Constraints, in Pre Planckian space-time via Padmabhan’s

\(\Lambda_{\text{initial}} \cdot H_{\text{initial}}^{-2} \approx o(1) \) approximation leading to initial inflaton constraints

Andrew Walcott Beckwith

Physics Department, Chongqing University, College of Physics, Chongqing University Huxi Campus, No. 44 Daxuechen Nanlu, Shapinba District, Chongqing 401331, People’s Republic of China

Rwill9955b@gmail.com; abeckwith@uh.edu

Abstract

We are looking at what if the initial cosmological constant is \(\Lambda_{\text{initial}} \approx H_{\text{initial}}^2 \approx \gamma^2 / l^2 \) due to \(a \sim a_{\text{min}} t^\gamma \) if we furthermore use \(\delta g_{tt} \sim a_{\text{min}}^2 \cdot \phi_{\text{initial}} \) as the variation of the time component of the metric tensor \(g_{tt} \) in Pre-Planckian Space-time up to the Planckian space-time initial values. This assumes \(\phi_{\text{initial}} \) as an initial inflaton value, as well as employing NonLinear Electrodynamics to the scale factor in \(a \sim a_{\text{min}} t^\gamma \), the upshot is an expression for \(\phi_{\text{initial}} \) as an initial inflaton value / squared which supports Corda’s assumptions in the ‘Gravity’s breath Electronic Journal of theoretical physics article. We close with an idea to be worked in further detail as to density matrices and how it may relate to gravitons traversing from a Pre Planckian to Planckian space-time regime. An idea we will write up in far greater detail in a future publication

Key words inflaton physics, density matrix equation, gravitons
1. **Basic idea, The Padmabhan approximation of** $\Lambda_{\text{initial}} \cdot H_{\text{initial}}^{-2} \approx o(1)$

To do this, we look at [1] which is of the form

$$\Lambda_{\text{initial}} \cdot H_{\text{initial}}^{-2} \approx o(1) \quad (1)$$

Our objective is to use Eq. (1) with [2]

$$a \sim a_{\text{min}} t^\gamma \quad (2)$$

And [2]

$$a \approx a_{\text{min}} t^\gamma$$

$$\Leftrightarrow \phi \approx \sqrt{\frac{\gamma}{4\pi G}} \cdot \ln \left\{ \frac{8\pi GV_0}{\gamma (3\gamma - 1)} \cdot t \right\} \quad (3)$$

$$\Leftrightarrow V \approx V_0 \cdot \exp \left\{ - \frac{16\pi G}{\gamma} \cdot \phi(t) \right\}$$

And [2,3]

$$\phi \approx \sqrt{\frac{\gamma}{4\pi G}} \cdot \ln \left\{ \frac{8\pi GV_0}{\gamma (3\gamma - 1)} \cdot t \right\} \quad (4)$$

And [3,4,5]

$$g_n \sim \delta g_n \approx a_{\text{min}}^2 \phi \quad (5)$$

And [4]

$$\Delta E\Delta t \sim \left[\hbar / (\delta g_n \sim a_{\text{min}}^2 \cdot \phi_{\text{initial}}) \right] \quad (6)$$

The next step will be to utilize [6]

$$\Delta L_{\phi}^2 \approx (E / E_p)^6 \quad (7)$$

where [6]

$$E_p = \left(\hbar \ c^5 / G \right)^{1/2} \approx 10^{19} \text{GeV} \quad (8)$$
As well as use the Non Linear Electrodynamic minimum value of the scale factor a_{min} which is in the spirit of [8] and which is avoiding using [9]

2. Using the section 1 material to isolate a minimum value of the inflaton, beyond Eq. (4)

From [4] we make the following approximation, i.e. Simply put a relationship of the Lagrangian multiplier giving us the following: If

$$\lambda \sim \frac{1}{\kappa} \sqrt{-g} \left(\delta g_{\mu} \approx a_{\text{min}}^2 \phi \right) \cdot \Lambda$$

(9)

If the following is true, i.e. in a Pre Plankian to Planckian regime of space-time

$$\sqrt{-g} \left(\delta g_{\mu} \approx a_{\text{min}}^2 \phi \right) \approx \text{constant}$$

(10)

Here, $-g$ is a constant, as assumed in [4] which means in the pre Plankian to Plackian regime we would have Eq.(5) as a constant, so then we are looking at, defacto if $\phi \equiv \phi_{\text{initial}}$, an energy density as given by Zeldovich, as talked about with [10] setting a minimum energy density given by

$$\rho_{\Lambda} \approx \frac{G(E/c^2)^2}{c^8 h^4} = \frac{GE^8}{c^8 h^4}$$

(11)

And with the following substitution of

$$E_{\text{Pre-Planckian}} \rightarrow E_{\text{Planckian}} \Delta E \sim \frac{h}{\Delta t \cdot \left(\delta g_{\mu} \approx a_{\text{min}}^2 \phi_{\text{initial}} \right)}$$

(12)

Then to first order we would be looking at Eq. (11) re written as leading to

$$\rho_{\Lambda} \sim \frac{G}{c^8 h^4} \left(\frac{h}{\Delta t \cdot \left(\delta g_{\mu} \approx a_{\text{min}}^2 \phi_{\text{initial}} \right)} \right)^6$$

(13)

And if Eq. (1) holds, we would have by [1]

$$\Lambda_{\text{initial}} \approx H_{\text{initial}}^2 \sim \gamma^2 / t^2$$

(14)

So

$$10^{-123} \sim \gamma^2 L_p^2 \cdot (\Delta E \cdot \delta g_{\mu})^2 / h^2$$

(15)

And if L_p^2 is the square of Planck’s length, after some algebra, and assuming $t \rightarrow \Delta t$
\[a_{\text{min}} \sim \left(10^{-123/4}\right) \sim \left(\Delta E / E_p\right)^{3/2} \]

\[\phi_{\text{initial}}^2 \sim o\left(\frac{\Delta E \cdot \gamma \cdot L_p}{h^2}\right) \]

(16)

We will examine the consequences of these assumptions as to what this says about the NLED approximation for the initial scale factor, as given in [7]

3. CONCLUSIONS, examining the contribution of the inflaton.

In [11] Corda gives a very lucid introduction as to the physics of the inflaton. We urge the readers to look at it as it refers to Eq. (17), second line. In particular, it gives the template for the possible range of values for \(\Delta E \) in Eq. (16)

The take away is that we are assuming a relatively large initial entropy(based upon a count of massive gravitons) being recycled from one universe to the next, which would influence the behavior of the First line of Eq. (16) and tie into the behavior of the 2\(^{nd}\) line of the inflaton Eq. (16) given above. The exact particulars of \(\Delta E \) are being investigated.

Keep in mind the importance of the result from reference [12] below which forms the core of Eq. (17) below

\[N_{e\text{-foldings}} = -\frac{8\pi}{m_{\text{Planck}}^2} \int_{\phi_i}^{\phi_f} \frac{V(\phi)}{\partial V(\phi)/\partial \phi} d\phi \geq 65 \]

(17)

We have to adhere to this e fold business, and this will influence our choices as to how to model the inflaton.

Furthermore the constraints given in [13,14,15] as to the influence of LIGO on our gravity models have to be looked into and not contravened

This is a way of also show if general relativity is the final theory of gravitation. I.e., if massive gravity is confirmed, as given in [16], then GR is perhaps to be replaced by a scalar-tensor theory, as has been shown by Corda.

Finally is a re do of what was brought up in [17] by Tang. In a density equation of stated with a relaxation procedure, between different physical states, Tank writes if \(m \) and \(n \) are different quantum level states, then, if \(T_{mn} \) is the “Atomic coherence time”

\[\frac{d\rho_{mn}}{dt} = -i\omega_{mn} \rho_{mn} - \rho_{mn}^{\text{theory}}(t) - \rho_{mn} \]

\[\Leftrightarrow \rho_{mn}(t) = \rho_{mn}^{\text{theory}}(t) + \left[\rho_{mn}(0) - \rho_{mn}^{\text{theory}}(0)\right] \cdot \exp\left(-t / T_{mn}\right) \quad \text{if} \quad m = n; \]

AND

\[\rho_{mn}(t) = \rho_{mn}(0) \exp\left(-i\omega_{mn} t + \frac{t}{T_{mn}}\right) \quad \text{if} \quad m \neq n; \]

(18)
We will here, in our work assign $\rho_{mn}(t)$ the same sort of physical state which would be in place would have if $m = n$; in which then the solution to this problem would be given by Eq. (11). The idea would be as follows. If $m = n$, model the density of states as having the flavor of gravitons preserving the essential quantum ‘state’ $m=n$, and not changing if we go from the Pre Planckian to Planckian state.

There would be then the matter of identifying $\rho^{\text{theory}}_{mn}(t)$, $\rho_{mn}(0)$ and the time T_{mn}, if $m=n$. In our review we would put T_{mn} likely as the Pre – Planckian to Planckian transition time.

Note that in the $m=n$ time if our ‘density of states’ were referring to gravitons, keeping the same states as if $m=n$ is picked, that the second part of Eq. (17) is in referral to quantum states of a graviton having a non planar character which would not have a planar wave character

In the case of $m \neq n$ we are then referring to changes in the states of presumed gravitons as information carriers, and the density equation, $\rho_{mn}(t)$ has in Eq. (17) an explicit damped component times a planar wave component.

We presume here that the frequency term, ω_{mn} would be in the high gigahertz range

In any case, the details of this sketchy idea should be from the Pre Plankian to Planckian regime of space-time given far more structure in a future document.

6. Acknowledgements

This work is supported in part by National Nature Science Foundation of China grant No. 11375279

References

[1] https://ned.ipac.caltech.edu/level5/Sept02/Padmanabhan/Pad7.html

[6] https://ned.ipac.caltech.edu/level5/Sept02/Padmanabhan/Pad1_2.html

[10] https://ned.ipac.caltech.edu/level5/Sept02/Padmanabhan/Pad1_2.html

