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In this study we want to propose a heuristic model to compute and to interpret the dark
energy content of our universe. To this purpose we include the mass-energy of the static
gravitational field and compute its effect at very small distances. From its analysis, we
obtain for the smallest surface scale for the empty spaceτ = 2hγ/5c3. After that we
show, how this result can be used to compute a natural energy cutoff kc for all quantum
fields and study its utility in computing the dark energy density and its implications on
the content of fermionic and bosonic elementary fields. Indeed for the vacuum equation
of statew= pvac/ρvac we obtainw= − 128π2/15∆N andΩvac ≈ 21∆N/256π2, where
∆N=Nf − Nb represents the difference between the number of species of fermions
and bosons. Finally comparing our result with the measured cosmological parameters,
we discus general constraints on the field content beyond the Standard Model of the
elementary particles.

1 Introduction

A common aspect of many different approaches to quantum
gravity such as string theory (seee.g.[1]), causal sets [2, 3],
spin foams [4], causal dynamical triangulation (CDT) [5, 6]
and loop quantum gravity [7, 8] is the presence of a small-
est length scale. The experimental search of such a scale
has gained in the last years a lot of importance and concrete
projects have already been started [9,10]. A first phenomeno-
logical review of these approaches to quantum gravity can be
found for example in [11–14].

The presence of a smallest scale has usually the advantage
to solve the problems associated with infinities, if one tries
to quantize a non renormalizable theory like gravity. In par-
ticular quartic divergencies emerge when one interprets dark
energy as being originated by quantum fluctuations and this
is independent on the curvature. The problem is that, even if
the final result is finite, it turns out to be anyway many orders
of magnitudes above the observed value [15].

Interesting new approaches have been developed in the
last years from the point of view of supersymmetry, the renor-
malization procedure [16,17], the renormalization group flow
[18], the holographic principle [19] and stability considera-
tions concerning the Minkowski space-time [20]. In all such
approaches the results are all improved and some of them are
also able to predict the dark energy with the correct order of
magnitude, even if not yet precisely.

The purpose of our work is to introduce a new method to
precisely predict the dark energy density and to elucidate its
nature. As we will show, our approach has implications also
on the possible field content of dark matter, showing a strict
connection between the two aspects.

An important point of our investigation is an idea intro-
duced by Heim [21], which consists in considering also the
effects of the field massµ = E/c2 associated to the energy
contentE of the gravitational field generated by a central mas-

sive body. Accordingly one should include its contributionin
a consistent way also in the phenomenological stress energy
tensorTµν of the Einstein field equations. A first important
consequence of this idea, which together with other consider-
ations lead to an alternative approach to quantum gravity, is
again the existence of a smallest scale. In [22–24] the smallest
scale surface is called “metron” and Heim has found for it the
resultτH = 3hγ/8c3. We want here to remind the reader, that
the Heim discretization is not intended to be a kind of “atom-
ism” of elementary space-time elements as it might seem to
be: indeed the elementary surfaceτ has to be intended as an
internal physical characteristic of extended “structures” and
can not be thought separated from the others. In this con-
text it can be shown, that a particle can be viewed as a dy-
namical structure of specific condensed states of “metrons”,
which correspond to discretized eigenstates of the curvature
tensor. In this approach one can also try to compute particle
masses. For example for the mass of the lightest charged par-
ticle (which is interpreted as electron massme) one finds the
following formula (see Eq.(32) of [22]):

me =
3

√

32π9/4~3

c3
√
τ η4s2

0

(1)

whereη = 1/ 4
√

1+ 4/π4, s0 = 1m is the unit length,c is
the speed of light and~ = h/2π with h the Planck constant.
The derivation of Eq.(1) is not the aim of this work and can
be found in [22, 23]. A detailed discussion and a possible
phenomenological interpretation of Eq.(1) will be presented
in a future work [25].

In this work we want first of all to compute the smallest
surface elementτ including only field mass effects. To do this
we will first review the determination of the modification of
the Newton potential due to field mass effects at small dis-
tances. Our result for the smallest surface scaleτ can, after
that, be applied to compute explicitely the high energy cutoff
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kc of the quantum fluctuacions, which is generally expected
to be of the order of the Planck energy. The precise deter-
mination of the cutoff kc is what one needs, according to our
approach, for a deeper understanding of dark energy and dark
matter.

Indeed for the study of the current universe we exploit
the usual Friedmann equations for a spacially flat universe
reported in Eqs(21) and, similarly as in [20], compute the
dark energy contribution to the stress tensorTµν entirely from
quantum fluctuations on this curved background. This point
will be explained in detail in Section 4 together with the Ap-
pendix. To avoid the quartic divergence of the large cutoff kc,
we also assume, that the Minkowski space is stable,i.e. it is
imposed as a general principle to have a vanishing vacuum
energy, as it should be. This implies that the contribution
of the flat space-time has always to be subtracted from the
vacuum energy derived from the quantum fluctuations also in
a general curved space-time. We will show that according
to our interpretation of the result, we can compute the dark
energy density in very good agreement with the actual mea-
surements. In addition we will also obtain a prediction for the
equation of state parameter of the dark energyw = pvac/ρvac

from first principles using the computed cutoff kc. The com-
parison with the current measuremens will show, that even if
it is not yet possible to discriminate between “quintessence”
(−1 ≤ w < −1/3) and “phantom-energy” (w < −1) , it is
still generally possible to constrain the field content, fixing
the difference between the number of species of fermions and
bosons∆N = Nf − Nb. According to the Standard Model of
elementary particles we have that∆S M = 60 and hence our
result provides also a way to determine the minimal amount
of additional degrees of freedom, which can contribute to the
dark matter.

The paper is organized as follows. In Section 2 we explain
in detail the computation for the modified Newtonian poten-
tial due to the inclusion of field mass effects. The derivation
of the smallest surface elementτ is then shown in Section 3.
The application of these results for the computation and ex-
planation of the nature of the dark energy from vacuum fluc-
tuations and the possible influence of the result on the field
content of dark matter beyond the Standard Model follows in
Section 4. Finally we write our conclusions in Section 5.

2 The inclusion of the field mass in the static potential

In this section we want to include the effects of the inclusion
of the field mass on the Newtonian potentialφn = γm(0)/r of a
central massm(0), whereγ is the usual gravitational constant.

We denote the field mass byµ and we then assume it pro-
duces a modification of the Newtonian potentialφn, leading to
a function of the formφ = γm(r)/r, wherem(r) = m(0)+µ(r).
According to this definition we obtain for the Laplacian oper-

ator∇2
=
∂2

∂x2 +
∂2

∂y2
+
∂2

∂z2 that

∇2φ = γm(r)∇2

(

1
r

)

+
γ

r
d2µ(r)

dr2
(2)

= −4πγm(r)δ(r) +
4πγ
3

(

9V
d2µ(r)
dV2

+ 6
dµ(r)
dV

)

,

where in the second line we have used the distributional re-
lation ∇2(1/r) = −4πδ with δ the Dirac function and where
we have performed the change of variablesV = 4/3πr3. Now
it seems reasonable to normalize the contribution of the field
mass~∇ · ~G with the factor 9+ 6 = 15. At this point we notice
that if we include in Eq.(2) field mass effects, then we can put
the first term to zero becauser , 0 every time thatµ(r) and its
spacial derivative are different from zero. Inversely we have
that if we could neglect the field mass (µ = 0), then the case
r = 0 becomes in a distributional sense possible and only the
first term in Eq.(2) should be retained. The former case rep-
resents the situation we are interested in with the inclusion of
fiedl mass effewcts, while the last one is the usual Newtonian
limit.

In this way we arrive at a generalized field equation pro-
posed for the gravitational field~G in a static system:

~∇ ~G = σ
α
, (3)

with

σ =
1
15

(

9V
d2µ(r)
dV2

+ 6
dµ(r)
dV

)

(4)

α = (20πγ)−1 ,

if the influence of the field mass is considered and with

σn = −m(0)δ(r); αn = (4πγ)−1, (5)

recovering the usual Poisson equation of the Newtonian case,
if µ and its derivatives can be considered small enough to be
neglected.

The presence of a gravitational field~G associated to cen-
tral spherical source with radiusr0 and massm0 is from our
point of view not a possibility but a necessity and this should
be reflected in the fact that it is somehow produced by an
“energetic convenience”i.e. a reduction of the system en-
ergy. Hence we can write for the energy (E = m(r)c2) of the
mass-field system up to a radial coordinater from the center:

m(r)c2
= m0c2 − α

2

∫ r

r0

~G2 dV. (6)

The last term in this equation represents the field energy and
is obtained from Eqs.(3,4) in complete analogy to the energy
of the static electrical field. Now remembering that~G = ~∇φ
Eq.(6) becomes

m(r)c2
= m0c2 −

α

2

∫ r

r0

(~∇φ)2 dV. (7)
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Now performing the first derivative, taking into account that
φ = γm(r)/r and that for a spherical symmetric function
(~∇φ)2 = (dφ/dr)2, we obtain easily the following differen-
tial equation for the static potentialφ:

(

r
dφ
dr

)2

+
c2

2πγα

[(

r
dφ
dr

)

+ φ

]

= 0. (8)

This nonlinear differential equation can be easily solved view-
ing it as a quadratic equation with respect tordφ/dr, whose
solutions are:

r
dφ
dr
= − c2

4πγα















1±
√

1− 8πγα
c2
φ















. (9)

With help of the following substitution,

q = 1±
√

1− 8πGα
c2
φ, (10)

one can straightforward rewrite Eq.(9) as:

r
d(2q− q2)

dr
= −2q, (11)

which according todx/x = d ln(x) can be simplified to

d ln(rqe−q) = 0, (12)

or equivalently to
rqe−q

= A, (13)

where the integration constantA has been introduced.
We want now to fix the sign in Eq.(10) and the constant

A in Eq.(13). Assuming that forr → ∞, φ → 0, we ob-
tain immediately that the negative sign in Eq.(10) is the only
possibility. This follows from the fact that with this choice
q → 0 whenr → ∞ and only in this case remains our as-
sumption consistent with the fact that in Eq.(13)A is a nu-
merical constant. As far as the determination of the constant
A is concerned, we can fix it requiring that the classical New-
ton potentialφn = γm(0)/r will be reproduced ifφ/c2 ≪ 1.
Accordingly expanding Eq.(13) to the first order inφ/c2, we
obtain for the constantA:

A = rqe−q
= r

4πγα
c2
φn =

4πγ2α

c2
m(0). (14)

Summarizing, we obtain for the relativistic gravitationalstatic
potentialφ = γm(r)/r including field mass effects the follow-
ing implicit equation:














1−
√

1− 8πγα
c2
φ















e
√

1− 8πγα

c2 φ−1
=

4πγ2α

c2
·

m(0)

r
. (15)

From this last equation we can easily determine the smallest
allowed r-value r− from its reality condition. Indeed this is
fulfilled by Eq.(15), whenφ ≤ c2/(8πγα), which means that

r ≥ r− =
8πγ2αm(r−)

c2
. (16)
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Fig. 1: Comparison of the Newtons potentialφn (upper line) with the Heim
potentialφ defined implicitly by Eq.(15) form(0) = 1kg including relativistic
and field mass effects. The unit for the radial distancer is 10−10m.

This last result needs few words: First of all we notice that
very often for a macroscopic high density collapsing system
one can neglect the field mass such thatm(r) ≈ m(0) and
α = αn = (4πγ)−1, according to Eq.(5). In this case we obtain
for the smallest radius of a relativistic collapsing systemr− =
2γm(0)/c2, which is equal to the well known Schwarzschield
radius of the general relativity. Considering also field mass
effects typical of high density microscopic systems like par-
ticles, we have forr = r− thatq = 1 and thatα = (20πγ)−1,
according to Eq.(4). In this case we get from Eqs.(13,14),
that r− = eA = e4πγ2αm(0)/c2

= eγm(0)/5c2, showing by
comparison with Eq.(16) also thatm(r−) = em(0)/2.

In Figure 1 we compare for a massm(0) = 1kg the New-
tons potential with the Heim potentialφ including both rela-
tivistic and field mass effects. We notice that significant de-
viation accrue down to distances around 10−17m well below
current experimental limits (seee.g. [11, 26, 27] and refer-
ences therein).

3 The smallest surface scaleτ

Following the same approach adopted in [22], we want now
to derive the smallest surface elementτ. Eq.(16) fixes a lower
limit r− for the radial coordinate due to relativistic and gravi-
tational field mass effects and thus does not represent a small-
est length for the empty space-time, because it vanishes with
the massm. However a microscopic mass system should also
be characterized by its quantum behavior, which becomes im-
portant at the scale of the corresponding Compton wavelength
λc = h/(mc). Conversely we have that in this case for a van-
ishing massλc diverges. Hence if we are looking for a good
definition of the smallest surfaceτ for the empty space with
a vanishing massm, we see that the productr−τ turns out to
be well defined. In this way we arrive finally at the following

P. Bolzoni. On the smallest Surface Scale and Dark Energy 3



definition forτ:

τ = lim
m→0

r− · λc =
2hγ
5c3
=

4π
5

l2Pl, (17)

where we have used Eq.(16) and the second of Eq.(4) and
wherelPl =

√

~γ/c3 is the well known Planck length. Taking
the measured values of the constantsc andh into Eq.(17), we
find

τ ≈ 6,56536· 10−70m2. (18)

Substituting this numerical value forτ into the Heim mass
formula Eq.(1), we findme = 0.50822MeV/c2, a result which
is 0,55% below the measured value. We notice here that our
result for the smallest surface scale of Eq.(17) differs by a
factor 16/15 from the one obtained by Heim in [22] as al-
ready mentioned in the Introduction. The correspondig pre-
diction for the electron mass would in this case beme =

0.51371MeV/c2, which is this time 0,53% above the mea-
sured value. The origin of this difference is due to additional
assumptions concerning possible speculative contributions to
the rotor of the gravitational field~G.

In any case there is to our knowledge no better theoretical
prediction of the electron mass from first principles than the
one given in Eq.(1) and for this reason we assume reasonably

lmin =
√
τ (19)

to be also a good definition for the minimal length, for esti-
mating the natural cutoff for the quantum fluctuations. Indeed
to this purpose we propose to substitute in the usual uncer-
tainty principle∆x · ∆p ≥ ~/2 the position uncertainty∆x
with lmin of Eq.(19 )and the momentum uncertainty∆p with
the UV momentum cutoff kc/c. In this way and assuming
a minimal uncertaicy for the higher energy fluctuations, we
obtain

kc =
~c

2
√
τ
=

√

5
π

EPl

4
, (20)

whereEPl =
√

~c5/γ is the Planck energy.

4 A possible description of the dark sector

In this Section we want to investigate the cosmological con-
sequences of our result obtained in Eq.(20). A few years ago
a new approach in considering the zero-point energy fluctu-
ations of the quantum fields has been proposed in [20]. Ac-
cording to their method it was possible to obtain a consistent
formula for the computation of the cosmological dark energy
densityρvac entirely from vacuum energy quantum fluctua-
tions. The basic additional principles of the authors in [20]
are that the empty Minkowski space should be gravitational
stable (ρvac = 0), that our universe is spatially flat and that the
vacuum stress energy tensor should have the form< Tµν >=
−ρvacgµν with ρ̇vac = 0. These are the usual properties as-
sumed in the Standard Model of Cosmology, theΛCDM-
model, for the cosmological constant. Following [20], we

remind the reader that according to the Friedmann equations,

( ȧ
a

)2

=
8πγ
3c2
ρ

( ȧ
a

)2

+ 2
ä
a
= −

8πγ
c2

p, (21)

one can easily check that

ρ̇vac = −3
( ȧ
a

)

(ρvac + pvac), (22)

This implies that puttingpvac = wρvac with w = −1, for the
vacuum energy equation of state one satisfies simultaneously
the constraints ˙ρvac = 0 and< Tµν >= −ρvacgµν and hence
also∇µ < Tµν >= 0 with ∇µ the usual covariant derivative.
The result computed in [20] is:

ρvac =
g c2

8πγ

(

( ȧ
a

)2

+ 2
ä
a

)

(23)

with

g =
3γ

8π~c5
∆Nk2

c, (24)

where∆N = Nf − Nb is the difference between the number
of species of fermions and bosons andkc is an UV-cutoff.
The reader can find in the Appendix a detailed derivation of
Eq.(23). Now substitutingpvac = wρvac with ρvac given by
Eq.(23) into the second of Eqs.(21), remembering that for non
relativistic matterpm = 0 and neglecting the relativistic radi-
ation density, which is a factor∼ 10−5 smaller than the total
energy density, one can very easily check that

w = −1
g
. (25)

Clearly this result is consistent with the assumptions of [20]
outlined at the beginning of this section only ifg = 1.

In our study we relax the constraintg = 1 of [20] allow-
ing more general and exotic possibilities, which deviates from
the usual cosmological constant vacuum energy scenario with
w = −1. Obviously, according to the actual experimental
observations, a realistic description of the dark energy im-
poses that the deviations ofg from the unity are expected to
be small. Indeed taking recent fits from the observations of
Type Ia supernovae dynamics [28, 29] of the HZSN and the
the SCP collaborations we can estimate that

( ä
a

)

t=t0
≈ 0.58H2

0, (26)

wheret0 is the actual time andH0 the actual Hubble constant.
One can check this result for example computing the time
derivatives of the fitting function for the scale factora(t) in
Eq.(26.82a) in the book of Thomas Müller [30]. Although
this is only a qualitative argument, because the specific fitted
function of [30] is model dependent, it provides anyway a
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plausible estimation of the correct value. Substituting this
result in Eq.(23), and using the usual definition for the critical
densityρc0 = 3c2H2

0/(8πγ), we obtain

Ωvac0 =
ρvac0

ρc0
≈ g ·

1+ 2 · 0.58
3

≈ g · 0.7, (27)

which with g ≈ 1 is in quite good agreement with recent
analysis from CMB measurements [31, 32], considering the
experimental uncertainties in Eq.(26).

We have already shown that Eq.(23) satisfies the second
of Eqs.(21) with the identificationg = −1/w. We want now
to discuss the solution of the first of Eqs.(21) for the scale
parametera(t) in the more general caseg , 1. To this purpose
we put the expression of the vacuum energy given in Eq.(23)
into the first of of Eqs.(21) and thus we get the following
differential equation for the scale factora(t):

(

1−
g

3

) ( ȧ
a

)2

−
2g
3

ä
a
= H2

0
Ωm0

a3
, (28)

where as usualΩm0 = ρm0/ρc0, ρm = ρm0/a3 and where
Ωrad 0 has been again neglected. Performing now the change
of variables,

w(a) = aȧ2, (29)

one has that Eq.(28) becomes a first order linear differential
equation inw, whose solution is given by

w(a) = Ωm0H2
0 + (1−Ωm0)a3/gH2

0, (30)

where the usual initial conditionsa0 = a(t0) = 1 andw0 =

w(a0) = H2
0 have been imposed. According to this result and

treating Eq.(29) as a separable variables differential equation,
we can rewrite and integrate it as follows:
∫ a

a0

da
√

Ωm0a−1 + (1−Ωm0)a−(1−3/g)
= H0(t − t0), (31)

again with the initial conditiona0 = a(t0) = 1. This integral
represents the general solution to the Friedmann equations
with the presence of matter withwm = 0 and dark energy with
wΛ = −1/g as expected by consistency. To our knowledge
there is not a simple general analytic expression that solves
the integral in Eq.(31) forg , 1. However a very simple
solution can be obtained at early times (a ≪ a0), when the
universe was matter dominated, and at later times (a ≫ a0),
when the universe will be dark energy dominated:

ag(t) ∝ t2/3; a≪ a0; (32)

ag(t) ∝
[

1+
3(g − 1)

2g

√

1−Ωm0H0(t − t0)

]
2g

3(g−1)

; (33)

a≫ a0.

Consistently in the limitg → 1 we obtain the later times
behavior of theΛCDM model according to whicha(t) ∝

exp
[√

1−Ωm0H0(t − t0)
]

. For the case 0< g < 1 we have
that the scale factorag(t) rapidly expands and diverges in the
finite time t = 2g/[3(1 − g)

√
1−Ωm0H0] + t0, producing a

“Big Rip” as it is well known in the case that dark energy is
phantom energy [33].

After that we come back to the physical interpretation of
Eq.(24). First of all we substitute the computed result for
the cutoff kc of Eq.(20) into Eq.(24) and with Eqs.(25,27) we
obtain that

w = −128π2

15∆N
; Ωvac0 ≈

21∆N
256π2

. (34)

This is the main result of our paper. We can fix∆N trying
to satisfy the constraintw = −1 as accurately as possible.
According to this point of view, we would find that,

w = −1.0026 for ∆N = 84, (35)

expecting for this case at least 24 additional fermionic de-
grees of freedom. In [20] the authors have shown that for the
Standard Model of elementary particles∆NS M = 60. This
possibility would suggest aphantom energyinterpretation of
the dark energy and Eqs.(27,34) would giveΩvac0 ≈ 0,7.

Finally we notice, that both the result for the equation of
statepvac = wρvac predicted in Eq.(35) and the dark energy
density obtained by Eq.(27) are in agreement with the exper-
imental measurements. However with the actual uncertain-
ties it is not yet possible to discriminate all the possibilities
above∆N ∼ 82 and below∆N ∼ 92. Furthermore according
to the result found in [22] that we discussed below Eq.(17),
we would have the range between∆N ∼ 78 and∆N ∼ 86.
Hence, considering also this possibility, we expect at least
18 fermionic degress of freedom beyond the Standard Model.
They include possibly three right-handed neutrinos responsi-
ble for the neutrino masses and three spin-1/2 fermion con-
tributing to the dark matter. For this last discussion we have
compared with the central values ofw reported in chapter 27
of [35].

5 Conclusions

Summaryizing, we have firstly reviewed the computation of
the modified Newtonian potential coming from the inclusion
of the so called field mass effects. This fullfills also a gap
in the literature, because the original works were written in
German [22, 23] and we have also taken the opportunity to
correct some typos present in the original version. Without
any additional assumption and limiting ourselves to the small
distance effects, we could find for the smallest surface ele-
mentτ = 2hγ/5c3 of the empty space-time. Imposing this
result to the scale length of the quantum fluctuations we com-
puted a natural UV-cutoff kc for the modes of the zero point
energy findingkc = EPl/4

√
5/π, whereEPl =

√

~c5/γ is
the Planck energy. Substituting this result into the formula
of Bernard and LeClair for the cosmological constant given
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in [20], we obtained the resultw = −128/15π2
∆N for the dark

energy equation of statepvac = wρvac, where∆N = Nf −Nb is
the difference between the number of species of fermions and
bosons. we found also that andw= − 1,0026 with∆N = 84
andΩvac0 ≈ 21∆N/256π2

= 0,7. More generally compar-
ing with the recent experimental determinations ofw [35], we
found that the number of additional fields beyond the Stan-
dard Model should at least include 18 fermionic degrees of
freedom (implying∆N = 78), just enough to have three mas-
sive neutrinos and three additional 1/2-spin, explaining the
dark matter. We found also that∆N, according to the actual
experimental constraints, should be bounded from above by
92.

Appendix

In this Appendix we compute the result for the vacuum en-
ergy from quantum fluctuations given in Eq.(23). We start
with the action of a single bosonic field on a curved back-
ground:

Sb
=

∫

dtd3x
√
−g1

2

(

−∂µφ ∂µφ −m2φ2
)

, (36)

whereg is the determinant of metricgµν. We take as back-
groung the FLRW-metric in the case of a spacially flat uni-
verse

ds2
= −dt2 + a2(t)(dx2

+ dy2 + dz2), (37)

thus implying thatgµν = diag(−1,a2,a2,a2) and that thatg =
−a6. Before proceeding with the canonical quantization of
the field, we first perform the change of variableφ = χ/a3/2,
in oder to remove the time dependence appearing in the mea-
sure of the integral action coming fromg. Indeed in this way
one obtains after some algebra that the action in Eq.(36) be-
comes

Sb
=

∫

dtd3x
1
2

(

(∂tχ)
2 −

1
a2

(~∇χ)2 − (m2 −A)χ2

)

, (38)

where

A = 3
4

(

( ȧ
a

)2

+ 2
ä
a

)

. (39)

The corresponding equation of motion for the fieldχ is then

∂2
t χ −

1
a2
∇2χ + (m2 −A)χ = 0. (40)

We rewrite now the fieldχ as a Fourier integral with a rela-
tivistic invariant measure

χ =

∫

d3k
√

(2π)32ωk/a

(

a~ku~k(t)e
i~k·~x
+ a†
~k
u∗
~k
(t)e−i~k·~x

)

, (41)

where

ω2
k/a =

k2

a2
+m2 −A, (42)

wherea†
~k
,a~k are the usual creation and annihilation opera-

tors of a particle state with momentum~k and whereu~k is
a time dependent function. Substituting the Fourier integral
into Eq.(40) one obtains foru~k the following equation:

(∂2
t + ω

2
k/a)u~k(t) = 0. (43)

In the so called “adiabatic limit” one assumes that the time
dependence ofωk/a can be neglected in our actual universe
and one can easily find the solution to Eq.(43), which is

u~k(t) = u~k e−iωk/at. (44)

After that performing a Legendre transformation of the La-
grangian in the action forχ Eq.(38) and substituting Eq.(41)
together with Eq.(44) into it, one finds for the Hamiltonian

Hb
=

∫

d3x
1
2

(

(∂tχ)
2
+

1
a2

(~∇χ)2
+ (m2 −A)χ2

)

(45)

=
1
2

∫

d3kωk/a(a†
~k
a~k + a~ka

†
~k
). (46)

Repeating a similar computation for a fermionic field one
obtains

H f
=

1
2

∫

d3kωk/a(b†
~k
b~k − b~kb

†
~k
). (47)

We introduce now the usual commutation (anticommuta-
tion) relations for bosons (fermions):

[a~k,a
†
~k′
] =
{

b~k,b
†
~k′

}

= δ3(~k− ~k′) =
∫

d3x
(2π)3

ei(~k−~k′)·~x, (48)

where we have also added the integral representation of the
Dirac function. Remembering thata~k|vac>= b~k|vac>= 0 for
the vacuum state|vac> and using the relations in Eq.(48) one
gets

ρ
b( f )
vac,0 ≡

1
a3V0

< vac|Hb( f )|vac>= ±δ3(~0)
2V0

∫

d3kωk, (49)

where the change of variables~k → ~k/a has been performed
and where+ has to be chosen for bosons and− has to be
chosen for fermions. According to the last equality in Eq.(48)
one has thatδ3(~0) = V0/(2π)3 and Eq.(49) becomes

ρ
b( f )
vac,0 = ±

1
16π3

∫

d3kωk. (50)

Now as mentioned in the Introduction, one has to subtract
from it the contribution from the flat space-time (A = 0) and
the vacuum energy contributions to dark energy becomes:

ρ
b( f )
vac = ±

1
16π3

∫

d3k
(

√

k2 +m2 −A −
√

k2 +m2
)

, (51)

where Eq.(42) has been used. Finally remembering thatd3k =
k2dksin(θ)dθdφ, introducing the large cutoff kc to regulate the
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integral and consideringNf fermionic andNb bosonic fields,
one obtains at the leading order

ρvac = Nf ρ
f
vac + Nbρ

b
vac =

∆Nk2
cA

16π2
+ . . . , (52)

where∆N = Nf − Nb and where the additional terms are all
suppresed by powers of 1/k2

c. As a last step one can easily
check that Eq.(52) coincides with Eq.(23).
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