theorem:

Theorem 7.5

1. 6 6 T hvexctor4 of the current density of the conserved physical quantitiesthe
generalzed particle is given by treguation
sbe?

=== {(m ) oL ) (7.72)

where/ and mthe two degrees dfeedom of the TSV and

&, 0 0 O
é
L 0 T 0o
€0 0 T, O
e
80 0 0 T,

e0 a, & @
e

M :é' dy, 0 -4, a
F:"aoz a4, 0 - &
e
&4y ~9; @ 0

the fundamental matricds and M of the TSV.

2.L3 0 Y] :¥m ME >~ ~ (7.73)

Proof. From equatior{3.5) we have

P=C -J

and replacing the momentukin equation(5.7) we have

i= 22 (10 Ac 9

= =2 M(( P e

. scb
i= = W 3 me). (7.74)

Fromequatiors (7.71) and (4.11), (4.28) we have
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T=zQ(M +)

and from equatio2.13) we have

zQ(M+ D)J ©

and sincezQ, 0 we have

(M+1D)J e

MI+ L] ©

and finally we get

MI= -1 (7.75)

From equatioa(7.74) and 7.75) we get equatiofY.72). The equation (7.73) follows from
theequation(7.72) forLJ =0.o

As we shall see next the relatitd =0is valid for a large number of external

symmetry matrices. For these matrices Rlof theorem 7.5 is valid

Fromequation(7.37) we have

,_
@ @b
D O PP B
o o o
o o o o
o o o o

and with equatiorf7.41) we haved.J =0for the symmetryve have studied. Next from
equationg7.42) and (7.46)equation(7.57) follows from the relation (7.73).

We now prove the following corollary of theorem 7.5:

Corollary7.4. 661 n f | a tvecworn afdhe turrantedensith af thetconserved
physical quantitiesg of the genealized particle is given by equation

2
she mMC. ~

Proof. From corollary 6.1 and equati¢f.11) it follows that in flat spacetime we hale =0
and therefore Nr2.of theorem 7.5 is trué.

The next heorem? .6 relateshefour-vector J with theelementf themain

diagonalof the externalsymmetrymatrix T .
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Theorem 7.6. 6 For everyexternal symmetrynatrix T it holds that
TNX+TFX +TLZ £ 0066 (7.79

Proof. Sincethe materialparticleexists atleastonecomponentf the four-vector J is

nonzero We provethetheorenfor J,, 0. The proof forJ, , 0,i =,2,%follows similar

lines. ForJ, , O, we obtain from equations (7.2)

‘JOTO+ JlaOI +‘]2 aOZ -‘53 ‘33 0:

1
‘301=J_(J1T1 'Jzazl =B3 ’?)

(7.77)

302: (Jl %l +J2T2 J3 é?)

0
1
3
a. =t
03 3,

("]1 a3 "}2 @ ‘J'§T)
and eplacing the terms,,;, a,,, a,, in the firstof equatios (7.77)we obtain

J J
JoTo+J_l(J1T1 'Jﬁ 21 '53319 33'( ‘]1 8, Jz-sz Js 'a
0

0

J
+J_3( _‘Jla13 "}2%2 J':!,'T3) 0=

0

J§T0+‘]12T1 "]1*]23 21 '61‘]3‘313 35‘]1 a, 3?'1
"]2‘]3asz 'J331a13 "BSJz a, j’sTs 0=

Tk +hY +L,% %3 0.0
An immediateconsequencef theorem?7.6is corollary7.5.

Corollary 7.5. 6 For everymatrix T of the extenal symmetry the following holds

T,=T, =T, %, .
1 SGY T,=T, T, % 086 (7.79
m,, 0 y

Proof. For T, =T, =T, % we obtain from equatiofv.76
T,(%+32 +2 &) 0

and withequation (2.7) whave
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T,mpc =0. (7.79
Since m, , O, from equation(7.79 we haveT, =0. SinceT, =T, =I, %, weobtain
T,=T, =, £ O.o

We calculate the number of tegternal symmetrynatrices. This numlves
determined by theorem 7.3 and cora#ar7.1 and 7.4Also notice thathe external
symmetrymatrices are neaera Applying simple combinatorial rules, we see that altogether

there exist
N, =14

externalsymmetrymatriceswith a,, =0 for everyk , i,k,i =0,1,2,% These matrices

contain norzeroelements only on theain diagonal. TheumberN, of matrices with one

elementa, , 0,k ,ik,i {0123is

N, = 6.

Thenumberof matrices with two elements,, , 0,k ,i,k,i {iO,l, 2,}3is

N, =27
with threeelements it is
N, =20
with four elements it is
N, =15

with five elemants itis

with six elements its
Ng =1.

Fromequation(2.13)andthe secondof the equationg4.6) we can prove that sonud these

matrices give the fowvector J =0, thus are rejectedherefore, v obtain
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N, =14
N, =
N,=N, 4 24
N,=N, 8 2.
N,=N, 12 3
N, =6
N, =1

Thusthetotal numberN; of external symmetrynatrices is

N, =N, N, N, N N+ N+N 66 (7.80
The matrix T =0 is unique

Ny =1

and &cording to theorerB.3this matrix expressdble internal symmetry. Therefore, the total
number of the matrices of the internal and external symmetry predictee haw of

Selfvariations is

Nor = Ng N, 67. (7.8))
Thereexist
N,=N, 416 50 (7.82

externalsymmetrymatriceswith differentfour-vectorsJ, P, C, j.

We nowprovefor examplehatthefollowing matrix

is not an external symmetrynatrix. Applyingtheorem?.3 for the above matriwe have
T=T =, % 0

and therefore it takate form
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e 0
é
>-a
T=zQ8
eo

€
& Ao

aOl O %3
0 -8, a

a,, 0 0
-3, O 0

and withequation (2.13) webtain

Jidy t+ J; 4

=))

-Jody -J, &, F4 O

'JlaZl = O

'Joaos 'Jl a; &

and since

aOl %3 é 2@ 0

we have

which is impossible since there is no material particle in this case.

We present now notatiorfor the matrices of the external symmetig.everymatrix

T we useanupperandalowerindex As lower indices we use tlpairs

(k,i),kb I,k,i 90,1,2,%of theconstantsa,, , 0, whichare nonzeroThese indices, which

appear always ipairs are placed in therderof thefollowing constants:

do, @» @ 8 154 »» Which arenorzero. As upper indices we use the indices of the

nonzercelements of the maidiagonal,in the following order:T,, T, T,, T,. For example, the

matrix T given in equatior{7.37)is denoted a3;,,,.

With this notation, thexternal symmetrynatrices are given from ttiellowing seven

setsW:
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W :{TO Tl T2 T3 TOl T02 TO3 T12 T13 T23 T012 TOl3 T023 T 23
0 ) ) ) ) i) ) ) ) ) ) ) ) i)
W, {13 T T T T T

0

— 0
WZ _{T0102 ! T0102’ T0103 T0103 TOOZOBT 0203-'-332131- 3213-|.2 3222;'- 322111- 1182-£21 '
1 1 2 2 3
T0113’ T0113 T0121 T (Zl’T0232’ T0232 T0221T 022’.|.T 0332T 0332-'6 O3ZI.3TI— Ole

—J7T0 1 2
VV3 _{T010203 TOlOZOST 011321T 01132]T 023ZZI 02322-F 2033 -533213’

T010221’ T010313 T 020332T 3213%1
W4 :{T01023213 T01033221T 02031;1

VVS :{T010203321'T0102033213T 0102031321-.r 010232132-!.- 010332131620332132}

(7.83
WG :{T01020332132}.

We notethatin the 4dimensional spacetintee matrixT,,,,,, of the setW, is discarded by
the SV- T method The application of th&SV - T method to seW\ is of particular interest,
as we will see ichapterl4.

The internal symmetry expresses the spontaneous isotropic STEM emission from a
materialparticle because of the selfvariations. The external symmetry emerges when the
material particle interacts via the USVI with other material particles and this is equivalent
with the destruction of the spacetime isotropy. The rest mass of the matertdé aud of
the STEM in the first case, as well as the rest mass which stems from the USVeoaihe s
case, is given by thequations(2.7) and(2.8). Theequations(7.69) and (7.70)

é;‘"201 9
e u
on S0
J=1J = 7zCF u
(9 35 %, 1
€, U
e- u (7.84)
€0 o ag
€& U oS
P=p(Q) £ U2 ,q ¢
€0 ubg ag
e u e
&0 0
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give the 4vectorsJ and P of USVI, and viaequations (2.7) and (2.8) we geduations
(7.48), (7.49) and (7.50). The rest mass of the material particle which erasrges
consequence of théSVlis

m, =0,
while we have
E,= M, =ict, O
for the symmetryr,,,, we have studied

In equations(7.84) we see theerm

é;am
é
2h -0
3(Q)=—= 28
( ) bcl gaZZL
a0

which is responsible for the external symmeTityat is the momentum of the USVI that is
added to the momentum of the internal symmetry destrdigmgarallel property of the- 4

vectorsJ, P andC. Thistermis zero if and only if, it iSQ =0, i.e. in the case where the
material particle does not curry some cha@ef the interaction. Fo@Q =0 and from

equation(7.84) it follows that] =0 andP = C, i.e. internal symmetry arises according to

theorem 3.3.

With the knowledge of the external symmeymwe can express thevectors J
and P of the particleSTEM system when the material particle is ineal\in an interaction .

Fromequations(3.12), (3.13) ad (7.46), (7.69) we get thevkectorsJ and P as given by
theequations

€0 o ag
e u
-1 & a2, 02
1+ Fé0 Ubg "~ ag
e u e
AO 7
e u G (7.85)
e0 o ag
e u e
oo F & g2 0 o
1+ Fe0 ubg =~ ag
e u e
&0 0
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for the symmetryl,,,,.

It is easy to find out viaquation (3.4) that thequations(7.85), as well as the eqgs.
(7.84), correctly give the physical quantitigs, k , i,k,i =0,1,2,% This is expected since
internal symmetry cannot affect the physical quantitigsk , i,k,i =0,1,2,% Thus we can
calculate the constantg ,k , i,k,i =0,1,2,2and the physical quantitielg, k=0,1,2,%
either througlequations (7.84) or through equatidi@s85). TheT SV equations are valid for
equations (7.84) as well as for equatiéns5).

For Q =0 from equationg7.85) we have
e0
€
J= 1 éCl
1+ Feo
€
a0
e0
é
F &G
1+ F€0
é
a0

that s we geequations(3.12) and (3.13) witlt, =c, =t;, & ¢ 0. Therefore when the
material particle does not interact with other material particles, internal symmeuy iri
both cases. Also the equatiq@s85) give the rest mass

_oMO
™ v

of the material particleas bllows from equatiorf2.7). The interaction (USVI) in which the
material particle isnvolved does not affédts rest mass, as given by equat{8ri0).

Every external symmetry has its owsvdctor C and its owrterm J(Q) . In every
external symmetry there exstjuations corresponding to equati¢ns84)

P(Q)=C -39
for the USVI particle and to equatios85)

1
_mc +J( Q)
F

1+ F

(7.86)
P=

C -J(Q

for the material particle.
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From equation$2.7) and (2.8) another important conclusion follows. In internal
symmetry the material pacte and STEM exchange roles if mutually exchanged
ik b

ﬂ:g q(lﬂ : EO— = 6
ord do Jy ML =2 P 4 %B BB S JE. 6012 (787

O &QJO

According to theorem 3.3 in internal symmetry thee¢torsJ and P are parallel which
implies that they have the sarfieem. Hence the mutual exchange (7).8&s no consequences
in internal symmetry. If we assume that one of thwedtorsJ and P corresponds to the
material particle, then the other corresponds to STEM.fabigan also be seen from

equationg3.9)(3.13) of the theorem 3.3, which can be written in an equivalent form.

._1 1 &b 0 b
Fr== ?expgﬁ(coxo . G% GY g KG"XD%%Q)& GX+GX +G X

_ F'M,
™

MO

= ° 9 .(7.8
6= Mo (7.89
3=15 i 0123

1+ F
P=—5%_i 0123

i 1+|f1 1= =

The different appearance of thevdctors J and P , andthe rest massesy, andC—Eg in

theorem 3.3 is superficial. Their form depends on whether we use eqatisreq F~ to
write them.
In external spnmetry the mutual exchange (7)83 not enough for the role exchange

of the mataml particle and STEM. From equatio(&85) it follows that the role exchange of

the materiaparticle and STEM via equatiofs.88 can only be realized with the

simultaneas change of sign of the char@e(Q- - Q).

Combining equation.10) (3.5) and (4.4), and with equati@h13) we have

Wi _Dp ;04 ki=0123
X,

C . (7.89

S| o

(@]

P
TJ=0
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It is easy to find out that the TSV can benfiotated steting from egs. (7.89). The equations
(7.89 give the Selfvariations of thevkectorsJ and P . They are more general than equation

(2.6) since they give the TSV equations independent of whether the restmpaéshe

material particle is zero or not. We have chosen to start the formulation of thedorsV f

equation (2.5 which gives the equations of the TSV fog , 0, for the reason that there is

no other way to approach equatiqi7s89. Moreover their physical content would not be

clear.

Basedonthetheoremf the TSV we can study all external symmetry matricEse
combinatiorof methodsSV- Mand SV, with which we studied theymmetryT,,, can be
applied b any external symmetry ofthesét C W C W C,W ¢ W . We will also
apply this method ichapter9 in our study of the symmetries of the ¥ét Equally well we

can studyany external symmetry Wi a second method based on equat{@r20),(7.2),
(4.6),0n the SV- T method on equation (7.17)n corollary 51 and on corollary.3. This
second method we present in theaptes 12, 13, 14and15wherewe study the symmetries
of the setsw,, W,, W, and W . Generallywe cansaythatthefirst method deepens the
understanding of the relations betweenghgsical quantitiesvhich emerge from th€SV.
With thesecondmethod the study of the external symmetry is completed faster and more

elegant.

8. THE SET W,

8.1.Introduction

In this chaptewe studythe T matriceswhich haveall their elementsqual to zero,

except the elements on the main diagonal. Thus we study matiitesform

&, 0 0 0
é
0 T 0 O
T=z0L =2 !
QL =% o 1, o
é
g0 0 0 T,
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i.e. the elements of the set;.

In the symmetries of the s&Y, the rest mass of the particle which accompanies the

USVI may be noreera In all external symmetriedits propertycanbefoundonly in the sets
W,andW, .

8.2.The Symmetries T=zQs

Fromequationg4.11)we obtain

elh, 0 0 O
0 T, 0 ©
T=zQL =2C : (8.1)
e0 0 T, O
é
g0 0 0 T,
Fromequationg4.28) ,(7.3)and(8.1) we have
M=0
: 8.2
N=0 (8.2)

The matricesM and N are zero; as a consequence the matrices of the symnietrie® L

share common properties, which we shall study in the following.

According to corollary 7.4 at least one of théiagonal elements of the matrices of
equation (8.1) is ze. Also they cannot be all zero, since in the case of the external symmetry

it holds thatT , O. Therefore, there is a number of

& o6 4a 8 ¢
Vg oom g B

differentmatricesfor which the relationl = zQ L holds

A common characteristic for the kihdsof symmetriesT = zQ L is that U= 1, and
therefore the plan® is not definedSimilarly, the vectord], J ; Of equations (7.329re

not defined.

A fundamental caracteristic of the symmetrids= zQ L is that the fouwector | of
the conserved physical quantitgsanishes. Combininthefirst of equationg8.2) with

equation (5.7) we obtain
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j=0. 8.3

Thereforein the partof spacetimeccupiedoby the generalizegarticle thereis noflow of

conserveghysicalquantitiesq.

Another common characteristic is that the rest masf the material particle can

be diferent from zero
m=0 Uy 0 (8.4

for all 14 matricesof the symmetry Theform of thefour-vector J is different for each matrix

of the symmetry.

We calculate novthe four-vectorof momentumJ of the matrixT**. Accordingto

our notation we have

(8.9

o O O o

Fromequation(2.13),andsinceT,T,, 0, T,=T, # , we obtainfor thefour-vector

J, in the form

g‘]o
0
J= go : (8.6
&,
Combiningequationg2.7) and(8.6), we obtainfor therestmassm, the equation
ngé =E £, 8.7
We applynowthe SV- T method:

We differentiateequation(8.7) with respecto % ,k=0,1,2,% and taking into account

equations(2.6), (2.10)and(4.4) we obtain
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el%m 2Q,,

1-O:On
St

RIE S RY @
and from equation (8)%ve have
zQ}a,,+ 2QJl g, %

and sincezQ, 0, we have
J@iotJ;8, Dk 612 (8.9
We insertsuccessivelk =0,1, 2, Zéinto equation8.8), hence:

For k =0we have

JoTo+tJdad, O

which holdssincefor thematrix T itis T, =a,, 9.

For k =1we have

J@ptJd;q;, 9

which holdssincefor thematrix T*? itis a@,,= g, 9.

For k =2we have

J@,tds s D

which holdssincefor thematrix T itis a,, = a, 9.

Fork =3 we have

Jodzt T, D

which holdssincefor thematrix T itis a,, =T, 9.

According to the proof ogéguation(8.7) it is possible thal, =0 or J, =0, butit is
not possible thatl, = J; 9, sincein this casethe materialparticledoes noexist Therefore

from equation(8.7) we concludethat

m,0dm & B &} (8.9
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Simirarly wecanprovethatrelationsanalogouso relation(8.10), holdfor all matrices of the

symmetryT = zQ L.

Forthematrix T*itis T, , 0. Therefore the part of spacetime occupied by the

generalized particle in the symmeffy’is curved, according to corollary 6.2.

Becausef equation(8.3) the wave equatio(b.17)holds identically(O = O) . Therefore for

the symmetrie§ = zQ L the study of the wave havior of matter is done viquation(5.3).

Starting from equation (8.7) and applying the same method of proof as for equations
(4.19) and (4.20) we obtain

dJ _ dQ

dx, Qdx
apP_ _dQ (8.11)
dx,  Qdx

for thesymmetryT*?. Fromequationg8.6) and (810) we obtain

dJ, _ dQ
dx, Qdx °
dJ, _ dQ |
. T T~ 4. VY3
dx, Qdx

and finally we obtain

J,=5,Q
J;=5,Q

(S0 s). (0.0
S, S =constant:

(8.12)

Thus the fouvector J is given by equation
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o

€0
— e
J=J(Q :Qéo
e
&Ss
(5o $). (0,0)

S, §=constants

(8.13)

as implied by equatio(8.6). Therefore, for the symmetiy**the momentum of the material

particle is proportional to the charg® . This feature is @ommon characteristic for all

matrices of the symmetry = zQ L.

Combiningequations(3.5) and (8.13) we have

Cf«Co' soQ
e

6 G

e G

gcs'ssQ .

P=P(Q)

(so’ ‘%): (O’O)
S, S =constants

Now fromequations(4.2) and (8.14) we have

WX, h

E:P

o 7 oQ

2 -0

KX,

R_b .

™ (e 5:Q)Q

MRS MM Sk 12
e M = X gH =+

andequationy(8.15) we have after the calculations

(8.14)

(8.15)
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5,6,=0
5,.c,=0
s,,=0
5,6,=0

CGS: =G %
and because of
(S0 5). (0.0

we finally get

G=c 9 (8.16)
CS3=G %
Fromequationg8.15) and (8.16) we have
Q=Q(%. x)
b
£=%(co s,Q) Q. (8.17)
b
ﬁ = E(Cs '53Q) Q
Fromeguation(8.17) we have
_G 1
Q= s, a b
1- Ky exPeey (Co%y - 8%
CS:=G % (8.18)
S,. 0
S L
Q S, ab
1- K, engi"%(Coxo 6-3)(3)
CS3=G % (8.19)
s;. 0

whereK,,I C,K_, , Oconstant. Fors, s, Otheecquations(8.18) and (8.19re equivalent,

because of the secoeduationof (8.16).
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Fromequation(8.14) and the firstquationof (8.16) we have

@Co' SOQ

gcs' 53Q

Fromequation(3.5) and the firsequationof (8.16) we have

Fromequationg(8.18), (8.19) and (8.13) we have

G,
e
éO

&0
(co%o &%) &
&,

J:J(Q) :J()S’ X, G 9) = 2
1- K, eXpxe
¢

>lo| .

and fromequationg(8.21), 8.13) and (8.18), (8.19) we have

P=P(Q =P(%, % ¢ ¢

>lo| .

(co%y &%)

OBB R B

1- K, expge
¢

&
9
&
0e0
06

(8.20

(8.21)

(8.22

(8.23

Fromequationg(8.21), (8.22 and(8.23) it follows that the 4vectorsJ, P,C are

parallel. Accordingo the equivalence (3.4) arduation(4.4) this parallelism is expected for

the symmetrie§ = zQ L, sinceitisa, =0, 'k |,k,i G612, However the parallelism of

the 4vectors J, P, C we have met in the theorem 3.3 as a characteristic of internal symmetry.

Hence we will finish thehapterfor the symmetrie§ = zQ L with therefutation of this

apparent inconsistency.

Fromequation(8.13) we getJ, = J, =0 for the symmetryT**, hence the initial eq.

(2.7) is written

J2+J: i G

(8.29
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Subsequently we perform the sammeqedure as for the proof efuation(2.10), from
equation(2.7). After the calculations and because in symmetfyit holds that

a;=0,'k ik, G2, equation (8.pfollows fromequation(8.24. During the

procedure of proof, the physical quantitigand T, do not follow fromequation(8.24). In
contrast fromequation(2.7) for J,, 0,J, ,0and a, =0, 'k jk,i G51,2,Iwe get

T, =T, D, asis predicted from the internal symmetry theorem 3.3. Exactly at this point we
find the differences of the symmetriés= zQ L with internal symmetry. In internal

symmetry itisT,=T, =T, F 0, and according to corollag.1 the part of spacetime

occupied by the generalized particle may be a plane. Moreover space is isotropic, in the part
of spacetime occupied by the generalized particle. The momentum véckrend C are 3

dimensional, and it is not possible to let vanish some compahedy, J, of the momentum

from equation(2.7), with an appropriate rotation of the reference system we use. There is a

very specific inertial reference frame in whidh=J, =J, &([5], chapter5.3). In contrast
with the symmetrie§ = zQ L spacetime is curved asplied by the corollary 6.2. Moreover
in symmetriesT = zQ Lspace isntensely anisotropian the part of spacetime which is
occupied by the generaéd particle. According tequations(8.21), (8.22 and(8.23 the
momentumsC, J and Pin symmetryT**are tdimensional, towards the direction of the

axis X, = z. The intense anisotropy of space, in the part of spacetime which is occupied by
the generalized patrticle, is a basic characteristic of the symetzQ L. This anisotropy
varies for the symmetries of the séf, in equation(7.83. One symmetryl =zQ Lis
characterized by the symmetries of theettor J which are absenith theequation(2.7). For

symmetry T*the components arg and J, .

Fromequationg(8.13) and8.24) we have

(s:+ $)o mic e

(50’ %), (0,0) (8.2

Equation(8.25 gives the contribution of charg@to the rest massy, of the material particle.

We now calculate the distribution of the total rest mds®f the generalized particle

betveen the matél particle and STEM. Frorequations(8.22) and(8.24) we have
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G+ FEC D

2.
00
;,l Klzengieh CoXo 6-3)(3) 8

U

O

and fromequationg(8.21) and (3.5) we have

2.2

: 3 b &0
;' Ky eXp%'%(Coxo &%) 00
¢ ¢ e

and finally we get

MO

m = ° (8.29

ab
1- Ko, expgt_}-%(cox0 &%)
Analogous fronequationg(8.23, (2.8), and (3.5) we have

b
M C Klzexp$ ( oxo ﬂxs)
EO = ° éc (827)
1- Klzexp(@;ae—%(coxO &%)

-O:On

Equationsg(8.26 and(8.27) give the distribution of rest mads, between the material
particle and STEM. The study of the remaining 13 symmefrieszQ L is done in the same

way as the one we demonstrated for symmetry

We now setK,, = K in equations (8.22) and (8.23vhereK the constant of
equation(3.9). Comparing equations (8.22), (8.28d (3.9, (3.12), (3.13) we come to the

conclusion that the external symmeT{ can emerge from the internal symmetry for

J, =J, 9. This can occur when an external cause blocks the emmision of STEM along the
axesx, and x,. In this way the isotropic emmision of the internal symmetry is converted into
the anisotropic external symmeffy”. In general the following corollary of theorem 3.3

holds:

Corollary 8.1 : 6 Tde external symmetry = zQ L can emerge from the internal symmetry
whenthe components of the momentudof the material particlare in less than fouaxes

X, il {O,l, 2,3. These axes define the kind of external symme&tryzQ L that results &
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We present the method which can produce the symritetfyom internal symmetry.
We consider a case where an external causbloak the STEM emission in external

symmety, on theaxesx, andx,. In this case we have

R=PR 0 (8.28)
Now from equations(3.13), (3.12) and (8.28ve have

=c, 9
a=G (8.29)
J,=J, O

From the combination adquations(8.28), (8.29) withequations(3.12), (3.13), (3.10), (3.11)
there arise the correspondiaguations(8.22), (8.23), (8.26), (8.27) witK,, = K.

Using functionF of equation (3.9) foc, =c, =0, andK, =- K equations (8.22),
(8.23), (8.26) and (8.27) are written in the form

1=-5_i 9123

= (8.30)
G=¢ 0

_Fg .
=i D128 (8.31)
G=¢ 0

—o MO
M= (8.32)
6=c,=0

_ FM?
E= oo (8.33)
¢g=¢ I

Corollary 8.1 gives us a mechanism through which the symnietrgQ L can

emerge. The external causaecessary, since the internal symmetry expresses the

spontaneous isotropic emmision of STEM due to the selfvariations.

We note again that formulated the TSV fbr O in order for the particle to exist. If
we formulate th& SV for P, 0, the particle and the STEM exchange places in the equations

and the conclusions of the TSV.
From the combination of equations (3.5), (5.3) and (8.30), (8.31) we get
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K:E_(/ +nF)COY

W, h 1+F (8.34)

By setting

+

/
G=G(% X, % %) =— (8.35)

equation (8.34) is wrign in the form
“_Y: GCO Y
a (8.36)

bY =G @

sl >1o

From identity

b3 bY =0
and with the second of equatidi@s36), we get

bG3:C ©
and consequently vect®G is written in the form
b
bG =% aC (8.37)
whereg =g (%, %, %, %)

From equations (8.36) and (8.37) we get the wave equation of the TSV for the symmetry

T=Q L, as given by equations

b*|IC|
h2
PG :%gC

p2y (c* o) . (8.38)

The third of theequationg(8.38) correlates the functions and g . One of the pairs of

functionsG and g is given by the equations
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¢ hos _ (8.39)

wherer = (xl, X5, x3) andki C constant. Fronequations(8.38) and (8.39) we have

HY_boabr@ o

o h R (8.40)

pry DUCIPEra s | bacd" @ |
w9 8

Equations (8.38) have general validity in the symme&tryzQ L. Every symmetry

T = zQ Lis defined by the constants,i = 0,1, 2,%, which go to zero. The same holds for
function Y =Y (X, %,%,,%). In the symmetryT itis Y =Y (X, %). The symmetries of
the setW, have j =0 and therefore the wave equati¥ndoes not relate to any flow of

conserved physical quantitigs

9. THE SET W,.

9.1.Introduction .

In this chaptemwe studythe generalizegarticleof the matrices

é, T au & &
e
>a, 0 0 O
T =Tooos 2Q€  *
010203 Qg_ aoz 0 O 0
€a, 0 0 O

Ao & @lo. 0

and
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é
>a, 0 0 O
T = T010203 :ZQg_ aOl 0 0 O
&a, 0 0 O

aOl ‘%2 %: 0
of thesetW,. Thestudyof theremainingsymmetriesof the set

0 1 2 H
VV3 %TOlOZOE) T010203T 011321T 011321-r 02322]- 02322-ﬁ 2033 -g33213’ 1;1022] T010318 T020332T321 IIS done

in the same way with the study we present inc¢hespter We notethatin the 4dimensional

spacetimeéhe matrixT,,,,,, Of the setW, is discarded by th&V- T method

9.2. The Symmetries Ty .05 aNd Ty 0005-

Fromequation (7.71jor a,,= g, = & & we get

(:;' To 4o A &
é
= zQ‘éf‘_ a T, 0 O
éa, 0 T, O (9.1)
g’ dos 0 0 T3
aOl 562 %: O
Fromtheorem?7.3 wehave that for this matrix is
T=T, =T, &
and thus it is written in the form
e To 4o &
é
. zQé‘_ a, O 0 0
éa, 0 0 0 . (9.2)
&a, 0 0 ©
aOl %2 é: O

Fromthematrix in equation(9.2) we obtainthe symmetries
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e T doy A &
e
~a, 0 0 0

T :Toolozos =2Q¢
éa, 0 0 O (9.3)
&a, 0 0 0O

Ay & @&, 0
e0 ay g @
e
~a, 0 0 0

T =Tois =2Q€ *

010203 Qg_ a O 0 O . (94)

&a, 0 0 O

Ao & &%, 0

Firstwe studythe symmetryT,. ... For this symmetryitis M | O, hencewe apply

the SV- M-method From equation (7.3) we have

an+d, +a & (9.5)
From equations (7.2) we obtain

Johh+tday H,a, 4,4 O
Jo@o; =0
Jo@, =0
Jo@43 =0

and sincea,, 4, &, 0 andT,, Owe have

J,=0

. (9.6)
Jan+tJ, 8, H; ¢ &

From the second dheequationg4.6), andfor (i,7, 4=(0,1,9 (0,13 (, 0,2)3(, 1,2) we
obtain

‘]Oa12+J2 %l +Jl % Q:

J0a13+J3 %l +Jl @) @

J0a23+‘]3 4‘)2 +J2 @) @
J1a23+‘]3 42 +J2 él @:
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J2a01' ‘Jl & 23]
Jdy- 3,85 D (9.7)
Jsaoz' Jz Qs 0

Fromequationg9.6),(9.7),andsinceit holdsthat a,,a,,3,;, 0, we have

J,=0
a
J,=-%27]. (9.8)
2 301 1
J==%7
aOl '

éa 01 (9.9)

From equation$4.28)and(9.3)we have

e0 a, 4§ @&

e
- a O O O
M=€ "% (9.10)
éa, 0 0 O
&a, 0 0 0O
&ay -4, - O 0 0
e 2
M2=¢€ 0 -4y Q) & “of 034
g 0 - Ay & - @ ~od 034
e 0 “An Gy G F '203a
andwith equation (9.5) we obtain
0 0 0 0
Mzzgo '351 "G 6 ~off 038 (9.11)

@ -8y &, - ?é% “od 03‘3.
e 2
éO -8y s @ oF ~ 038

102



Fromthefirst of theequdions(7.14)andtheequation(9.11),we get after the calculations
Can*C &, ;5 & . (9.12)

From the first of the equatioi(4.6), and for(i,7, 4=(0,1,9 ( 0,1,3(, 0,2)3(, 1,2) we
obtain

COalZ + CZ %l +Cl % Q:

COalS + C3 %l +Cl % @

COaZS + C3 %2 -I,CZ @) @

Cla23 + C3 42 +C2 él ©:

Can- G Gy D

Cg,- C G . (9.13)
Cdpy- C; G 9

Fromequationg9.12)and(9.13)we have

Qv

— “02
G=--"G

0

Q

(9.14)

[\
®

0

G G

Qv

01

Fromequationg9.14)we obtainthefour-vector C

& G
e
6 G
éa,,

C=g ¢
éao1
éa03
pial:

(9.15)

Fromequation(3.5)andequationg9.9) and (9.15) we obtain the feuector P = P(Q)
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