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Abstract: The G8,2 Geometric Algebra, also called the

Double Conformal / Darboux Cyclide Geometric Algebra

(DCGA), has entities that represent conic sections. DCGA

also has entities that represent planar sections of Darboux

cyclides, which are called cyclidic sections in this paper.

This paper presents these entities and many operations

on them. Operations include reflection, projection,

rejection, and intersection with respect to spheres and

planes. Other operations include rotation, translation, and

dilation. Possible applications are introduced that include

orthographic and perspective projections of conic sections

onto view planes, which may be of interest in computer

graphics or other computational geometry subjects.
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1. Introduction
The G8,2 Geometric Algebra, called the Double Confor-
mal / Darboux Cyclide Geometric Algebra (DCGA), is
introduced in [1][2]. This paper presents some additional
results in DCGA for representing conic and cyclidic
sections and for operating on conic and cyclidic sections
in DCGA.

Conic sections and meet intersections were studied
in conformal geometric algebra in [3]. The following
sections of this paper elaborate on the conic and cyclidic
sections with many illustrative figures produced using
the Geometric Algebra Computing software called the
Geometric Algebra ALgorithms Optimizer Gaalop that
is introduced in [4]. In [2], it is explained how to use
the Gaalop Visualizer to visualize DCGA entities. The
Gaalop Visualizer is introduced in [5], it is based on
CLUViz [6]. At the time of writing this paper, Gaalop
appeared to be a very unique software for its ability to
render visualizations of the DCGA conic and cyclidic
section entities.

2. DCGA GIPNS section
Conformal geometric algebra in its modern form started
with the work of D. Hestenes [7]. The concepts and def-
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initions of geometric inner product null space (GIPNS)
and geometric outer product null space (GOPNS) entities
are explained in detail by Perwass in [8]. In this paper,
all geometric entities are DCGA GIPNS entities.

The DCGA GIPNS 2-vector 2D-surface entity Υ is
defined in [2] as generally being an instance of the
DCGA GIPNS 2-vector Darboux cyclide surface entity
Ω or an instance of a degenerate form of Ω.
The first degenerate forms are the DCGA GIPNS 2-
vector Dupin cyclide surface entity Φ and the DCGA
2-vector horned Dupin cyclide surface entity Γ. The
next degenerate form is the DCGA GIPNS 2-vector
parabolic cyclide surface entity Ψ. Further degenerates
of the parabolic cyclide entity Ψ are the DCGA 2-
vector quadric surface entities. The Darboux cyclide Ω
and Dupin cyclide Φ,Γ entities are generally quartic
surfaces. The parabolic cyclide Ψ entity is generally a
cubic surface.

All of the DCGA GIPNS 2D-surface entities Υ can be
intersected with a standard DCGA GIPNS 2-vector plane
entity Π or with a standard DCGA GIPNS 2-vector
sphere entity S. The DCGA GIPNS 4-vector intersection
1D-surface entity Υ ∧ Π can also be called a DCGA
GIPNS section entity

ψ = Υ ∧Π (1)

A 1D-surface on a plane is also called a plane curve.
The degree of a plane curve or section ψ depends on
the degree of the 2D-surface Υ it is cut from. A section
of a quartic surface Υ = Ω,Φ or Γ is a quartic plane
curve.
A section of a cubic surface, such as a parabolic cyclide
Υ = Ψ, is a cubic plane curve. A section of a quadric
surface, such as a cone K, is a quadratic plane curve,
also called a conic section.

A DCGA GIPNS 4-vector section 1D-surface plane-
curve entity ψ is defined as the intersection (1) of
a DCGA GIPNS 2-vector 2D-surface entity Υ and a
standard DCGA GIPNS 2-vector plane entity Π.

As a special case, if Υ is a standard DCGA GIPNS
2-vector sphere S or plane Π, then ψ = Υ ∧ Π is
either a standard DCGA GIPNS 4-vector circle entity
C or a standard DCGA GIPNS 4-vector line entity
L. These entities are special since in our model they
can be further intersected with each other, while other
entities cannot be intersected with each other. These are
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special conic sections of a standard sphere or plane.

2.1 DCGA GIPNS conic section
Conic sections are planar cuts through a quadric cone
surface. A conic section is an ellipse, parabola, hyper-
bola, line, non-parallel lines pair, or the cone vertex
point. Planar cuts through other quadric surfaces, such
as ellipsoid, hyperboloid, and paraboloid, can produce
some of the conic section quadratic plane curves, but not
all of them.

The DCGA GIPNS 4-vector conic section quadratic
1D-surface plane-curve entity κ is defined as the inter-
section

κ = K ∧Π (2)

of a DCGA GIPNS 2-vector cone quadric 2D-surface
entity K and a standard DCGA GIPNS 2-vector plane
entity Π. The cone entity K is a degenerate form of the
parabolic cyclide entity Ψ.

ellipse parabola

lineshyperbola
η χ

ρǫ

Figure 1. Conic sections: quadratic plane curves

Figure 1 shows some DCGA conic section entities
ε,ρ,η,χ rendered by the Gaalop Visualizer. The conic
section entities are intersections K ∧ Π of various
standard DCGA plane entities Π with a DCGA cone
entity K.

In [2], the ellipse ε||xy = H||z ∧ Πz=0, parabola
ρ||xy = B||z∧Πz=0, and hyperbola η||xy = J||z∧Πz=0

in the xy-plane (z = 0) are defined as the intersection
of the xy-plane Πz=0 with a z-axis aligned elliptic
cylinder H||z , parabolic cylinder B||z , and hyperbolic
cylinder J||z , respectively.

2.2 DCGA GIPNS cyclidic section
Cyclidic sections are planar cuts through Darboux cy-
clide, Dupin cyclide, and parabolic cyclide surfaces.
Since quadric surfaces are degenerate cyclides, the cy-
clidic sections are a generalization of the conic sec-
tions. Cyclidic sections through Darboux cyclides and

Dupin cyclides are quartic plane curves. Cyclidic sec-
tions through parabolic cyclides are cubic plane curves.
Conic sections through degenerate parabolic cyclides are
quadratic or linear plane curves. The general cyclidic
section can be represented by the intersection of a
Darboux cyclide and plane.

The DCGA GIPNS 4-vector cyclidic section quartic
1D-surface plane-curve entity ω is defined as the inter-
section

ω = Ω ∧Π (3)

of a DCGA GIPNS 2-vector Darboux cyclide quartic 2D-
surface entity Ω and a standard DCGA GIPNS 2-vector
plane entity Π.

The entity Ω may be a degenerate form that includes
Dupin cyclides Φ,Γ and parabolic cyclides Ψ, but not
degenerate parabolic cyclides or quadric surfaces.
A cyclidic section entity ω represents either a quartic
or cubic plane curve. A quadratic or linear plane curve
is a conic section entity κ, which may also be called a
degenerate cyclidic section.

Φ∧Π

ring Dupin cyclide Φ plane Π

cyclidic section

Figure 2. Cyclidic section: quartic plane curve.

Figure 2 shows an example of a cyclidic section that
is a quartic plane curve. The DCGA ring Dupin cyclide
Φ (R = 3, r1 = 1, r2 = 2) is cut by a DCGA plane Πi

(n = e3, d = 0) that is rotated 25◦ around the x-axis
e1 using a DCGA rotor R operation as Π = RΠiR

∼.
The cyclidic section entity is the intersection entity ω =
Φ ∧Π.

Figure 3 shows an example of a cyclidic section that
is a cubic plane curve. The DCGA GIPNS 2-vector
parabolic cyclide Ψ = SOS∼ is the DCGA GIPNS
2-vector toroid O (R = 3, r = 2) reflected in the
standard DCGA 2-vector sphere S (p = e1, r = 2).
The sphere S center point PD = D(p) is on the
toroid O surface, and the parabolic cyclide Ψ is
the inversion of the toroid O in the sphere S. The
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Figure 3. Cyclidic section: cubic plane curve.

cyclidic section Ψ ∧ Π is the intersection of the
parabolic cyclide Ψ and a standard DCGA plane Π
(n = e3, d = 0) that is rotated 25◦ around the x-axis e1.

3. Operations on DCGA GIPNS section entities
Operations on DCGA GIPNS section entities ψ include:

• reflection of any section entity ψ in a sphere S or
plane Π

• projection of any section entity ψ onto a sphere S
or plane Π

• rejection of any section entity ψ from a sphere S
or plane Π

• intersection of any section entity ψ with a sphere
S or plane Π

• and general rotation, translation, and dilation.

The reflection in a sphere is also known as inversion
in a sphere. Inversion of a curve in a sphere produces
the curve with points that are at an inverse displacement
from the sphere center point when the sphere radius is
r = 1, which is as expected. Reflection of a curve in a
plane produces the reflected image of the curve on the
far side of the reflection plane, which is also as expected.

The projection is a spherical or orthographic projec-
tion onto a sphere or plane surface, respectively. The
inversion and projection of a curve point in and onto
a sphere are collinear, on a line from the center of the
sphere to the curve point. A curve point projects onto
a sphere where the line through the curve point and its
inverse point intersects the sphere surface. The projection
line also passes through the sphere center point. A curve
point projects onto a plane where the line through the
curve point and its reflected point orthogonally intersects
the plane surface, and the projected point is midway

between the curve point and its reflected point.
The rejection is a perpendicular projection of a curve

or surface from a sphere or plane, and it emerges at
90◦ or normal to the sphere or plane when the curve
or surface and the sphere or plane have an intersection.
The rejection produces a projected curve on the surface
of a perpendicular plane or perpendicular sphere through
intersection points. The rejection of a surface from
a plane or sphere produces a rejected surface that is
perpendicular. For example, an ellipsoid that intersects
a plane can be rejected from the plane to produce an
elliptic cylinder representing the ellipse cut through the
ellipsoid by the plane.

The intersection of the section entities ψ with each
other in general, not just with standard DCGA planes,
spheres, lines, and circles, would be a very useful oper-
ation but unfortunately it does not work in our model.
The DCGA intersections rule and formula is given in
[2], which states that only a single entity that is not a
standard DCGA plane Π, sphere S, line L, or circle C
can be included in a wedge that forms an intersection
entity. This rule or limitation still applies when forming
intersections that include a DCGA GIPNS section entity
ψ. This means that it is possible to intersect any section
entity ψ = Υ∧Π with other coplanar circles C = S∧Π
and lines L = Π2 ∧Π as, for example, an intersection
entity such as Υ∧S∧Π2∧Π, which is an 8-vector. When
the common plane Π is known, it can be contracted out
of entities, and the example intersection could be written
as (ψ ·Π) ∧ (C ·Π) ∧ (L ·Π) ∧Π.

Although the operations are limited to working
against only spheres and planes, they still allow for
many interesting possibilities to produce transformed
curves and surfaces that may have scientific, technical
design and development or artistic uses. The following
subsections explore these operations in more detail,
with many illustrative figures rendered by the Gaalop
Visualizer.

3.1 Reflection
The reflection ψ′ of a DCGA GIPNS 4-vector section
1D-surface plane-curve entity ψ in a standard DCGA
GIPNS 2-vector plane entity Π is defined as

ψ′ = ΠψΠ∼. (4)

The reflection, also called the inversion, ψ′ of a DCGA
GIPNS 4-vector section 1D-surface plane-curve entity ψ
in a standard DCGA GIPNS 2-vector sphere entity S is
defined as

ψ′ = SψS∼. (5)

Figure 4 shows the reflection (inversion) of a cyclidic
section in a sphere.
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Figure 4. Reflection (inversion) of cyclidic section in sphere

3.2 Projection
The projection ψ′ of a DCGA GIPNS 4-vector section
1D-surface plane-curve entity ψ onto a standard DCGA
GIPNS 2-vector plane entity Π is defined as

ψ′ = (ψ ·Π)Π−1 = (ψ ·Π)Π∼. (6)

The projection ψ′ of a DCGA GIPNS 4-vector section
1D-surface plane-curve entity ψ onto a standard DCGA
GIPNS 2-vector sphere entity S with radius r is defined
as

ψ′ = (ψ · S)S−1 =
1

r4
(ψ · S)S∼. (7)
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Figure 5. Projection of cyclidic section onto sphere

Figure 5 shows the projection of a cyclidic section
onto a sphere.

3.3 Rejection
The rejection ψ′ of a DCGA GIPNS 4-vector section
1D-surface plane-curve entity ψ from a standard DCGA
GIPNS 2-vector plane entity Π is defined as

ψ′ = (ψ ∧Π)Π−1 = (ψ ∧Π)Π∼. (8)

The rejection ψ′ of a DCGA GIPNS 4-vector section
1D-surface plane-curve entity ψ from a standard DCGA
GIPNS 2-vector sphere entity S with radius r is defined
as

ψ′ = (ψ ∧ S)S−1 =
1

r4
(ψ ∧ S)S∼. (9)
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Figure 6. Rejection of cyclidic section from sphere

Figure 6 shows the rejection of a cyclidic section from
a sphere.

It may be difficult to see from the figure, but the
rejection curve (red) intersects through the sphere at a
90◦ angle to the surface.
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Figure 7. Rejection of cyclidic section from plane

Figure 7 shows the rejection of a cyclidic section
from a plane.

3.4 Commutator and anti-commutator projections
The geometric product AB can be written as the sum



of the anti-symmetric commutator product × and the
symmetric anti-commutator product ×̄ as

AB =
1

2
(AB −BA) +

1

2
(AB + BA) (10)

= A×B + A×̄B. (11)

Given a cyclidic section ψ and a sphere S (or a plane),
then

ψ = ψSS−1 (12)

=

(
1

2
(ψS− Sψ) +

1

2
(ψS + Sψ)

)
S−1 (13)

= (ψ × S)S−1 + (ψ×̄S)S−1. (14)

The commutator projection of ψ onto S can be defined
as

ψ′ = (ψ × S)S−1 (15)

and the anti-commutator rejection of ψ from S can be
defined as

ψ′ = (ψ×̄S)S−1. (16)

As an example, the next figure looks at a parabola and its
reflection, projection, rejection, commutator projection,
and anti-commutator rejection with respect to a sphere.
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Figure 8. Spherical operations on a parabola

Figure 8 shows spherical operations on a parabola.
The sphere S, not rendered, is enclosed in the green cir-
cle and is shaded magenta. The parabola ρ is constructed
as the intersection of a z-axis aligned parabolic cylinder
B||z and the xy-plane Πz=0.

If the plane Πz=0 is contracted out of any of the
projection or rejection plane curves, then the result is
a surface that contains the plane curve. For example, the
anti-commutator rejection plane curve can be turned into
a DCGA GIPNS 2D-surface Υ as

Υ = Πz=0 · ((ρ×̄S)S−1) (17)
= Πz=0c((ρ×̄S)S−1). (18)

3.5 Intersection
As explained in [2], all DCGA entities can be intersected
only with standard DCGA spheres S and planes Π. The
standard DCGA line L = Π2∧Π and circle C = S∧Π
entities are constructed from standard sphere S and plane
Π entities. The set S = {S,Π} includes all instances
of the standard bi-CGA GIPNS 2-vector entities, which
are spheres and planes. All of the plane-curve section
entities ψ = Υ ∧ Π can be intersected with coplanar
lines L = Π2 ∧ Π and circles C = S ∧ Π, but in
our model not with any other types of coplanar curves.
Coplanar curves may intersect in four or less points in
the plane Π.

The DCGA GIPNS 6-vector intersection X of a
DCGA GIPNS 4-vector section 1D-surface plane-curve
entity ψ = Υ ∧ Π and a coplanar standard DCGA
GIPNS 4-vector line L = Π2 ∧ Π in the plane Π is
defined as

X = (ψ ·Π) ∧ (L ·Π) ∧Π (19)
' Υ ∧Π2 ∧Π. (20)

The DCGA GIPNS 6-vector intersection X of a DCGA
GIPNS 4-vector section 1D-surface plane-curve entity
ψ = Υ ∧ Π and a coplanar standard DCGA GIPNS
4-vector circle C = S ∧Π in the plane Π is defined as

X = (ψ ·Π) ∧ (C ·Π) ∧Π (21)
' Υ ∧ S ∧Π. (22)

If γ1 = (B1 ∈ S) ∧ Π and γ2 = (B2 ∈ S) ∧ Π
are standard DCGA GIPNS 4-vector circle C or line L
entities in the plane Π, then their DCGA GIPNS 8-vector
intersection X with a coplanar DCGA GIPNS 4-vector
section 1D-surface plane-curve entity ψ = Υ ∧Π can
be defined as

X = (ψ ·Π) ∧ (γ1 ·Π) ∧ (γ2 ·Π) ∧Π (23)
' Υ ∧B1 ∧B2 ∧Π. (24)

4. Applications
4.1 Orthographic projection of a conic section
The orthographic projection κortho of a DCGA GIPNS
4-vector conic section entity κ = K∧Πκ onto a standard
DCGA GIPNS 2-vector plane Π is defined as

κortho = (κ ·Π)Π−1. (25)
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Figure 9. Orthographic projection of ellipse

Figure 9 shows an orthographic projection κortho of
an ellipse κ = ε onto a view plane Π = Πz=0. The
ellipse ε, which is constructed as the intersection of an
ellipsoid and a plane, is rotated by 45◦ around the y-axis.

4.2 Perspective projection of a conic section
The perspective projection κpersp of a DCGA GIPNS 4-
vector conic section entity κ = K∧Πκ onto a standard
DCGA GIPNS 2-vector plane Π from the view point
p = xe1 + ye2 + ze3 represented by a standard DCGA
GIPNS 2-vector sphere S with center PD = D(p) can
be defined as

κpersp = (((κ · S)S−1) · S) ∧Π (26)
= (Sc((κ · S)S−1)) ∧Π (27)
= Kp ∧Π. (28)

The conic section κ is projected onto the sphere S as
κ′ = (κ · S)S−1. The sphere S is contracted out of κ′

to form a cone Kp = κ′ · S = Scκ′. The cone Kp has
vertex point PD = D(p) and it contains both curves κ
and κ′. The cone Kp is intersected with any view plane
Π to form the perspective projection. The radius r 6= 0
of sphere S is arbitrary, but r = 1 could be assumed.

It is also possible to use the reflection SκS−1 and
define κpersp as

κpersp = ((SκS−1) · S) ∧Π (29)
= (Sc(SκS−1)) ∧Π (30)
= Kp ∧Π. (31)

Figure 10 shows a perspective projection κpersp of
a parabola κ = ρ onto a view plane Πz=−1 from a
view point (or eye point) p = e1 + e2 + e3 at the
center PD = D(p) of a sphere S. The sphere S, not
rendered, is shaded. The parabola ρ is constructed as
the intersection of a z-axis aligned parabolic cylinder
B||z and the xy-plane Πz=−2.
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