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Abstract

In a recent publication, Anderson et al., [Europhys. Lett. 110, 10002, (2015)], presented a strong
correlation between the measured values of the Newtonian gravitational constant G and the 5.9 year
oscillation of the length of day. Following this publication of Anderson et al., (2015), S. Schlamminger
et al., [Phys. Rev. D 91, 121101(R), (2015)] compiled a more complete set of published measurements
of G made in the last 35 years where they performed a least-squares regression to a sinusoid with
period 5.9 years and found this fit to still yields a reasonable fit to these data thus somewhat putting
credence to this claim of Anderson et al. (2015). However, it is yet to be established as to whether or
not this signal is gravitational in origin. In this brief communication, we point-out that – in principle
– this sinusoidal signal has a place in the gravitomagnetic model that we currently working on.

1 Introduction

Using about a dozen measurements of Earth-based laboratory measurements of Newton’s gravitational
‘constant’ G made since 1962, Anderson et al. (2015) notes that these measurements have yielded values
that differ by far more than their reported random plus systematic errors. Upon an inspection of these
values by way of plotting them measurements against time, Anderson et al. (2015) unearthed a very
surprising, unexpected and interesting behaviour associated with these measurements – they find that
these values for G have a well behaved oscillatory nature, with a period of P⊕ = 5.899± 0.062 yr, and an
amplitude of GA = (1.619 ± 0.103) × 10−14m3kg−1s−2, that is to say:

G⊕

eff = G+GA cos

(

2πt

P
+ φ

)

, (1.1)

where φ is a phase term. Anderson at al. Anderson et al. (2015) find that the mean-value crossings occur
in 1994 and 1997 and have the value:

G = (6.673899± 0.000069)× 10−11m3kg1s2. (1.2)

The maximum absolute value of the time rate of change of Geff i.e. Ġeff/Geff = 2πGA/(G + GA)P is
equal to (2.60 ± 0.20) × 10−4 yr−1. At any rate, judged on the yardstick of our present knowledge,
this result (of Ġeff/Geff) is not only unprecedented but a complete surprise as it is much larger that has
been inferred from cosmological and astronomical phenomenon. In this letter, we demonstrate that this
seemingly strange oscillatory nature in the values of G is well explained in the gravitomagnetic model
that we are currently working on (see Nyambuya 2010, 2015a, Nyambuya et al. 2015, Nyambuya 2015b,c,
2014a,d, for the said on-going work). Actually, Anderson et al. (2015)’s findings come as a most welcome
present to the aforementioned on-going work (Nyambuya 2010, 2015a, Nyambuya et al. 2015, Nyambuya
2015b,c, 2014a,d).

1Correspondence: E-mail: physicist.ggn@gmail.com
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Somewhat in the footsteps of the great German physicist Max Karl Ernst Ludwig Planck (1858−1947)
who was reluctant to embrace the revolutionary idea of the quanta that he had discovered in 1900; instead
of embracing this potentially landmarking discovery, Anderson et al. (2015) distance themselves from
claiming that their discovery is a discovery to do with the actual variation of the gravitational constant
G. They conservatively hold that G can not actually vary by this much and this quickly, but instead that
something in the measurement process is varying. Anderson et al. (2015)’s scepticism is not shared by
all.

Though with a weakened correlation, Anderson et al. (2015)’s findings seem to be confirmed by
Schlamminger et al. (2015)’s regression analysis which makes use of a much more complete set of 26
G-measurements made in the last 35 years. Schlamminger et al. (2015)’s regression analysis maintain the
same period P⊕ = 5.899±0.062 yr. In-order to seek an independent confirmation of this ‘potential’ discov-
ery, one researcher of note, Professor Lorenzo Iorio, of the Ministero dell’Istruzione, dell’Universitàedella
Ricerca in Italy; took the first bold step in accepting Anderson et al. (2015)’s potentially landmarking
discovery by applying this discovery to the planetary ephemerides of Solar planetary orbits (Iorio 2015).
This is peharps the right step in the right direction, but, it is our view that the source of the variation
must be investigated to see if it is intrinsic to Earth-based G-measurements. However, Professor Iorio
(2016) in recent paper concludes that Solar planetary orbital motions do not support Anderson et al.
(2015)’s variable-G observation. The ideas that we propagate herein suggest that this variation may be
a gravitational effect intrinsic to the Earth and every gravitational body will have its own period of the
variation of G⊕

eff . It is for this reason that we have attached the Earth’s symbols (⊕) to G⊕
eff and P⊕.

Given the fundamental role played by G in the currently accepted theory of gravitation and the
attempts to merge it with quantum mechanics, it is important to put to the test the hypothesis that
the aforementioned harmonic variation may pertain G itself in a direct and independent way. The
bounds on Ġ/G existing in the literature inferred from Satellite Laser Ranging, Lunar Laser Rang-
ing (cf. Williams et al. 2004, Müller & Biskupek 2007), astronomical and cosmological phenomenon (cf.
Pitjeva & Pitjev 2012, 2013, Pitjev & Pitjeva 2013, Pitjeva 2013, Pitjeva & Pitjev 2014) are such that
Ġ/G ∼ 10−13±1 yr−1, that is 8 − 10 orders of magnitude smaller than Anderson at al.’s signal. We
are of the strong feeling and view that Anderson at al.’s variation is not to be linked to these secular
measurements as this sinusoidal signal may very well be due a completely different physical phenomenon
altogether. Since, we may not extended straightforwardly these G-variations to Anderson at al.’s G-
variation. Within the confines of the ideas that we shall presents, our presentation will qualify our
feelings and view points

2 Gravitomagnetism

Currently, gravitatomagnetism is predominately (cf. Nordtvedt 1988, Ashby & Shahid-Saless 1990, Soffel et al.
2008, Chicone & Mashhoon 2011, Iorio 2011, Adler et al. 2012, Bini et al. 2015) understood in the con-
text of Einstein (1915)’s linearised first order approximation of the General Theory of Relativity (GTR)
which assumes that (Ġ/G ≡ 0). Our approach is different to this predominant approach. We consider
gravitomagnetism as a exact theory independent of the GTR in much the same way it was conceived
by Maxwell (1865) and HeaHeaviside (1893, 1894) and further championed (in modern times) e.g. by
Jefimenko (2000), Behera (2006) amongst others. The present gravitomagnetic theory falls within the
realm of a more ambition attempt that we are currently working on i.e., an attempt at an all encompass-
ing Unified Field Theory (UFT) of all the forces of Nature (Nyambuya 2014a,d). We shall say nothing
about this attempt but direct the reader to these cited works. That said, shall now move to give a brief
overview of our gravitomagnetic model, that is, in the subsequent subsections, we will make an attempt
to give the reader our vision (version) of gravitomagnetism.
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2.1 ASTG-model

We have presented (in Nyambuya 2010, 2015a) a new theory of gravitation that we have coined the
Azimuthally Symmetric Theory of Gravitation (hereafter ASTG-model). This new theory is built from
the ordinary azimuthally symmetric solutions of the well known Poisson-Laplace equation, namely:

∇
2Φ = 4πG̺, (2.1)

where G is Newton’s universal constant of gravitation, Φ is the gravitational potential, ̺ is the density
of matter and ∇

2 is the usual Laplacian operator.
In its bare form, Newtonian gravitation is obtained as a radial solution [i.e. Φ = Φ(r)] of (2.1). In

coming-up with the ASTG-model, we wondered what the azimuthal solutions [i.e. Φ = Φ(r, θ)] of this
equation really mean in so far a gravitation is concerned. While in our state of wonderment, it is then
that we decided to investigate the meaning of the azimuthal solution [Φ = Φ(r, θ)] of this equation with
regard to the well known precession of the perihelia of Solar planetary orbits. As demonstrated in the
readings Nyambuya (2010, 2015a), we obtained satisfactory results and these results enabled us to have
a modicum of confidence that these azimuthal solutions may carry with them the potent seed to explain
some of the known gravitational anomalies such as the ∼ 7−15 cm annual drift of the Earth-moon system
(Krasinsky & Brumberg 2004, Standish 2005) and as-well the ∼ 38mm annual drift of the Moon from the
Earth (Williams et al. 2004, Williams & Boggs 2009), the Pioneer anomaly (Anderson et al. 1998, 2002)
and the flyby anomaly problem (Antreasian & Guinn 1998, Anderson et al. 2007, 2008).

The azimuthal solution Φ = Φ(r, θ) of (2.1) that we obtained is such that:

Φ(r, θ) = −
GM

r

[

1 +

∞
∑

ℓ=1

λℓ

(

Gℓ1M

rc2

)ℓ

Pℓ(sin θ)

]

, (2.2)

where M is the mass of the central gravitating body, c is the speed of light in vacuum, r is the radial
distance from this gravitating body, and λℓ : ℓ = 1, 2, . . . etc are some dynamic parameters which in the
ASTG-model are assumed to be related to gravitating body in question and the explicit dependence of
these λ-parameters on the gravitating body’s spin was preliminarily worked-out in the reading Nyambuya
(2010) and now has further been worked-out and made more clear in the reading Nyambuya (2015a). The
function Pℓ(sin θ) in (2.2) is the (symmetric) Legendre polynomial and has been defined in an unusual
manner in the reading Nyambuya (2015a).

2.2 Gravitational Four Poisson-Laplace Equation

In the case of dynamic gravitational fields, i.e., non-static time-dependent gravitational fields, the Poisson-
Laplace equation (2.1) upon whose shoulders the ASTG-model stands; this equation (2.1) is not Lorentz
invariant and apart from this, it is obvious and clear that this equation will fail to describe a time-
dependent gravitational field as it is not in its natural form equipped to do this. In-order to make it
Lorentz invariant, one can add a time dependent term, in which event the resulting equation is the four
Poisson-Laplace equation i.e.:

∇
2Φ−

1

c2
∂2Φ

∂t2
= 4πG̺. (2.3)

In the reading Nyambuya (2014b), equation (2.3) has been solved for five gravitational potentials and
this has been done in the context of the gravitomagnetic theory given in the reading Nyambuya (2014c).
It must be mentioned here that the gravitomagnetic theory proposed in the reading Nyambuya (2014b)
is not championed in the same spirit as the gravitatomagnetic theory that emerges from the GTR in the
weak field approximation – no! It is being championed from the vantage point of the proposed Unified

Field Theory of all the forces of Nature (Nyambuya 2014d) albeit, in the original quest and spirit of
Maxwell (1865) and Heaviside (1893, 1894) gravitomagnetic theory.
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In this same aforementioned reading Nyambuya (2014b), it is shown in that the equation (2.3) admits
five solutions, Φ(j), which in the radial case i.e. Φ(j) = Φ(j)(r) : j = 1, 2, 3, 4, 5; these solutions are as
follows – for the case (j = 1):

Φ(1) = −
G01M

r
, (2.4)

where Φ(1) is the usual Newtonian gravitational potential and (G01 = G) is the Newtonian gravitational
constant. In the theory presented in the reading Nyambuya (2014b), it is assumed that the Newtonian
gravitational constant G is not a time variable, it is an absoulte time and space constant. Therein the
reading Nyambuya (2014b), its is seen that making G a time variable leads to a theory that at best can
be said to be unphysical. So, we set this parameter to be a true constant with neither a space nor a time
variation.

Now, for the case (j = 2), we have:

Φ(2) = −
G02(t)Me−µ02r

r
, (2.5)

where G2(t) = G2(0)e
−µ2ct is the time variable gravitational constant associated with this potential and

this constant has the same dimensions as the Newtonian gravitational constant G, and µ2 is parameter
with the dimensions of inverse length. This potential has been slated for investigation of the Pioneer
anomaly (Anderson et al. 1998, 2002). The Yukawa potential (2.5) has been used to try and explain
the Pioneer anomaly (see e.g. Brownstein & Moffat 2006, Iorio 2007a,b) and the rotation curves of spiral
galaxies (see e.g. Moffat 1995, 2005). The fact that we derive this potential within the framework gravit-
omagnetism justifies not only its applications in gravitational physics but its existence in the gravitation
physics.

Despite the fact that prevailing wisdom holds that the Pioneer anomaly (cf. Anderson et al. 1998,
2002) may not be a gravitational phenomenon but a result on-board problems to do with the heating
systems of the spacecrafts (cf. Iorio 2007a, Turyshev & Toth 2010, Turyshev et al. 2011, 2012), in a
future reading, the Yukawa potential (2.5) together with the potential Φ(4) to the problem of the Pioneer
anomaly. We are of the strong view that the resolution of the Pioneer anomaly may very well be far from
resolved, all plausible causes must be considered and only a dedicated mission is going to decide which
of the proposed mechanisms corresponds with reality. As said, in the future, we will be applying the
Yukawa potential (2.5) together with the potential Φ(4) to the Pioneer anomaly.

Moving on . . . for the case (j = 3), we have:

Φ(3) = −
G03(t)M cos(µ3r)

r
, (2.6)

where G03(t) = G03(0) cos(µ3ct) is the time variable gravitational potential associated with this potential
and this constant has the same dimensions as the Newtonian gravitational constant G, and µ3 constant
parameter with the dimensions of inverse length. The potential (2.6) is a new gravitational potential and
this potential has been slated for investigation of the existence of rings system around planets. In the
present reading we shall make use of this potential where we shall make the endeavour to identify it with
the sinusoidal variation of the Newtonian gravitational constant discovered by Anderson et al. (2015).

For the case (j = 4), we have:

Φ(4) = −
G4M

R

[

(

R

r

)α4

+ κ4

(

R

r

)1−α4

]

, (2.7)

where as before G4(r, t) is a space and time variable gravitational potential associated with this potential
and R is the radius of the gravitating object in-question and α is constant while κ4 is a dimensionless
parameter which is such that (|κ4| ≥ 0). The potential (2.7) is a new gravitational potential and this
potential has been slated for investigation of the flat rotation curves of spiral galaxies.

Lastly, for the case (j = 5), we have:;
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Φ(5) = −
G5(r, t)M

R

(

R

r

)
1

2

cos

[

ln

(

R

r

)α5
]

, (2.8)

and again G5(r, t) is the time and space variable gravitational potential associated with this potential.
Like the other potentials, this potential (2.8) is a new gravitational potential; it has been slated for
investigation of the origins of the Titius-Bode Law.

The potentials (2.4), (2.5), (2.6), (2.7) and (2.8) all have a radial dependence. Expect for (2.4), the
azimuthal gravitational components of (2.5), (2.6), (2.7) and (2.8) have up to now not been worked out.
Be that it may, these potentials will suffice for the work we intent to carry out here. All the potentials
(2.4), (2.5), (2.6), (2.7) and (2.8) are assumed to act simultaneously on any gravitating body so that the
total or resultant gravitational potential Φ is such that:

Φeff =
5

∑

j=1

Φ(j). (2.9)

In the next section, we will justify the existence of equation (2.3) as a gravitational equation and thereafter,
we shall demonstrate how the potential Φ3 does account – in principle – for the sinusoidal time variation
of the Newtonian gravitational constant.

2.3 Fundamental Basis for Gravitomagnetism

The first to consider the possibility of a formal analogy between gravitation and electromagnetism is
off-cause the great and pre-eminent Scottish physicist – Professor James Clerk Maxwell (1831− 1879), in
his landmarking treatise on “A Dynamical Theory of the Electromagnetic Field” (Maxwell 1865). After
failing to justify (to himself) the implied negative energies associated with the gravitational field, Maxwell
abandoned this line of thought (Behera 2006). Twenty eight years had to pass before Oliver Heaviside
(1850− 1925) reconsidered Maxwell’s imaginative and brilliant but forgotten thoughts (Heaviside 1893,
1894). Despite its brilliance and fit of imagination, both Maxwell (1865) and Heaviside (1893, 1894)’s
work was speculative with no real justification from the then known fundamental principles of either
physics or logic but rather from the intuitive power of human reason and imagination. Only in recent
times, has a justifiable fundamental physical basis for Maxwell-Heaviside’s speculation (hereafter, the
Maxwell-Heaviside Gravitomagnetic Theory) been heralded (in e.g., Behera 2006, Jefimenko 2000, Hera
2007).

From a fundamental axiomatic approach, José Hera (2007) formulated an important Existence The-

orem that states that, given any space and time-dependent localized scalar (̺) and vector sources (J)
satisfying the continuity equation i.e.:

∂̺

∂t
= −∇ · J , (2.10)

as is the case with gravitation and electromagnetism; then, there exists two retarded fields (X ,Y ) that
satisfy a set of four field equations, namely:

∇ ·X = α̺, (2.11)

∇ · Y = 0, (2.12)

∇×X + γ
∂Y

∂t
= 0, (2.13)

∇× Y −
β

α

∂X

∂t
= βJ , (2.14)
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where α, β, γ are arbitrary positive constants and are related to the speed of light c by the equation
(α = βγc2). By applying the theorem to the usual electromagnetic charge and current densities, the
retarded fields are identified with the electric (X := E) and magnetic (Y := B) fields and the associated
field equations with Maxwell’s equations provided the following holds true: (α = 1/ε0), (β = µ0) and
(γ = 1).

Clearly, this axiomatic approach of deriving Maxwell’s field equations strongly suggests that electric
charge conservation – and nothing else; can be considered to be the most fundamental assumption under-
lying Maxwell’s equations of Electrodynamics. As has been argued in the readings Nyambuya (2015b,c),
this Existence Theorem of José Hera (2007) can easily be extended to gravitomagnetism thus justify the
Maxwell-Heaviside hypothesis (Maxwell 1865, Heaviside 1893, 1894). In this way, the four Poisson-Laplace
equation (2.3) finds its just reason for existence and this existence is independent of the fact that we are
working on our gravitomagnetic theory from a completely different approach (Nyambuya 2014a,d) to
the conventional (Nordtvedt 1988, Ashby & Shahid-Saless 1990, Soffel et al. 2008, Chicone & Mashhoon
2011, Iorio 2011, Adler et al. 2012). Now, we shall move to identify with the framework of our gravito-
magnetic theory, the sinusoidal G-component of Anderson et al. (2015).

3 Anderson at al.’s Sinusoidally Time Varying G

The 13 measurements that were used by Anderson et al. (2015) in their unearthing of the sinusoidal time
variation of G, these measurements have been made in Earth-based laboratories, thus, if the origins of
this sinusoidal time varying component in the measurements are of a gravitational nature, they must have
something to with the gravitational field of the Earth having a sinusoidal time varying component. We
can readily identify this signal from the potential given in (2.6).

If say the gravitational field of the Earth is dominated by two potentials, i.e., the Newtonian potential
(2.4) and the sinusoidal potential (2.6), then the gravitational field of the Earth (g = F eff/m) will be
given is in equation (3.1).

F eff

m
= −

GM

r2
r̂ −

[

G03(t)M cos(µ3r + φ3)

r2
+

µ3G03(t)M cos(µ3r + φ3)

r

]

r̂ (3.1)

If we are going to have (r ≪ 1/µ3), then, in magnitude, the term [µ3G3(r, t)Mm/r] will be much
smaller than the other two terms, in-which event, we will have:

F eff

m
= −

GM

r2
r̂ −

G3(t)M cos(µ3r + φ3)

r2
r̂, (3.2)

and this can be written compactly as:

F eff

m
= −

GeffM

r2
r̂, (3.3)

where [Geff = G + G03(t) cos(µ3r + φ3)]. Since φ3 is a phase term, we can always conveniently set to
equal zero. With this as given, we know that if µ3r is small – which is the case when (r ≪ 1/µ3); then,
[cos(µ3r) ≃ 1], so that [Geff = G+G03(t) cos(µ3r + φ3)] becomes:

Geff ≃ G+G03(t). (3.4)

Now, if the above described is what is happening in reality, then, the sinusoidal G-component emanating
from the third gravitational component (Φ3) is here superimposed on any measurement of the Newtonian
gravitational constant. Under the given circumstances, the term GA cos (2πt/P + φ) in (1.1) must equal
G03(t) in (3.4). We know that (µ3c = 2π/P ), and from this it follows that:

µ⊕
3 =

2π

cP⊕

= (1.13± 0.01)× 10−16m−1 (3.5)
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The value of µ3 may defer depending perhaps on the mass (M) and the radius (R) of the gravitating
body in question i.e. µ3 = µ3(M,R). This is something that can only be verified by observational data
and our on-going work on the origins of planetary ring systems is taking this approach with the hope of
finding a correlation.

4 General Discussion

Within the gravitomagnetic model that we are currently working on (Nyambuya 2010, 2015a, Nyambuya et al.
2015, Nyambuya 2015b,c, 2014a,d), we have shown that the sinusoidal component discovered by Ander-
son at al. Anderson et al. (2015) in the Newtonian gravitational has a place. We have not off-course
made any effort to justify this using any data, but merely pointed out that this sinusoidal signal might
proof to be a real gravitational effect whose origins is that third component of the force. In our model,
the gravitational field has five components (presented in Equations 2.4, 2.5, 2.6, 2.7 and 2.8). These
five components seem to hold the potential to explain structure formation in gravitational systems such
as planetary rings seen in the Solar Gas Giants planets Jupiter, Saturn, Uranus and Jupiter, and the
emergence of the Titius-Bode Law.

We are currently working on the gravitational component Φ3 in-order to try and explain planetary
ring systems. Surely, Anderson et al. (2015) give our ideas a reason to believe that we may very well
be on the right path, for how were we to justify all these potentials (2.4, 2.5, 2.6, 2.7 and 2.8) except if
we are have physical phenomenon that can be explained by them such as this sinusoidal sign evident in
Newton’s gravitational constant?

In-closing, allow us to say that since this sinusoidal G-signal is here hypothesised to be of gravitational
in nature, independent confirmations must (should in-principle) be sought in the ephemerides of test
bodies that are affected by the Earth’s gravitational field such as the orbiting satellites. For these test
bodies, a signal with the same period ∼ 5.90 yr must be ‘visible’ in the variation of say the eccentricity of
the orbit. Such kind of evidence will be a clear indication of this sinusoidal G-signal to be of gravitational
in nature. For now, researchers can only speculate.
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