SUPREME and Quantum Cosmology

Miguel A. Sanchez-Rey

Abstract
Assert the dominance of SUPREME using quantum topology at the cosmological scale.

November 24th, 2016
SUPREME and Quantum Cosmology

SUPREME is understood to be a homogenous topology. By homogenous topology one means a diffeomorphic mapping from the target space to the base space; vice versa [1]. That is from external control to internal control; vice versa [2].

Take a quantum topology to be a Hilbert space from Bra space to Ket space:

\[\langle p_2, 101, p_1 \rangle \] call the vacuum quantum state. A cosmological quantum topology is now understood to be a cosmological wave-function embedded in quaternion space [3].

One then demonstrates that the quantum cosmological wave-function, denoted as \(\Psi \), can be split into individual wave-packets in which the product of such individual wave-functions is equal to \(\Psi \). Then at the vacuum state: \(\Psi = 0 \). Then giving the splitting of such wave-function into its direct product of Hilbert space in quaternion space of homological algebra:

\[\Psi = \psi_\epsilon \bigoplus_{i=1}^{\infty} H \]

Then the measure [or probability amplitude] is calculated as: \(M = \int \Psi \) in which \(M = \emptyset \) in metaspace [4, 5]. Such that \(\Psi = \emptyset \) internal control and \(M = \emptyset \) is external control; and the inverse, is a diffeomorphic mapping.

Each region on a quantum manifold can be said to be sheave of a super-manifold. Such that:

\[\Psi \epsilon R^{1/4} \] so that giving an individual topological manifold one can cut such a topological super-manifold into individual sub-manifolds and carefully rearrange them in accordance with re-arranging the individual wave-functions in quaternion space.
References

