On the Navier–Stokes equations

Daniel Thomas Hayes

February 21, 2019

The millennium problem on the existence and smoothness of the Navier–Stokes equations is considered.

1. Problem description

The Navier–Stokes equations are thought to govern the motion of a fluid in \mathbb{R}^3 , see [1]. Let $\mathbf{u} = \mathbf{u}(\mathbf{x}, t) \in \mathbb{R}^3$, $p = p(\mathbf{x}, t) \in \mathbb{R}$ be the velocity and pressure, each dependent on position $\mathbf{x} \in \mathbb{R}^3$ and time $t \ge 0$. We take the externally applied force to be identically zero. The fluid is assumed to be incompressible with constant viscosity $\nu > 0$ and to fill all of \mathbb{R}^3 . The Navier–Stokes equations can then be written as

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla p, \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

with initial condition

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}_0 \tag{3}$$

where $\mathbf{u}_0 = \mathbf{u}_0(\mathbf{x}) \in \mathbb{R}^3$. In these equations $\nabla = (\frac{\partial}{\partial \mathbf{x}_1}, \frac{\partial}{\partial \mathbf{x}_2}, \frac{\partial}{\partial \mathbf{x}_3})$ is the gradient operator and $\nabla^2 = \sum_{i=1}^3 \frac{\partial^2}{\partial \mathbf{x}_i^2}$ is the Laplacian operator. When $\nu = 0$, equations (1), (2), (3) are called the Euler equations. Solutions of (1), (2), (3) are to be found with

$$\mathbf{u}_0(\mathbf{x} + e_j) = \mathbf{u}_0(\mathbf{x}) \text{ for } 1 \le j \le 3$$
(4)

where $e_1 = \mathbf{i} = (1, 0, 0), e_2 = \mathbf{j} = (0, 1, 0), e_3 = \mathbf{k} = (0, 0, 1)$. The initial condition \mathbf{u}_0 is a given C^{∞} divergence-free vector field on \mathbb{R}^3 . A solution of (1), (2), (3) would then be accepted to be physically reasonable if

$$\mathbf{u}(\mathbf{x} + e_j, t) = \mathbf{u}(\mathbf{x}, t), \quad p(\mathbf{x} + e_j, t) = p(\mathbf{x}, t) \text{ on } \mathbb{R}^3 \times [0, \infty) \text{ for } 1 \le j \le 3$$
(5)

and

$$\mathbf{u}, p \in C^{\infty}(\mathbb{R}^3 \times [0, \infty)).$$
(6)

I provide a proposed proof of the following statement (B), see [2].

(B) Existence and smoothness of Navier–Stokes solutions in $\mathbb{R}^3/\mathbb{Z}^3$.

Take $\nu > 0$. Let \mathbf{u}_0 be any smooth, divergence-free vector field satisfying (4). Then there exist smooth functions \mathbf{u} , p on $\mathbb{R}^3 \times [0, \infty)$ that satisfy (1), (2), (3), (5), (6).

To prove statement (B), it is sufficient to provide a proof that rules out the possibility that there is a smooth, divergence-free \mathbf{u}_0 for which (1), (2), (3) have a solution with a finite blowup time, see [2].

2. Proof of statement (B)

Let the exponential series of \mathbf{u} , p be

$$\tilde{\mathbf{u}} = \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \mathbf{a}_{\mathbf{L}} e^{k\mathbf{L}\cdot\mathbf{x}},\tag{7}$$

$$\tilde{p} = \sum_{\mathbf{L}=\mathbf{0}}^{\infty} b_{\mathbf{L}} e^{k\mathbf{L}\cdot\mathbf{x}}$$
(8)

respectively. Here $\mathbf{a}_{\mathbf{L}} = \mathbf{a}_{\mathbf{L}}(t) \in \mathbb{R}^3$, $b_{\mathbf{L}} = b_{\mathbf{L}}(t) \in \mathbb{R}$, k > 0 is a constant, and $\sum_{\mathbf{L}=\mathbf{0}}^{\infty}$ denotes the sum over all $\mathbf{L} \in \mathbb{N}^3$. The exponential series is similar to a Taylor series. Theoretically the exponential series can recover both Taylor series and Fourier series when they converge. The initial condition is $\mathbf{u}_0 = \tilde{\mathbf{u}}|_{t=0}$ of which is convergent for all $\mathbf{x} \in \mathbb{R}^3$. Substituting $\mathbf{u} = \tilde{\mathbf{u}}$, $p = \tilde{p}$ into (1) gives

$$\sum_{\mathbf{L}=\mathbf{0}}^{\infty} \frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} e^{k\mathbf{L}\cdot\mathbf{x}} + \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} e^{k\mathbf{L}\cdot\mathbf{x}} e^{k\mathbf{M}\cdot\mathbf{x}} = \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \nu k^2 |\mathbf{L}|^2 \mathbf{a}_{\mathbf{L}} e^{k\mathbf{L}\cdot\mathbf{x}} - \sum_{\mathbf{L}=\mathbf{0}}^{\infty} k\mathbf{L} b_{\mathbf{L}} e^{k\mathbf{L}\cdot\mathbf{x}}.$$
 (9)

Equating like powers of the exponentials in (9) yields

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} + \sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} = \nu k^2 |\mathbf{L}|^2 \mathbf{a}_{\mathbf{L}} - k\mathbf{L}b_{\mathbf{L}}.$$
 (10)

Substituting $\mathbf{u} = \tilde{\mathbf{u}}$ into (2) gives

$$\sum_{\mathbf{L}=\mathbf{0}}^{\infty} k\mathbf{L} \cdot \mathbf{a}_{\mathbf{L}} e^{k\mathbf{L} \cdot \mathbf{x}} = 0.$$
(11)

Equating like powers of the exponentials in (11) yields

$$\mathbf{L} \cdot \mathbf{a}_{\mathbf{L}} = \mathbf{0}. \tag{12}$$

Applying $\mathbf{L} \times \mathbf{L} \times$ to (10) and noting the vector identity

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$$
(13)

along with (12) leads to

$$|\mathbf{L}|^2 \frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} = \sum_{\mathbf{M}=\mathbf{0}}^{\infty} \mathbf{L} \times (\mathbf{L} \times (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{a}_{\mathbf{M}}) + \nu k^2 |\mathbf{L}|^4 \mathbf{a}_{\mathbf{L}}$$
(14)

which yields

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} = \sum_{\mathbf{M}=\mathbf{0}}^{\infty} \hat{\mathbf{L}} \times (\hat{\mathbf{L}} \times (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M})\mathbf{a}_{\mathbf{M}}) + \nu k^2 |\mathbf{L}|^2 \mathbf{a}_{\mathbf{L}}$$
(15)

where $\mathbf{a}_0 = \mathbf{a}_0(0)$ and $\hat{\mathbf{L}} = \mathbf{L}/|\mathbf{L}|$ is the unit vector in the direction of \mathbf{L} . Applying \mathbf{L} to (10) and noting (12) leads to

$$|\mathbf{L}|^2 b_{\mathbf{L}} = -\sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot \mathbf{L}) (\mathbf{a}_{\mathbf{M}} \cdot \mathbf{L})$$
(16)

which yields

$$b_{\mathbf{L}} = -\sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}}) (\mathbf{a}_{\mathbf{M}} \cdot \hat{\mathbf{L}})$$
(17)

where b_0 is arbitrary. The equations for \mathbf{a}_L can then be solved for $\mathbf{L} = 0, \mathbf{i}, \mathbf{j}, \mathbf{k}, \dots, \infty$. From (10) and in light of (12) it is possible to write

$$\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} \cdot \hat{\mathbf{a}}_{\mathbf{L}} = -\sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} \cdot \hat{\mathbf{a}}_{\mathbf{L}} + \nu k^2 |\mathbf{L}|^2 \mathbf{a}_{\mathbf{L}} \cdot \hat{\mathbf{a}}_{\mathbf{L}}$$
(18)

where $\hat{\mathbf{a}}_{L} = \mathbf{a}_{L}/|\mathbf{a}_{L}|$ is the unit vector in the direction of \mathbf{a}_{L} . Equation (18) implies

$$\frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} = -\sum_{\mathbf{M}=\mathbf{0}}^{\infty} (\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k\mathbf{M}) \mathbf{a}_{\mathbf{M}} \cdot \hat{\mathbf{a}}_{\mathbf{L}} + \nu k^2 |\mathbf{L}|^2 |\mathbf{a}_{\mathbf{L}}|.$$
(19)

From (19) it is possible to write

$$\frac{\partial |\mathbf{a}_{L}|}{\partial t} \leq \sum_{\mathbf{M}=\mathbf{0}}^{\infty} |\mathbf{a}_{L-\mathbf{M}}|k|\mathbf{M}||\mathbf{a}_{\mathbf{M}}| + \nu k^{2}|\mathbf{L}|^{2}|\mathbf{a}_{L}|$$
(20)

on noting the vector identity

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta) \tag{21}$$

where θ is the angle between **a** and **b**. It then follows from (20) that

$$\sum_{\mathbf{L}=\mathbf{0}}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \sum_{\mathbf{M}=\mathbf{0}}^{\infty} |\mathbf{a}_{\mathbf{L}-\mathbf{M}}|k| \mathbf{M} ||\mathbf{a}_{\mathbf{M}}| e^{k|\mathbf{L}||\mathbf{x}|} + \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{a}_{\mathbf{L}}| e^{k|\mathbf{L}||\mathbf{x}|}$$
(22)

implying that

$$\sum_{\mathbf{L}=\mathbf{0}}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \sum_{\mathbf{M}=\mathbf{0}}^{\infty} |\mathbf{a}_{\mathbf{L}}| k |\mathbf{M}| |\mathbf{a}_{\mathbf{M}}| e^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|} + \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{a}_{\mathbf{L}}| e^{k|\mathbf{L}||\mathbf{x}|}$$
(23)

which yields

$$\sum_{\mathbf{L}=\mathbf{0}}^{\infty} \frac{\partial |\mathbf{a}_{\mathbf{L}}|}{\partial t} e^{k|\mathbf{L}||\mathbf{x}|} \leq \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \sum_{\mathbf{M}=\mathbf{0}}^{\infty} |\mathbf{a}_{\mathbf{L}}| k |\mathbf{M}| |\mathbf{a}_{\mathbf{M}}| e^{k(|\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|} + \sum_{\mathbf{L}=\mathbf{0}}^{\infty} \nu k^{2} |\mathbf{L}|^{2} |\mathbf{a}_{\mathbf{L}}| e^{k|\mathbf{L}||\mathbf{x}|}$$
(24)

on using the triangle inequality

$$|\mathbf{a} + \mathbf{b}| \le |\mathbf{a}| + |\mathbf{b}|. \tag{25}$$

Let

$$\psi = \sum_{\mathbf{L}=\mathbf{0}}^{\infty} |\mathbf{a}_{\mathbf{L}}| e^{k|\mathbf{L}|X}$$
(26)

where $X = |\mathbf{x}|$ and note that

$$|\tilde{\mathbf{u}}| \leqslant \psi. \tag{27}$$

Then (24) can be written as

$$\frac{\partial \psi}{\partial t} \le \psi \frac{\partial \psi}{\partial X} + v \frac{\partial^2 \psi}{\partial X^2}.$$
(28)

In light of [3] it is found that (28) is globally regular. Therefore blowup is ruled out via Taylor's theorem and statement (B) is true. \Box

References

[1] Batchelor, G. 1967. An introduction to fluid dynamics. Cambridge University Press: Cambridge.

[2] Fefferman, C. 2000. Existence and smoothness of the Navier–Stokes equation. Clay Mathematics Institute: official problem description.

[3] Ohkitani. K. 2008. A miscellany of basic issues on incompressible fluid equations. Nonlinearity.