Redefine the International System of Units

Through its measurements of Planck’s constant, a quantity at the heart of quantum physics, the NIST-4 watt balance is contributing to an effort to define all base measurement units in terms of fundamental constants of nature. [4]

The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity.

The magnetic induction creates a negative electric field, causing an electromagnetic inertia responsible for the relativistic mass change; it is the mysterious Higgs Field giving mass to the particles.

The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate by the diffraction patterns. The accelerating charges explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Relativistic Quantum Theories.

Contents
Preface .. 2

 Popular questions about the Higgs Field and General Relativity ... 2
 How can we answer these questions? ... 2

Universe’s Constants Now Known with Sufficient Certainty to Completely Redefine the International System of Units .. 3

 The Classical Relativistic effect .. 4
 The Relativistic Quantum Mechanics ... 4
 The Heisenberg Uncertainty Relation ... 5
 The General Relativity - Electromagnetic inertia and mass .. 5
 Electromagnetic Induction .. 5
 Relativistic change of mass .. 5
 The frequency dependence of mass .. 5
 Electron – Proton mass rate ... 5
 The weak interaction .. 5
 The General Weak Interaction ... 7
Popular questions about the Higgs Field and General Relativity:

1.) If the Higgs field is responsible for imbuing particles with mass, and mass is responsible for gravity, is it possible that the Higgs field will provide the missing link between general relativity and quantum mechanics i.e. could the Higgs field be the basis of a quantum theory of gravity?

2.) Can the theoretical Higgs Field be used as the “cause” of relativistic momentum or relativistic kinetic energy of a moving body?

3.) Does Einstein’s General Relativity need to be adjusted for the Higgs field?

4.) Since the Higgs field gives most particles mass, and permeates all space, then GR needs the Higgs field to be a theory of space?

5.) So where GR is highly curved, the Higgs field is also curved? And does a highly curved Higgs field affect the way particles acquire mass? For that matter, a curved space-time would also curve electromagnetic field?

How can we answer these questions?

Discovering the magnetic effect of the electric current from the observed effects of the accelerating electrons - causing naturally the experienced changes of the electric field potential along the electric wire - the accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. [1]

Another bridge between the classical and quantum mechanics in the realm of relativity is that the charge distribution is lowering in the reference frame of the accelerating charges linearly: \(ds/dt = at \) (time coordinate), but in the reference frame of the current it is parabolic: \(s = a/2 t^2 \) (geometric coordinate).

One origin of the Quantum Physics is the Planck Distribution Law of the electromagnetic oscillators, giving equal intensity for 2 different wavelengths on any temperature. Any of these two wavelengths
will give equal intensity diffraction patterns, building different asymmetric constructions, for example proton - electron structures (atoms), molecules, etc. Since the particles are centers of diffraction patterns they also have particle – wave duality as the electromagnetic waves have. [2]

The Electroweak Interaction shows that the Weak Interaction is basically electromagnetic in nature. The arrow of time shows the entropy grows by changing the temperature dependent diffraction patterns of the electromagnetic oscillators.

Universe’s Constants Now Known with Sufficient Certainty to Completely Redefine the International System of Units

Fundamental constants are physical quantities that are universal in nature. For example, the speed of light in vacuum and the charge of a single electron are the same everywhere in the universe. That is why scientists would like to use invariant quantities of nature to define the seven base measurement units of the International System of Units (SI), or the modern metric system, rather than to rely on measurements of physical artifacts.

According to a recent evaluation and update of the values of the fundamental constants by researchers at the National Institute of Standards and Technology (NIST), the uncertainties in measurements of the constants have now been reduced to such exceedingly low levels that all of the SI units can now be linked to them.

This new and redefined SI will benefit science, technology, industry and commerce by helping to ensure the long-term stability of these base units and the entire international measurement system.

The latest update (link is external) of the values of the fundamental constants was authored by NIST’s Peter Mohr, David Newell and Barry Taylor, who lead the international Task Group on Fundamental Constants (link is external) of the Committee on Data for Science and Technology (link is external) (CODATA). This task group updates the values every four years. The new quantities represent the latest comprehensive adjustment of values of the constants. In the summer of 2017, the task group will perform a special update to produce the final values for four fundamental constants to be adopted in the fall of 2018 by an international body known as the General Conference on Weights and Measures (link is external) (Conférence Générale des Poids et Mesures, or CGPM).

The seven base units in the SI are the meter, kilogram, second, ampere (a measure of electric current), kelvin (a measure of temperature), mole (a measure of the amount of a substance) and candela (a measure of luminous intensity). The goal of the new SI is to define all of these units completely in terms of fundamental constants with exact values. Some constants, such as the speed of light, are currently defined in this way, as exact quantities.

Examples of fundamental constants range from the magnitude of the elementary charge of a single electron or proton to the extraordinary number of particles in one mole of a substance, described by the Avogadro constant. Another example is the Planck constant, a quantity at the heart of quantum physics that will be used to redefine the kilogram as an invariant property of nature instead of a standard platinum-iridium cylinder.
The evaluation and update reduce the uncertainties in both the Planck and Avogadro constants by almost four times compared to the previous evaluation, to just 12 parts per billion. These uncertainties decreased by reconciling measurements in different “watt-balance” devices around the world and new highly accurate X-ray measurements of a softball-sized sphere of silicon that is a nearly perfect crystal and is made almost entirely of the same isotope of silicon (99.9995 percent silicon-28). The update reduces the relative uncertainty by almost two times, to 0.6 parts per million, for the Boltzmann constant, which can be used to determine the amount of energy in a gas at a certain temperature.

“The reduced uncertainties in these four fundamental physical constants are very significant,” said NIST chemist Donald Burgess, co-editor of the Journal of Physical and Chemical Reference Data (JPCRD). “These now ultra-small uncertainties in the constants will allow the CGPM to revise the International System of Units so that the seven base units will be exactly defined in terms of fundamental constants. In turn, many equations that describe the laws of nature—such as the relationship between energy and temperature as expressed through Boltzmann’s constant—will now be exact and not depend on measurement units that have inherent uncertainties because of the way that they are currently defined.”

This update of the fundamental physical constants is appearing in both the JPCRD (link is external) (published by the American Institute of Physics) and the Reviews of Modern Physics (link is external) (published by the American Physical Society). The JPCRD came into existence as a consequence of an act of Congress, the Standard Reference Data Act of 1968 (Public Law 90-396), which gave NIST the primary responsibility in the federal government to make critically evaluated scientific and technical reference data available to scientists, engineers and the general public. [4]

The Classical Relativistic effect
The moving charges are self maintain the electromagnetic field locally, causing their movement and this is the result of their acceleration under the force of this field. In the classical physics the charges will distributed along the electric current so that the electric potential lowering along the current, by linearly increasing the way they take every next time period because this accelerated motion.

The Relativistic Quantum Mechanics
The same thing happens on the atomic scale giving a dp impulse difference and a dx way difference between the different part of the not point like particles.

Commonly accepted idea that the relativistic effect on the particle physics it is the fermions' spin - another unresolved problem in the classical concepts. If the electric charges can move only with accelerated motions in the self maintaining electromagnetic field, once upon a time they would reach the velocity of the electromagnetic field. The resolution of this problem is the spinning particle, constantly accelerating and not reaching the velocity of light because the acceleration is radial.
The Heisenberg Uncertainty Relation
I think that we have a simple bridge between the classical and quantum mechanics by understanding the Heisenberg Uncertainty Relations. It makes clear that the particles are not point like but have a dx and dp uncertainty.

The General Relativity - Electromagnetic inertia and mass

Electromagnetic Induction
Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1]

Relativistic change of mass
The increasing mass of the electric charges the result of the increasing inductive electric force acting against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the inductive electric force acting against the decreasing force. This is the relativistic mass change explanation, especially importantly explaining the mass reduction in case of velocity decrease.

The frequency dependence of mass
Since $E = hv$ and $E = mc^2$, $m = hv / c^2$ that is the m depends only on the v frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m_i inertial mass is the result of the spin, since this is the only accelerating motion of the electric charge. Since the accelerating motion has different frequency for the electron in the atom and the proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, giving equal intensity of radiation.

Electron – Proton mass rate
The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other – can be seen as a gravitational force. [2]

There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

The weak interaction
The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry. The Electroweak Interaction shows that the Weak Interaction is basically electromagnetic
in nature. The arrow of time shows the entropy grows by changing the temperature dependent
diffraction patterns of the electromagnetic oscillators.

Another important issue of the quark model is when one quark changes its flavor such that a linear
oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This
kind of change in the oscillation mode requires not only parity change, but also charge and time
changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino.

The right handed anti-neutrino and the left handed neutrino exist only because changing back the
quark flavor could happen only in reverse, because they are different geometrical constructions, the
u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs
also a time reversal, because anti particle (anti neutrino) is involved.

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for
example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction
changes the entropy since more or less particles will give more or less freedom of movement. The
entropy change is a result of temperature change and breaks the equality of oscillator diffraction
intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and
makes possible a different time dilation as of the special relativity.

The limit of the velocity of particles as the speed of light appropriate only for electrical charged
particles, since the accelerated charges are self maintaining locally the accelerating electric force.
The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is
the time coordinate not works as in the electromagnetic interactions, consequently the speed of
neutrinos is not limited by the speed of light.

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of
thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the
weak interaction, for example the Hydrogen fusion.

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional
oscillation by changing d to u quark and creating anti neutrino going back in time relative to the
proton and electron created from the neutron, it seems that the anti neutrino fastest then the
velocity of the photons created also in this weak interaction?

A quark flavor changing shows that it is a reflection changes movement and the CP- and T- symmetry
breaking!!! This flavor changing oscillation could prove that it could be also on higher level such as
atoms, molecules, probably big biological significant molecules and responsible on the aging of the
life.

Important to mention that the weak interaction is always contains particles and antiparticles, where
the neutrinos (antineutrinos) present the opposite side. It means by Feynman’s interpretation that
these particles present the backward time and probably because this they seem to move faster than
the speed of light in the reference frame of the other side.

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the
velocity of the electromagnetic wave, so the neutrino’s velocity cannot exceed the velocity of light.
The General Weak Interaction
The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. A good example of this is the neutron decay, creating more particles with less known information about them.
The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change and it is possible to any other temperature dependent entropy and information changing diffraction pattern of atoms, molecules and even complicated biological living structures.
We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too. This gives the limited lifetime for the biological constructions also by the arrow of time. There should be a new research space of the Quantum Information Science the ‘general neutrino oscillation’ for the greater then subatomic matter structures as an electric dipole change. There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also.
The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that is the matter formulas are emerging from the chaos. So the Weak Interaction has two directions, samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite direction.

The Higgs boson
By March 2013, the particle had been proven to behave, interact and decay in many of the expected ways predicted by the Standard Model, and was also tentatively confirmed to have + parity and zero spin, two fundamental criteria of a Higgs boson, making it also the first known scalar particle to be discovered in nature, although a number of other properties were not fully proven and some partial results do not yet precisely match those expected; in some cases data is also still awaited or being analyzed.

In my opinion, the best explanation of the Higgs mechanism for a lay audience is the one invented by David Miller. You can find it here: http://www.strings.ph.qmul.ac.uk/~jmc/epp/higgs3.html.
The field must come first. The boson is an excitation of the field. So no field, no excitation. On the other hand in quantum field theory it is difficult to separate the field and the excitations.
The Higgs field is what gives particles their mass.
There is a video that gives an idea as to the Higgs field and the boson. It is here: http://www.youtube.com/watch?v=Rljg1Vh7uPyw. Note that this analogy isn’t as good as the Miller one, but as is usually the case, if you look at all the analogies you’ll get the best understanding of the situation.

Since the Higgs boson is necessary to the W and Z bosons, the dipole change of the Weak interaction and the change in the magnetic effect caused gravitation must be conducted. The Wien law is also important to explain the Weak interaction, since it describes the T_{max} change and the diffraction patterns change. [2]
Higgs mechanism

The magnetic induction creates a negative electric field, causing an electromagnetic inertia. Probably it is the mysterious Higgs field giving mass to the charged particles? We can think about the photon as an electron-positron pair, they have mass. The neutral particles are built from negative and positive charges, for example the neutron, decaying to proton and electron. The wave – particle duality makes sure that the particles are oscillating and creating magnetic induction as an inertial mass, explaining also the relativistic mass change. Higher frequency creates stronger magnetic induction, smaller frequency results lesser magnetic induction. It seems to me that the magnetic induction is the secret of the Higgs field.

In particle physics, the Higgs mechanism is a kind of mass generation mechanism, a process that gives mass to elementary particles. According to this theory, particles gain mass by interacting with the Higgs field that permeates all space. More precisely, the Higgs mechanism endows gauge bosons in a gauge theory with mass through absorption of Nambu–Goldstone bosons arising in spontaneous symmetry breaking.

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The spontaneous symmetry breaking of the underlying local symmetry triggers conversion of components of this Higgs field to Goldstone bosons which interact with (at least some of) the other fields in the theory, so as to produce mass terms for (at least some of) the gauge bosons. This mechanism may also leave behind elementary scalar (spin-0) particles, known as Higgs bosons.

In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W^\pm and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on July 4, 2012 but stressed that further testing is needed to confirm the Standard Model.

Gravity from the point of view of quantum physics

What is the Spin?

So we know already that the new particle has spin zero or spin two and we could tell which one if we could detect the polarizations of the photons produced. Unfortunately this is difficult and neither ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm that the particle is indeed a scalar is to plot the angular distribution of the photons in the rest frame of the centre of mass. A spin zero particles like the Higgs carries no directional information away from the original collision so the distribution will be even in all directions. This test will be possible when a much larger number of events have been observed. In the mean time we can settle for less certain indirect indicators.

The Graviton

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in the framework of quantum field theory. If it exists, the graviton is expected to be massless (because the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor (compared to electromagnetism’s spin-1 photon, the source of which is the four-current, a first-rank tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the
stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a massless spin-2 particle is discovered, it must be the graviton, so that the only experimental verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [3]

Conclusions

The electric currents causing self maintaining electric potential is the source of the special and general relativistic effects. The self maintained electric potential of the accelerating charges equivalent with the General Relativity space-time curvature, and since it is true on the quantum level also, gives the base of the Quantum Gravity. Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified Theory of the physical interactions.

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together.

References

http://academia.edu/3833335/The_Magnetic_field_of_the_Electric_current

[2] 3 Dimensional String Theory
http://academia.edu/3834454/3_Dimensional_String_Theory

[4] Universe’s Constants Now Known with Sufficient Certainty to Completely Redefine the International System of Units