Tropics: Revival of Rational Mathematics
Edited by Charles Ashbacher
Contents

Introduction
by Charles Ashbacher

Tribute to Joseph S. Madachy
by Charles Ashbacher

Mathematical Cartoons
by Caytie Ribble

Here's the Scoop: Ground Balls Win Lacrosse Games
by Peter R. Smith, Russell K. Banker and Paul M. Sommers

An Example of a Smarandache Geometry
by Ion Patrascu

Smarandache's Concurrent Lines Theorem
edited by Dr. M. Khoshnevisan

The Career Save Percentage Profile of NHL Goalies
by Douglas A. Raeder and Paul M. Sommers

Some Unsolved Problems in Number Theory
by Florentin Smarandache

Alternating Iterations of the Sum of Divisors Function and
the Pseudo-Smarandache Function
by Henry Ibstedt

Alternating Iterations of the Euler ϕ Function and the
Pseudo-Smarandache Function
by Henry Ibstedt

Book Reviews
Edited by Charles Ashbacher

Alphametics
contributed by Paul Boymel

Problems and Conjectures
contributed by Lamarr Widmer
Solutions To Problems And Conjectures From Journal Of Recreational Mathematics 37(3) edited by Lamarr Widmer

Solutions to Alphametics Appearing in This Issue

Solutions to Alphametics in Journal of Recreational Mathematics 37(3)

Project Euler

Map Coloring with Combinatorics by Kate Jones

Mathematical Spectrum

Neutrosphic Sets and Systems

Topics in Recreational Mathematics 1/2015

Alphametics as Expressed in Recreational Mathematics Magazine
AN EXAMPLE OF A SMARANDACHE GEOMETRY

Professor Ion Patrascu

National College Frații Buzesti
Craiova, Romania

Abstract

For centuries it was thought that the geometry codified by Euclid and based on the parallel postulate

Given any line l and a point p not on l, one and only one line can be drawn through p parallel to l.

was the only geometry that existed. This idea was overturned when two other geometries based on a different number of parallel lines being drawn through p were discovered. In a hyperbolic geometry it is possible to construct infinitely many lines parallel to l passing through p and in an elliptic geometry it is not possible to construct any lines through p parallel to l.

This paper gives an example of a geometry where more than one form of the parallel axiom is valid within the geometry.
A Smarandache geometry is a geometry in which at least one of the five fundamental axioms is either validated and invalidated, or only invalidated, but in multiple ways (in the same geometric space).

Consider the parallel or the fifth axiom of Euclidean geometry.

Through a point outside a line one can only draw one parallel to that line.

We can build a model of Smarandache geometry where the axiom of parallels is validated for some lines and points, and invalidated for other points and lines.

Figure 1

Consider a plane \((\pi) \) and a sphere \(S \) of center \(O \) that is tangent to the plane \((\pi) \) in the point \(P_3 \).

The line \((d_1) \) and the point \(P_1 \) belong to the plane \((\pi) \).

The concepts of “line” and “point” in the plane \((\pi) \) are the classical ones. On the sphere, the “line” is a big circle of the sphere, and the “point” is any classical point on the surface of the sphere.
Two lines are called parallel if they have no common point. Hence, the parallel axiom has three different forms in this Smarandache geometry model:

1. Through the point P_1 one can draw only one parallel to the line (d_1) [as in the Euclidean geometry].

2. Through the point P_2 one cannot draw any parallel to the line AB because a great circle of the sphere passing through P_2 will intersect the great circle AB [as in the non-Euclidean elliptical geometry].

3. Through the point P_3 belonging to the plane (π) and to the sphere S, one can draw an infinity of lines $(\ell_1), \ldots, (\ell_n), \ldots$, all contained in the plane (π), which do not intersect the line AB, so they are parallel to the line AB [as in the non-Euclidean hyperbolic geometry].

References

