Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair
Süleyman Şenyurt, Yasin Altun, and Ceyda Cevahir

Citation: AIP Conference Proceedings 1726, 020045 (2016); doi: 10.1063/1.4945871
View online: http://dx.doi.org/10.1063/1.4945871
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1726?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
On characterizations of some special curves of timelike curves according to the Bishop frame of type-2 in Minkowski 3-space
AIP Conf. Proc. 1726, 020082 (2016); 10.1063/1.4945908

A variational characterization and geometric integration for Bertrand curves

Design of the pole pieces of an electromagnet according to the Garber–Henry–Hoeve model

The shapes of pair polarizability curves
J. Chem. Phys. 72, 298 (1980); 10.1063/1.438847

Investigating the physical nature of the Coriolis effects in the fixed frame
Am. J. Phys. 45, 631 (1977); 10.1119/1.10780
Smarandache Curves According to Sabban Frame of Fixed Pole Curve Belonging to the Bertrand Curves Pair

Süleyman Şenyurt¹,a), Yasin Altun¹,b) and Ceyda Cevahir¹,c)

¹Faculty of Arts and Sciences, Department of Mathematics, Ordu University, Ordu, Turkey.

a)Corresponding author: senyurtsuleyman@hotmail.com
b)yasinaltun2852@gmail.com
c)Ceydacevahir@gmail.com

Abstract. In this paper, we investigate the Smarandache curves according to Sabban frame of fixed pole curve which drawn by the unit Darboux vector of the Bertrand partner curve. Some results have been obtained. These results were expressed as the depends Bertrand curve.

Mathematics Subject Classification (2010). 53A04.

Keywords. Bertrand curves pair, Fixed pole curve, Smarandache curves, Sabban frame, Geodesic curvature.

INTRODUCTION AND PRELIMINARIES

A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve [1]. K. Taşköprü, M. Tosun studied special Smarandache curves according to Sabban frame on S^2 [2]. Şenyurt and Çalışkan investigated special Smarandache curves in terms of Sabban frame for fixed pole curve and spherical indicatrix and they gave some characterization of Smarandache curves [4, 6]. Let $\alpha: I \rightarrow E^3$ be a unit speed curve denote by $\{T, N, B\}$ the moving Frenet frame. For an arbitrary curve $\alpha \in E^3$, with first and second curvature, κ and τ respectively, the Frenet formulae is given by [7, 8]

$$T' = \kappa N, \quad N' = -\kappa T + \tau B, \quad B' = -\tau N$$

(1)

the vector W is called Darboux vector defined by

$$W = \tau T + \kappa B.$$

If we consider the normalization of the Darboux $C = \frac{1}{\|W\|} W$ we have, $\sin \varphi = \frac{\tau}{\|W\|}$ and $\cos \varphi = \frac{\kappa}{\|W\|}$ and [5]

$$C = \sin \varphi T + \cos \varphi B$$

(2)

where $\angle(W, B) = \varphi$.

Theorem 1. Let $\alpha: I \rightarrow E^3$ and $\alpha^* : I \rightarrow E^3$ be the C^2-class differentiable unit speed two curves and the amounts of $\{T(s), N(s), B(s), \kappa(s), \tau(s)\}$ and $\{T^*(s), N^*(s), B^*(s), \kappa^*(s), \tau^*(s)\}$ are entirely Frenet- serret aparatus of the curves α and the Bertrand partner α^*, respectively, then

$$T^* = \cos \theta T - \sin \theta B, \quad N^* = N, \quad B^* = \sin \theta T + \cos \theta B,$$

(3)

$$\kappa^* = \frac{\lambda \kappa - \sin^2 \theta}{\lambda (1 - \lambda \kappa)}, \quad \tau^* = \frac{\sin^2 \theta}{\lambda^2 \tau}$$

(4)

where $\angle(T, T^*) = \theta$, [8].
Theorem 2
Let \((\alpha, \alpha')\) be a Bertrand curves pair in \(\mathbb{E}^3\). We have between unit Darboux vectors [3],
\[
C^* = -C.
\]

Theorem 3
Let \(\gamma\) be a unit speed spherical curve. We denote \(s\) as the arc-length parameter of \(\gamma\). Let us denote \(t(s) = \gamma'(s)\), and we call \(t(s)\) a unit tangent vector of \(\gamma\). We now set a vector \(d(s) = \gamma(s) \wedge t(s)\) along \(\gamma\). This frame is called the Sabban frame of \(\gamma\) on \(S^2\) (Sphere of unit radius). Then we have the following spherical Frenet formulae of \(\gamma\) [2, 6]
\[
\gamma' = t, \quad t' = -\gamma + \kappa_d d, \quad d' = -\kappa_g t
\]
where \(\kappa_g\) is called the geodesic curvature of \(\gamma\) on \(S^2\) and
\[
\kappa_g = \langle t', d \rangle.
\]

SMARANDACHE CURVES ACCORDING TO SABBAN FRAME OF FIXED POLE
CURVE BELONGING TO THE BERTRAND CURVES PAIR

In this section, we investigate Smarandache curves according to the Sabban frame of fixed pole (\(C^*\)). Let \(\alpha_{C^*}(s) = C^*\) be a unit speed regular spherical curves on \(S^2\). We denote \(s_{C^*}\) as the arc-length parameter of fixed pole (\(C^*\))
\[
\alpha_{C^*}(s) = C^*(s).
\]
Differentiating (8), we have
\[
T_{C^*} = \cos \varphi T^* - \sin \varphi B^*
\]
and
\[
C^* \wedge T_{C^*} = N^*.
\]
From the equation
\[
C^* = \sin \varphi T^* + \cos \varphi B^*, \quad T_{C^*} = \cos \varphi T^* - \sin \varphi B^*, \quad C^* \wedge T_{C^*} = N^*
\]
is called the Sabban frame of fixed pole curve (\(C^*\)). From the (6)
\[
\kappa_g = \langle T_{C^*}', C^* \wedge T_{C^*} \rangle \implies \kappa_g = \frac{||W^*||}{\varphi'^*}.
\]
Then from the (4) we have the following spherical Frenet formulae of (\(C^*\)):
\[
C^{*'} = T_{C^*}, \quad T_{C^*} + \frac{||W^*||}{\varphi'^*} C^* \wedge T_{C^*}, \quad (C^* \wedge T_{C^*})' = -\frac{||W^*||}{\varphi'^*} T_{C^*}.
\]
i.) \(C^* T_{C^*}\) -Smarandache Curves
Let \(S^2\) be a unit sphere in \(\mathbb{E}^3\) and suppose that the unit speed regular Bertrand partner curve \(\alpha_{C^*}(s) = C^*(s)\) lying fully on \(S^2\). In this case, \(C^* T_{C^*}\) - Smarandache curve can be defined by
\[
\beta_1(s) = \frac{1}{\sqrt{2}} (C^* + T_{C^*}).
\]
Substituting the equation (9) into equation (11), we reach
\[
\beta_1(s) = \frac{1}{\sqrt{2}} \left((\sin \varphi^* + \cos \varphi') T^* + (\cos \varphi^* - \sin \varphi') B^* \right).
\]
Differentiating (11), we can write the tangent vector of \(\beta_1\)-Smarandache curve according to Bertrand partner curve
\[
T_{\beta_1} = \frac{(\varphi'' - \sin \varphi')}{\sqrt{2\varphi'^2 + ||W^*||^2}} T^* + \frac{||W^*||}{\sqrt{2\varphi'^2 + ||W^*||^2}} N^* - \frac{(\varphi'' + \sin \varphi')}{\sqrt{2\varphi'^2 + ||W^*||^2}} B^*.
\]
Differentiating (13), we get

\[T'_{\beta_1} = \frac{\varphi'^r \sqrt{2}(\chi_1 \sin \varphi^* + \chi_2 \cos \varphi^*)}{\left(||W'||^2 + 2 \varphi^* \right)^2} T^r + \frac{\chi_1 \varphi'^r \sqrt{2}}{\left(||W'||^2 + 2 \varphi^* \right)^2} N^r + \frac{\varphi'^r \sqrt{2}(\chi_1 \cos \varphi^* - \chi_2 \sin \varphi^*)}{\left(||W'||^2 + 2 \varphi^* \right)^2} B^r \]

(14)

where

\[\chi_1 = -2 - \left(\frac{||W'||}{\varphi'} \right)^2 + \left(\frac{||W'||}{\varphi'} \right)^4 \left(\frac{||W'||}{\varphi'} \right) \], \[\chi_2 = -2 - 3 \left(\frac{||W'||}{\varphi'} \right)^2 - \left(\frac{||W'||}{\varphi'} \right)^4 \left(\frac{||W'||}{\varphi'} \right) \]

(15)

Considering the equations (12) and (13), it easily seen that

\[(C^* \wedge T_{C^*})_{\beta_1} = \frac{||W'||(\cos \varphi^* + \sin \varphi^*)}{\sqrt{2}||W'||^2 + 4 \varphi^2} T^r - \frac{\varphi'}{\sqrt{2}||W'||^2 + 4 \varphi^2} N^r + \frac{||W'||(\cos \varphi^* + \sin \varphi^*)}{\sqrt{2}||W'||^2 + 4 \varphi^2} B^r. \]

(16)

Substituting the (3) and (4) into equation (12), (13), (14) and (16), Sabban aparatus of the \(\beta_1 \)-Smarandache curve according to Bertrand curve

\[\beta_1(s) = \frac{1}{\sqrt{2}}(-\sin \varphi - \cos \varphi)T + (-\cos \varphi + \sin \varphi)B, \]

\[T'_{\beta_1} = \frac{\varphi'^r \sqrt{2}(\chi_1 \sin \varphi^* - \chi_2 \cos \varphi^*)}{\left(||W'||^2 + 2 \varphi^* \right)^2} T^r + \frac{\chi_1 \varphi'^r \sqrt{2}}{\left(||W'||^2 + 2 \varphi^* \right)^2} N^r + \frac{\varphi'^r \sqrt{2}(\chi_1 \cos \varphi^* + \chi_2 \sin \varphi^*)}{\left(||W'||^2 + 2 \varphi^* \right)^2} B^r. \]

(17)

Geodesic curvatures of the \(\beta_1(s_{\beta_1}) \)-Smarandache curve according to Bertrand partner and Bertrand curves, respectively,

\[\kappa^g_{\beta_1} = \frac{1}{2 + \left(\frac{||W'||}{\varphi'} \right)^2} \left(\frac{||W'||}{\varphi'} \chi_1 - \frac{||W'||}{\varphi'} \chi_2 + 2 \chi_3 \right), \]

\[\kappa^b_{\beta_1} = \frac{1}{2 + \left(\frac{||W'||}{\varphi'} \right)^2} \left(\frac{||W'||}{\varphi'} \chi_1 - \frac{||W'||}{\varphi'} \chi_2 + 2 \chi_3 \right). \]

ii.) \(T_C(C^* \wedge T_{C^*}) \)-Smarandache Curves

\(T_C(C^* \wedge T_{C^*}) \)-Smarandache curve can be defined by

\[\beta_2(s) = \frac{1}{\sqrt{2}}(T_{C^*} + C^* \wedge T_{C^*}). \]

(18)

Solving the above equation by substitution of \(T_{C^*} \) and \(C^* \wedge T_{C^*} \) from (9), (3) and (4), we reach \(\beta_2 \)-Smarandache curve according to Bertrand partner and Bertrand curves, respectively,

\[\beta_2(s) = \frac{1}{\sqrt{2}}(\cos \varphi^* T + N^* - \sin \varphi^* B^*), \]

\[\beta_2(s) = \frac{1}{\sqrt{2}}(-\cos \varphi T + N + \sin \varphi B). \]

(19)
Geodesic curvature of the $\beta_3(\sigma_{\beta})$-Smarandache curve according to Bertrand curve

$$k^B_{\beta} = \frac{1}{\left(1 + 2(\frac{||W||}{\varphi'})^2\right)^{\frac{3}{2}}}(2(\frac{||W||}{\varphi'})^2 - \bar{\delta}_1 + \bar{\delta}_2 - 2\bar{\delta}_3)$$

where

$$\bar{\delta}_1 = (\frac{||W||}{\varphi'}) + (\frac{||W||}{\varphi'})^3 + 2(\frac{||W||}{\varphi'})^3 + (\frac{||W||}{\varphi'})^3, \quad \bar{\delta}_2 = -1 - 3(\frac{||W||}{\varphi'})^2 - 2(\frac{||W||}{\varphi'})^4 - (\frac{||W||}{\varphi'})^4, \quad \bar{\delta}_3 = -(\frac{||W||}{\varphi'})^2 - 2(\frac{||W||}{\varphi'})^4 + (\frac{||W||}{\varphi'})^4.$$

iii.) $C^*T_C-(C^* \land T_C)$-Smarandache Curves

$C^*T_C-(C^* \land T_C)$-Smarandache curve can be defined by

$$\beta_3(s) = \frac{1}{\sqrt{3}}(C^* + T_C + C^* \land T_C).$$

Solving the above equation by substitution of C^*, T_C and $C^* \land T_C$ from (9), (3) and (4), we reach β_3-Smarandache curve according to Bertrand partner and Bertrand curves, respectively,

$$\beta_3(s) = \frac{1}{\sqrt{3}}((\sin \varphi^* + \cos \varphi^*)T^* + N^* + (\cos \varphi^* - \sin \varphi^*)B^*), \quad \beta_3(s) = \frac{1}{\sqrt{3}}((- \sin \varphi - \cos \varphi)T + N + (\sin \varphi - \cos \varphi)B).$$

Geodesic curvature of the $\beta_3(\sigma_{\beta})$-Smarandache curve according to Bertrand curve,

$$k^B_{\beta} = \frac{\varphi^5(2||W|| - \varphi')\bar{p}_1 - \varphi^5(||W|| + \varphi')\bar{p}_2 + \varphi^5(2\varphi' - ||W||)\bar{p}_3}{4\sqrt{2}(\varphi^2 - \varphi'||W|| + ||W||^2)^3}$$

where

$$\bar{p}_1 = -2 + 4(\frac{||W||}{\varphi'}) + 4(\frac{||W||}{\varphi'})^3 - (\frac{||W||}{\varphi'})^3 + 2(\frac{||W||}{\varphi'})^3 + (\frac{||W||}{\varphi'})^3(2\frac{||W||}{\varphi'} - 1),$$

$$\bar{p}_2 = -2 + 2(\frac{||W||}{\varphi'}) - 4(\frac{||W||}{\varphi'})^3 + (\frac{||W||}{\varphi'})^3 - 2(\frac{||W||}{\varphi'})^3 - (\frac{||W||}{\varphi'})^3(1 + \frac{||W||}{\varphi'}),$$

$$\bar{p}_3 = 2(\frac{||W||}{\varphi'}) - 4(\frac{||W||}{\varphi'})^3 + 4(\frac{||W||}{\varphi'})^3 - 2(\frac{||W||}{\varphi'})^3 + (\frac{||W||}{\varphi'})^3(2 - \frac{||W||}{\varphi'}).$$

ACKNOWLEDGEMENT

This work was supported by BAP (The Scientific Research Projects Coordination Unit), Ordu University.

REFERENCES