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Lorentz-invariant theory of gravitation  

(summary) 
 

Alexander G. Kyriakos * 

 

 

Annotation 

This article is a summary of the non-geometrical Lorentz-invariant theory of gravitation 

(LIGT) (references and citations here allow to familiarize oneself with known results from the 

theory of gravitation in more detail). In the framework of the proposed theory the physical 

meaning of the metric tensor and square of interval in pseudo-Euclidian space was clarified, all 

the exact solutions of GR were obtained, the violation on the law of conservation of energy-

momentum was eliminated, as well as other difficulties have been overcome. A characteristic 

feature of the proposed theory is that it is built on the basis of the quantum field theory. 

 
Abbreviations: 

LIGT - Lorentz-invariant gravitation theory; 

EM - electromagnetic; 

EMTG - electromagnetic theory of gravitation; 

QFT     -  quantum field theory 

SM - Standard Model; 

QED   – quantum electrodynamics. 

GTR or GR – General Theory of Relativity 

L-transformation – Lorentz transformation 

       L-invariant –  Lorentz-invariant  

 

1.0. Introduction. Statement of the problem 

The modern theory of gravity, which is called General Theory of Relativity (GTR or GR), was 

verified with sufficient accuracy and adopted as the basis for studying of gravitational phenomena 

in modern physics. 

However, GR has certain disadvantages  (see, e.g., (Logunov and Loskutov, 1987; Krogdahl, 

2007)): 1) in the general case, the energy and momentum conservation is violated; 2) it can not be 

quantized; 3) it is based on a geometric basis, unrelated to other existing physical theories. 

These deficiencies have resulted in the fact that attempts to improve this theory are being 

made. However, as the analysis shows (for example,  see (Feynman, Morínigo and Wagner, 

2002)) - there is no doubt that the GRT contains elements that will be present in any other theory 

of gravitation. 

It is known that general relativity is a classical theory. At the same time, the base of the 

modern approach to the study of nature is quantum field theory (QFT); and classical physics is 

considered to derive from the quantum theory. 

So the question arises if there is a possibility to improve the gravitation theory on the basis of 

QFT? In other words, can we get the tested results and eliminate the difficulties of GRT, if we put 

the quantum field theory in the foundation of the gravitation theory? 

Of course, first of all, we should make sure that such an approach, has a prospect. What are the 

prerequisites that allow us to put QFT in the basis of the gravitation theory? What challenges need 

to be overcome for the construction of such a theory? 
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2.0. Background of the existence of a Lorentz-invariant theory of 
gravitation based on QFT 

1) Modern QFT (e.g., in the form of the Standard Model - SM) describes all the elementary 

particles and their interactions. Moreover, it was found that all the observable matter in the 

universe is composed by these elementary particles and the energy of their interaction. Thus the 

elementary particles and the energy of their interactions are the primary embodiment of the 

matter. Gravitation is one of the fundamental properties of matter. Therefore elementary particles 

are, so to speak, the primary "carrier" of gravitation. Therefore, we can assume that there must be 

a connection between the theory of elementary particles and gravitation theory. 

2) QFT is Lorentz-invariant (L-invariant) theory. This, in general, means that it is invariant 

with respect to the Lorentz group. According to Noether’s theorem, this invariance provides all 

the necessary conservation laws in mechanics . 

3) General relativity, as a classical theory, refers to the macroworld, while QFT  is the theory 

of the microworld. Can  the first theory be reduced to the second?  

It is known that the classical mechanics is a consequence of quantum mechanics. So Newton's 

equation of motion can be obtained from the Schrodinger equation, and the equation of motion for 

a charged particle can be obtained by squaring of the Dirac equation. Therefore, it is possible that 

by using one of the known averaging techniques it is possible to obtain the results of general 

relativity from QFT. In addition in this case there is hope that gravitation theory can be associated 

with quantum theory. 

4) From experience it follows that energy, momentum, mass, and other mechanical quantities 

are the same in both theories - general relativity and QFT. 

5) To pass on to the actual construction of the theory, it is required to enter the physical 

characteristics of gravitation theory. One of the key here is, apparently, the source of gravitation. 

The source of gravity in general relativity is the pseudo-tensor of energy-momentum , which is 

the sum of the Lorentz-invariant energy-momentum tensor and some pseudo-tensor (you can read 

more about it below). This pseudo-tensor is not a Lorentz-invariant tensor, and, in general does 

not describe the conservation laws of physical quantities in GRT. 

The energy-momentum tensor of a classical field theory combines the densities and flux 

densities of energy and momentum of the fields into one single object. However, the problem of 

giving a concise definition of this object able to provide the physically correct answer under all 

circumstances, for an arbitrary Lagrangian field theory on an arbitrary space-time background, has 

puzzled physicists for decades. (Forger and Römer, 2003). 

6) The theory of gravitation, as we know, refers to the gravitational mass / energy 

(gravitational charge). A mass / energy of the elementary particles is considered to be inertial. The 

connection of the theory of gravity with QFT  here ensures experimental fact of equality between 

gravitational mass/energy and inertial mass/energy. Thus, if we will understand the nature of the 

inertial mass of elementary particles,  we will also define the nature of the gravitational mass. 

 

We will also analyze the difficulties of the Lorentz-invariant theory when they arise.  We will 

also show how to overcome them. 

  

First of all, we will discuss in more detail the differences of the gravitation sources between 

GR and L-invariant theory of gravitation based on QFT. The important physical consequences of 

the theory are associated with these differences; in particular, the compliance with the energy and 

momentum conservation law. 
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3.0. The source of gravitation 

3.1. The source of gravitation in GRT 

Initially Einstein assumed that the source of gravity in the Hilbert-Einstein equations is 

symmetric energy-momentum tensor T  of the Lorentz-invariant mechanics satisfying the law  

of energy-momentum conservation: 

 
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,     (3.1) 

which corresponds to ten integrals of motion of Lorentz-invariant mechanics (Fock, 1964). 

The word "relativity" in the title of general relativity suggests that general relativity is a 

relativistic theory. Einstein assumed that general covariance of equations reflects some general 

relativity, which includes the special relativity. But the question of whether the GR equation is 

relativistic in the sense of Lorentz-invariance, is not trivial. It is known that general relativity is 

considered as relativistic theory, but it is not a L-invariant theory (Katanaev, 2013, pp. 742): 

«Lorentz metric satisfies the Einstein’s vacuum equations . [But] "in GTR is postulated that 

space-time metric is not a Lorentz metric, and is found as a solution of Einstein's equations. Thus, 

the space-time is a pseudo-Riemanian manifold with metric of a special type that satisfies the 

Einstein equations." 

From this it follows that general relativity is a general covariant theory, but, strictly speaking,  

it is not a Lorentz-invariant theory (i.e., a theory within the framework of SRT).  It is easy to see 

that this leads to difficulties with the law of conservation of energy in general relativity. 

As we know, a generalization, that is, the transition from the Lorenz invariance to the general 

invariance, is the transition to abstraction of higher level.  Such a transition can be achieved only 

by the introduction of new postulates.  In particular, a few rules are formulated for obtaining the 

general-covariant expressions  from Lorentz-invariant expressions  . 

 ―Often this generalization involves only the replacement of partial differentiation by covariant 

differentiation ("comma-goes-to-semicolon rule"); for example the generalization of the equations 

of motion is from 
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; this latter [tensor], with semicolons, includes the effects 

of gravity‖. (Lightman, Press et al., 1979). 

As the generalization of 
,T  in GR should be the general covariant derivative 

;T , and 

instead (1.1) we will have  (Landau and Lifshits, 1971; Fock, 1964): 
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But, it appears that (Landau and Lifshitz, 1971; § 96 ―The energy-momentum 

pseudotensor…‖) ―in this form, however, this equation does not generally express any 

conservation law whatever‖. 

 As a way out of this situation, Einstein, and others proposed to introduce an additional term – 

pseudotensor. It is called like that because it is not a true tensor.  Due to t , in some coordinate 

systems a kind of conservation law of energy-momentum can artificially be formulated. 

Violations of this law arise in other coordinate systems.   

On this basis, Einstein even proposed to consider that the violation of the law of energy-

momentum conservation is a peculiarity of the gravitational field.   

In particular, at least inside the borders of our galaxy, Newton's theory of gravity provides at 

least 99% of accuracy in the calculation of gravitational problems in comparison with general 

relativity. The law of conservation of energy and momentum is fully respected here. Therefore, it 

is easier to assume that general relativity contains a mistake, than to doubt the results of 

Newtonian mechanics. 



  

                                                    4 

 

Energy-momentum  is an important conserved quantity whose definition has been a focus of 

many investigations in general relativity (GR). Unfortunately, there is still no generally accepted 

definition of energy and momentum in general relativity. Attempts aimed at finding a quantity for 

describing distribution of energy-momentum due to matter, non-gravitational and gravitational 

fields only resulted in various energy-momentum complexes (which are nontensorial under 

general coordinate transformations) whose physical meaning have been questioned.  

 Moreover  (Forger and Römer, 2003; page 62) ‖the expression in equation. (3.2) above does 

not represent a physical energy-momentum tensor for the gravitational field: as is well known, 

such an object does not exist‖. 

What we have in the Lorentz-invariant (L-invariant) mechanics? 

3.2.  The source of gravity in Lorentz-invariant mechanics  

Since QFT is a Lorentz-invariant (L-invariant) theory, the gravitation theory, built on its basis, 

will be the L-invariant gravitation theory (LIGT).  What can we say about the source of gravity in 

such a theory?  

In general in the Lorentz-invariant mechanics, the elements that make up the energy-

momentum tensor  T  (see above), are used in theory. But in practice they are rarely used in the 

form of  tensor (Fock, 1964, §§ 27-29). 

In fact, the energy-momentum tensor, which is included in the formulation of the equations of 

general relativity, is also not used here as a tensor.  The tensorial equation of GR is a short 

notation of 10 equations. Each of these equations contains only one term of the energy-

momentum tensor. 

 

Note that after its division by the square of the speed of light, the tensor components are 

identical to the mass  density and the densities of mass flow.  Perhaps, in this regard, Fock called 

this tensor -  the tensor of mass  (Fock, 1964, § 31) 

Therefore, following to V. Fock (Fock, 1964, §54), ―in formulating Einstein's theory we shall 

likewise start from the assumption that the mass distribution is insular. This assumption makes it 

possible to impose definite limiting conditions at infinity as for Newtonian theory, and so makes 

the mathematical problem a determined one. Theoretically, other assumptions are also 

admissible‖. 

 (As mass distribution of insular character V. Fock describes ―the case that all the masses of 

the system studied are concentrated within some finite volume which is separated by very great 

distances from all other masses not forming part of the system. When these other masses are 

sufficiently far away One can neglect their influence on the given system of masses, which then 

may be treated as isolated.‖) 

The abovementioned allows us, in framework of the Lorentz-invariant problem, to call the 

source of gravitation, the mass/energy, or simply mass, implying by this term all terms of the 

energy-momentum tensor of the specific task.  

Next, we will analyze the question of what we know about the origin of the inertial mass/ 

energy of elementary particles as the primary sources of gravity.  

4.0. The mass / energy theories. Classical and contemporary point 
of view 

―Mass remained an essence - part of the nature of things - for more than two centuries, until 

J.J. Thomson (1881), Abraham (1903) and Lorentz (1904) sought to interpret the electron mass 

as electromagnetic self-energy‖, ( Quigg, 2007). 

Theory, created by J.J. Thomson and H. Lorentz (1881 - 1926), lies entirely in the field of 

classical electromagnetic theory. According to this theory, the inertial mass has electromagnetic 

origin.  
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 Unfortunately, attempts to apply this theory to quantum theory has not been undertaken. 

However, until now there was no evidence of that the inertial mass is not fully electromagnetic 

(Feynman et al, 1964): 

―We only wish to emphasize here the following points:  

1) the electromagnetic theory predicts the existence of an electromagnetic mass, but it also 

falls on its face in doing so, because it does not produce a consistent theory – and the same is true 

with the quantum modifications;  

2) there is experimental evidence for the existence of electromagnetic mass; and  

3) all these masses are roughly the same as the mass of an electron.  

So we come back again to the original idea of Lorentz - may be all the mass of an electron is 

purely electromagnetic, maybe the whole 0.511 MeV is due to electrodynamics. Is it or isn’t it? 

We haven’t got a theory, so we cannot say.‖ 

 

The modern mass theory is the, so-called, Higgs mechanism of the Standard Model theory 

(SM) (Quigg, 2007; Dawson, 1999; etc). 

The Higgs mechanism, under certain assumptions, allows us to describe the generation of 

masses of fundamental elementary  particles: intermediate bosons, leptons and quarks. But as it is 

mentioned above (Quigg, 2007), more than 98% of the visible mass in the Universe is composed 

by the non-fundamental (composite) particles: protons, neutrons and other hadrons.  

Thus, the Higgs mechanism can not be used in the gravitation theory. 

4.1 The origin of mass/energy in QFT 

Starting with quantization of Maxwell's theory of electromagnetism which led to the 

construction of the QED, physicists have made tremendous progress in understanding the basic 

forces and particles constituting the physical world. 

Modern particle theories, such as the Standard model, are quantum Yang-Mills theories 

(Houghton, 2005; Nielsen, 2007). In a quantum field theory the quanta of the fields are interpreted 

as particles. In a Yang-Mills theory these fields have an internal symmetry: they are acted on by a 

space-time dependant non-Abelian group transformations. These transformations are known as 

local gauge transformations and Yang-Mills theories are also known as non-Abelian gauge 

theories. Maxwell’s equations can be regarded as a Yang-Mills theory with gauge group U(1). 

―We have the working renormalizable theory of strong, electromagnetic and weak 

interactions... This is of course the Yang-Mills theory…  Essentially, all that we managed to do is 

just to generalize quantum electrodynamics (QED). QED was invented around 1929 and since 

then has never changed... Now QED is generalized and includes strong and weak interactions 

along with electromagnetic, quarks and neutrinos, along with electrons‖ (Gell-Mann, 1985). 

As we know, these theories cover all types of elementary particles and their interactions. They 

make up the matter of the universe: massless photons and massive leptons, bosons and hadrons.  

For us it is important to emphasize that the Yang-Mills equations are nonlinear generalization 

of Maxwell's theory and can be represented in both classical, and quantum form (see, for example,  

in details, (Ryder, 1985)).  

Therefore it can be argued that the mass/energy of elementary particles, and thus the whole 

matter, has electromagnetic origin. This answers the question of Feynman in the passage above.  

This also implies that the gravitational mass/energy and gravitational field also have 

electromagnetic origin.  

Obviously, it follows that  the theory of gravitation, in the general case, must be a variant of the 

nonlinear theory of electromagnetic field.  It is understood that the new theory must be L-

invariant, since it is based on the electromagnetic theory.  Can the L-invariant theory give the 

same results as general relativity?  we will try to answer  this question below. 

But first, let us note that the base (not the proof!) to assume that the electromagnetic theory of 

gravity is possible,  already exists in the GR.  It will be useful to briefly dwell on this.  
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4.2.  Connection between  GTR and EM theory  

Which consequence of general relativity confirms that the electromagnetic gravitation theory 

(EMGT) is possible? 

First of all, let us underline again that this is not the proof of the existence of EMGT.  

Nevertheless, it is a reference to the possibility of its existence.  We are talking here about the 

known solution of the linearized equations of general relativity. 

Even Einstein himself pointed out some parallels between this approximate solution and the 

EM formulas (Moeller, 1952).  Around the 60s these parallels drew more attention (Forward, 

1961; Ruggiero  and  Tartaglia, 2002; etc.).  To date is shown an almost complete agreement of 

formulas of linearized equations of general relativity and electromagnetic theory (the difference in 

some numerical coefficients, is not to take into account, a quite understandable fact in terms of 

features of gravity and QFT). 

In the linear approximation, the left side of the equation of general relativity – Ricci’s 

curvature tensor – is equal to the D'Alembert operator (see analysis (Fock, 1964, § 68 and Annex 

B)). This operator acts on the metric tensor with a first order of approximation. General relativity 

equation, taking into account the Lorentz gauge, becomes a d'Alembert wave  equation with 

respect to the gravitational 4-potential. This equation up to numerical coefficients coincides with 

the EM field equations: four d'Alembert equation: one equation for scalar and 3 equations for the 

components of vector potential.  

Moreover, in this case, the fact that these are approximations, rather than exact solutions, is not 

a reason to reject the connection of GR theory with EM theory. Point is that these approximate 

solutions were the first solutions of Einstein, which confirmed experimentally the existence of 

relativistic effects. 

However, we emphasize again that this does not prove the existence of EMGT.  The 

electromagnetic representation of these solutions is only their interpretation.  We must, 

independent obtain the exact solutions of general relativity exclusively on the basis of 

electromagnetic theory and explain the physical meaning of the geometric apparatus of GTR. 

5.0.  Electromagnetic gravitation theory (EMGT): formulation of the 
problem 

So, we will try to construct a theory of gravity based on EM theories of Yang-Mills.  And, 

probably, it is better for the beginning to choose the simplest of them - the Maxwell-Lorentz 

theory. 

It is clear that to build the EM gravitation theory (EMGT) - does not mean to take the EM 

theory and use it as a theory of gravity.  There are important differences between these theories. 

The main challenges to overcome are the differences between the electromagnetic and 

gravitational field: 1) the weakness of the gravitational in comparison with the electromagnetic 

field, 2) its neutrality, and 3) the absence of repulsion. 

In addition, there are some  seeming difficulties. 

Equations of electromagnetic fields (including a generalization of Yang-Mills) do not contain 

mass. This seems to make them unsuitable even for describing the Newtonian’s theory of gravity. 

But let us not forget that these equations contain the intensities of EM fields in the force 

presentation. The square and vector product of these fields are proportional to the densities of 

energy  and momentum, respectively. And in the energy representation, they are directly 

characterized by  energy and momentum per unit of gravitational charge. 

In case of self-acting of EM fields, these equations can trigger a mass according to the 

principle of mass-energy equivalence. Self-action is described by nonlinear equations, which is 

typical for the Yang-Mills equations. Let us recall, that Higgs mechanism generates the masses 

due to the self-acting of fields. But there are also other mechanisms of self-acting of the fields. 

Another feature of the EM equations is that they describe only the vector bosons (e.g., 

photons). But this does not contradict with the theory of gravity because, as was recognized in 

general relativity, the quanta of gravitational field - gravitons - are also bosons. 
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5.1.  The hypothesis of residuality  

The idea of an electromagnetic origin of gravitation appeared since formulation of the 

electromagnetic theory of matter.  The first hypothesis of explaining the gravity on the basis of 

electromagnetic theory was put forward in 1836 by O.Mossotti As shown by further analysis, its 

justification was not satisfactory. 

The electromagnetic origin of the mass of all elementary particles, as well as the weakness of 

the gravitational field compared to the electromagnetic field, allowed  to O.F. Mossotti (Mossotti, 

1936) to assume that the gravitational field is a residual electromagnetic field. 

 

―Wilheim Weber of Gottingen and Friedrich Zollner of Leipzig developed this conception into 

the idea that all ponderable molecules are associations of positively and negatively charged 

electrical corpuscles, with the condition that the force of attraction between corpuscles of unlike 

sign is somewhat greater than the force of repulsion between corpuscles of like sign. If the force 

between two electric units of like charge at a certain distance is a dynes, and the force between a 

positive and a negative unit charge at the same distance is y dynes, then, taking account of the 

fact that a neutral atom contains as much positive as negative electric charge, it was found that 

     need only be a quantity of the order 10
-35

 in order to account for gravitation as due to 

the difference between   and  ‖ (Whittakker, 1953). 

―At the meeting of the Amsterdam Academy of Sciences on 31 March 1900, Lorentz 

communicated a paper entitled ―Considerations on Gravitations on Gravitation‖, in which he 

reviewed the problem as it appeared at that time‖ (Whittaker, 1953). 

 

In other words, according to Mossotti, Weber and Zolneru (Zoellner, We ber, and    Mossotti, 

1882) gravitational field - is a residual electromagnetic field. 

Later, scientists come to the conclusion that particles are the field, and therefore, it is necessary 

to reformulate the hypothesis at the level of electromagnetic fields.  As shown by H. Lorentz (and 

then others), it can be done without entering into conflict with the experimental facts.  

―At the meeting of the Amsterdam Academy of Sciences on 31 March 1900, Lorentz 

communicated  a paper entitled ―Considerations on Gravitations on Gravitation‖, in which he 

reviewed the problem as it appeared at that time‖ (Whittakker, 1953). 

In the second half of this article Lorenz examined this concept at the field level and received 

encouraging results.  

But the final theory had not been received yet. And after the occurrence of the general 

relativity, the interest in the electromagnetic gravitation theory was lost (more information can be 

found in the book: Vizgin, V.P. (Vizgin, 1981), chapter "Electromagnetic theory of gravitation"; 

whith sufficient bibliography. 

We will not try to finish this solution in framework of QFT, since the solution of this problem 

requires serious analysis and a lot of time. At the same time, this solution is not important for the 

conversion of the electromagnetic theory to the gravitation theory.  We will proceed differently: 

we will consider this idea as a postulate (called the Mossotti-Lorentz postulate). 

 

Postulate of Mossotti-Lorentz: the gravitational field is a residual electromagnetic field, 

which  remained as a result of incomplete compensation of electric and magnetic fields of 

different polarity. 

 

It is easy to check, if this postulate contradicts the condition of necessity: can all 

electromagnetic quantities be rewritten in such a way that they give the correct formula of the 

gravitation theory (for example, the formula for Newton's force, field, energy, etc.); We must also 

check the dimensions of all obtained characteristics of the theory of gravitation (gravitational 

charge, the field intensity,  potentials of the field, etc.). 
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In part, this has been done before by many scientists.  A detailed verification within our theory 

shows that no contradiction arises.  Below we show these transformations on an important 

example.  

5.2 Newton's law of gravitation, as a result of EM theory  

If we assume that gravity is generated by electric field, but quantitatively, by very small part of 

it, then Newton’s gravitation law:   

 0

2
r

r
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F NN

 
  ,    (5.1) 

should take the form of Coulomb's law: 
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where m and q are the mass and electric charge of the particle, M  and Q  are the mass and 

electric charge of the source. In Gauss’s units N =6,67×10
−8

 см³/(г·с²). is  Newton's gravitational 

constant, and the coefficient 0k  is 10 k .  

We introduce the gravitational charges gq  and gQ  , corresponding to mass m  and M  

(Ivanenko and Sokolov, 1949) , by means of the relations: 

 mqq Ng  ,  MQQ Ng     (5.3)  

In this case, Newton's law can be rewritten in the form of Coulomb's law: 
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Similarly, we can transform all other EM quantities in the gravitational quantities.  

If we talk specifically about the weakness or strength of the field, the intensity of the 

interaction is usually characterized by some bond constant.  In the EM theory as such a constant 

can be considered 0k  in Coulomb Law for vacuum. In the CGSE system units, the charge is 

selected so that 10 k  The gravitational constant N  in  CGS is approximately N = 6.67 × 10
-8

 

cm
3
/(g s²).  It is characterized by  /)(  in the Mossotti et al. approach. 

5.3. The relativization of the Newton law  

Above we have received a non-relativistic equation of Newton's gravity. But the Lorentz 

invariance of EM theory promises the existence of a L-invariant version of this equation.  

The motion of charged particles in the non-relativistic case is performed under the action of the 

non-relativistic Coulomb force. This allowed us to obtain the force of Newton. Both of these 

forces correspond to the stationary source. But how can we give them a relativistic form 

corresponding to motion of the source? 

Obviously, we need to start with the Coulomb force. It turns out that Coulomb force takes the 

L-invariant form, if we add the Lorentz magnetic force. In this case, the total force acting on the 

charge, consists of two terms, and called a (complete) Lorentz force.   

It is clear that a similar term needs to be added to the force of Newton, to take a relativistic 

form. What is needed to be done for this? 

The most significant here is that in both cases, it is not necessary to add this term artificially, 

e.g., by a postulate. 

A striking unification of electromagnetic theory was published in 1912 by Leigh Page. It had 

been realized long before by Priestley that form the experimental fact that there is no electric 

force in the space inside a charged closed hollow conductor, it is possible to deduce the law of the 

inverse square between electric charges, and so the whole science of electrostatics. It was now 

shown by Page that if a knowledge of the relativity theory of Poincare and Lorentz is assumed, 

the effect of electric charges in motion can be deduced from a knowledge of their behavior when 
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at rest, and thus the existence of magnetic force may be inferred from electrostatics: magnetic 

force is in fact merely a name introduced in order to describe those terms in the ponderomotive 

force on an electron which depend on its velocity. In this way Page showed that Ampere’s law for 

the force between current-elements, Faraday’s law of the induction of currents and the whole of 

the Maxwellian electromagnetic theory, can be derived form. (Whittakker, 1953) 

 

It turns out that in the electromagnetic theory, the additional term to the Coulomb force arises 

automatically due to the Lorentz transformations. As is known, the magnetic field occurs when 

the charge moves. During this the Coulomb field remains unchanged. But if we apply the Lorentz 

transformation to electric charge then automatically due to spatial compression of charges, a 

magnetic field arises, as well as an additional term of the magnetic force (see. Details (Purcell, 

1975)). It is not difficult to transfer this result to gravitation theory. 

As is known, GTRactually contains a field which we can name gravito-magnetical. But in our 

approach, it is a consequence of L-invariance, not of general covariance and the Riemann space-

time.  

The equations of EM field can be written through the field strengths, but can also be written 

through the potentials - scalar and vector. These equations, taking into account the Lorenz gauge 

condition 0
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where A  is  4-potential.  

The equations of Newton's theory of gravity can also be written in these two forms. And the 

energy form of equation in the stationary state corresponds to the Poisson equation, which is the 

stationary limit of the GR equation. Obviously, after the transition to the relativistic form of 

Newton's law, we will obtain an equation which is mathematically identical to the EM field 

equation and also contain the vector potential. 

As we know, the great achievement of general relativity is the presence in its equation of the 

vector potential. 

6.0. Geometry and physics of general relativity and the L-invariant 
theory of gravitation 

6.1. Formulation of the problem in general relativity 

The practical side of the Einstein-Hilbert theory is following:  "All the predictions of general 

relativity follow from:  

1) the solution of the  field equations: 

      TRgR 
2

1
,     (6.1)  

where  
4

8

c

N
  ,  























 










xx
R  is the Ricci curvature tensor, 

  are 

the Christoffel symbols, R  is the scalar curvature, c  is the speed of light in vacuum, T  is 

the stress–energy tensor, and g  is the metric tensor of Riemannian space; 

2) the law of motion in form of geodesic line equation or the Hamilton-Jacobi equation for a 

massive body: 

  022 























cm

x

S

x

S
g




,                (6.2) 
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3) the postulat that in the Riemann geometry the metric tensor g  is a function of the 

gravitational field - GRg . 

4) the requirement that the equations of general relativity in the non-relativistic case is reduced to 

the equation of Newton's gravity (in the form of Poisson's equation) 

 

The equation (6.1) allows to determine  g . The non-relativistic limit allows to introduce in 

this solution the Newton gravitational potential and so allows from g  to obtain GRg . Putting 

this value in (6.2) we obtain the solution of given problem of the body motion in the gravitation 

field of a source. 

Since the metric tensor is contained in the square of interval of Riemannian space: 

   
 dxdxgds 

2
,     (6.3) 

it is often said that the purpose of  solution of  equation (6.1) is to find the interval (6.3). 

It is often said that interval in STR is a generalization of interval of Euclidean geometry on 

pseudo-Euclidean geometry. In turn, the interval in general relativity is a generalization of interval 

of pseudo-Euclidean geometry on pseudo-Riemannian geometry. But it is easy to make sure, that 

the introduction of interval in STR and GTR is a postulates rather than a logical conclusion. 

Indeed, the intervals in STR and GTR are a generalization of interval of Euclidean geometry, but 

the reason for the introduction of these new intervals is not geometry, but physics.  

Obviously, the practical part of the GRT ideas must be entered into any new theory of 

gravitation. It follows that within the framework of our formulation of the problem (i.e., within the 

QFT and namely, EM theory) it is desirable to  find out the functional meaning of the metric 

tensor and the interval. Next it is also necessary to obtain the equation of motion, to find out the 

connection of the metric tensor with the field of gravity. Let us try to implement this program. 

6.2. Derivation of the pseudo-Euclidean interval from QFT 

The vectors of the Lorentz-invariant (i.e., relativistic) theories necessarily depend on four 

coordinate: one time coordinate and three space coordinates. Does these theories contain the 

equations, which have a sum of terms, each of which is associated with one of the four 

coordinates, like as in the square of the interval? 

As we know, in the first time such equations in classical electrodynamics appear, and then in 

quantum field theory. The wave equations of these theories include a sum of terms, each of which 

is associated with one of the variables t, x, y, z. It would be logical, to seek the cause and the 

meaning of the appearance of 4-interval in them, instead of introducing them artificially, as did 

Minkowski. 

The well-known relation between the energy, momentum and mass of elementary particles 

follows from the wave equation of the particles: 

 

 042222  cmpc


 ,    (6.4) 

or in the Cartesian coordinate system: 

 
22222

2

2

cmppp
c

zyx 


,   (6.4') 

Since   LiLii dtdxmmp   , a Lmc  2 , (where 2211 cL    and 

221 1 cL    are the Lorentz factor and anti-factor, respectively), this relation can be 

rewritten as: 

          22222222222 dtcdzdydxdtc LLLL   ,    (6.5) 

Multiplying it by 
2

L  , we get: 
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          22222222 dzdydxdtcdtc L  ,    (6.6)   

Taking into account        22222222 1 dscdtcdtc L   ,  the expression (2.7) can be 

written as square of a 4-interval: 

          222222
dzdydxdtcds  ,    (6.7)  

In the case of generalized curvilinear orthogonal coordinate, this interval takes the form 

  
 dxdxgds 

2
: where g  is the metric tensor that is not associated with gravity (section 

6.4 is dedicated to clarifying its physical meaning). 

Obviously, if we go in the opposite direction, we can obtain the equation (6.4’) from the square 

of the interval (6.7). This implies, firstly, that these equations - (6.4) and (6.7) - closely bind the 

massive elementary particles physics and geometry. From this it follows that (6.7) is not a metric 

of pseudo-Euclidean geometry, but it is a metric of Euclidean geometry that describes the 

Lorentz-invariant field equations. The only change in the geometry, which we can observe in this 

case is the transition from rectilinear  to curvilinear geometry. 

 

6.3. The derivation of motion equation in framework of QFT 

In addition, another link between the interval (6.4) and the physical equation  is detected. As 

we have shown in chapters 6, using the Schrödinger definition of action (  xSp  ), from the 

equation (6.4’) it is easy obtain Lorentz-invariant Hamilton-Jacobi equation in general view. For 

this it is enough to write the equation (6.4’) in a form, suitable for any of the Euclidean coordinate 

system: 

 22cmppg 
 ,    (6.8) 

where, we recall, g   is the metric tensor  of geometrical space, but not of the gravitational 

space-time of general relativity (in other words, in this case the tensor g   does not include the 

physical characteristics of the field). In this case the Hamilton-Jacobi equation of free particles 

obtains the form: 

 022 























cm

x

S

x

S
g




,     (6.9)  

Thus, we conclude that the three equations (6.4), (6.7) and (6.9) are closely bonded to each 

other and, in fact, follow from one differential equation. From this follows that the interval (6.7) 

within a relativistic physics is the physical law, and not a geometric relation. 

  

Below we will consider the physical meaning of the metric tensor in the framework of QFT 

6.4. The physical sense of the metric tensor 

Recall the transition from Cartesian’s system of coordinates to the generalized coordinate 

system (Korn and Korn, 1968). Let us introduce a new set of coordinates 321 ,, qqq , so that 

among zyx ,,   and 321 ,, qqq   there are some relations: 

              321321321 ,, ,,., ,,., qqqzzqqqyyqqqxx  ,         (6.10) 

The differentials are then 

          3

3

2

2

1

1

dq
q

x
dq

q

x
dq

q

x
dx














 ,                           (6.11) 

and the same for  dy and dz.  

In Cartesian coordinates the measure of distance, or metric, in a given coordinate system is the 

arc length ds , which is defined by 
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                   2222 dzdydxds  ,                                             6.12) 

In general, taking into account (6.11), from (6.12) we obtain 

                 
ij

jiij dqdqgdqdqgdqgds ...2112

2

111

2 ,                (6.13) 

where ijg   is the metric tensor.  Thus in orthogonal system we can write 

                233

2

22

2

11

2 dqhdqhdqhds  ,           (6.14) 

where  ih ’s are: 

 

222















































iii

i
q

z

q

y

q

x
h ,       (6.15) 

are called Lame coefficients or scale factors, and are 1 for Cartesian coordinates. 

Thus, the metric tensor, recorded in coordinates iq , is a diagonal matrix whose diagonal 

contains the squares of Lame coefficients: 

For example, in the case of spherical coordinates, the bond of spherical coordinates with 

Cartesian is given by: 

 ,cos  ,sinsin  ,cossin  rzryrx       (6.16) 

The Lame coefficients in this case are equal to:   sin  ,  ,1 rhrhhr  , and the square of the 

differential of arc (interval) is: 

 2222222 sin  drdrdrds  ,     (6.17) 

Since the metric tensor is determined by means of Lame coefficients, let us recall the 

geometric meaning of the latter:  

the Lame coefficients show how many units of length are contained in the unit of length of 

segment of coordinates of the given point, and used to transform vectors when  transition from 

one system to another takes place. 

This means that the metric tensor in Euclidean geometry defines rescaling of three coordinates 

 ,,r , and in the pseudo-Euclidean or pseudo-Riemannian geometry it determines rescaling of 

four coordinates  ,,,rt . 

 Thus, the elements of the metric tensor g  allow the changing of the projections of body 

trajectory segment on the coordinate axes during the transition from the Cartesian coordinate 

system to another. In the Cartesian system, all elements equal to one. In other systems, takes place 

the incommensurability of curve lines relative to the straight, similar to the incommensurability of  

the diameter of circumference in relation to its length. Therefore,  g  elements are appeared 

others than 1. 

This analysis raises a question, the answer to which, in practice, determines the calculation of 

the metric tensor in framework of LITG: what changes  of the scales of the coordinates follow 

from L-invariant transformations? First of all, we are talking about changing the scales of t  and r  

coordinates. 

As it is known, the scale changes of t  and r in the L-invariant mechanics, are caused by the 

effects of time dilation and length contraction of Lorentz-Fitzgerald. 

From the preceding analysis follows that in accordance with the laws of nature the interval of 4 

space-time can be obtained  only for the pseudo-Euclidean space-time as an embodiment of the 

physical law of motion of elementary particles. 

Since thereis no other motion law for massive particles, we can assume that the metric tensor  

of GTR has the same physical meaning.  
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Thus, we conclude that the equations of Hilbert-Einstein and  Hamilton-Jacobi contain  g  as 

a factor that takes into account the change in the scales of time and distance, due to L-invariant 

effects arising from the motion of bodies.   

Indeed, it can be shown that the squares of the intervals, corresponding to the exact solutions of 

the Hilbert-Einstein equations, are defined by  L-invariant effects. 

6.5. The square of interval of L-invariant gravitation theory in the case of a 
change of scales of the space coordinates and time 

We have shown that MT elements are determined by the Lame coefficients.   

The linear arc element in the 3-dimensional mechanics is expressed through Lame's scale 

factors in the form of linear elements: 

 332211

3

1

dxhdxhdxhdxhds
i

ii 


,    (6.18) 

where  321 ,, xxxrxi 


, 3 ,2 ,1i . . In a Cartesian coordinate system   zyxrxi ,,


, and 

all the Lame coefficients equal to one. 

In the L-invariant mechanics it is impossible to enter the line element of the arc since the 

physical equation, from which follows the magnitude of the arc, connects the squares of the 

energy, momentum and mass, and not the first degrees of these values. The exact expression is 

obtained in the form of the square of length of arc element, which is often referred to simply as an 

interval. In the 4-geometry it is of the form: 

            2

33

2

22

2

11

2

00

3

0

22
dxhdxhdxhdxhdxhds 



 ,      (6.19) 

or, taking into account that   hh , we receive from (6.19)  the form: 

           2

333

2

222

2

111

2

000

3

0

22
dxdxdxdxdxds 



 


,    (6.19’) 

where   is metric tensor in LIGT. 

Now let us consider which view takes the square of the interval in the concrete particular case 

of the change of scales of the space and time coordinate. 

 

6.6. Time dilation and length contraction as a change of the scales of time and 
space coordinates 

Using the definition of the metric tensor in LITG given above, let us calculate it in the simplest 

case. Consider (Pauli, 1958) Lorentz transformation in the transition from the coordinate system K 

to K', which is currently moving at a speed   along the axis x . In this case only the coordinate x  

and time t  undergo transformations.  

The Lorentz effects of length contraction and time dilation are the simplest consequences of 

the Lorentz transformation formulae, and thus also of the two basic assumptions of SRT. 

 
221

''

c

tx
x








 , 'yy  , 'zz  , 

22

2

1

''

c

x
c

t

t








  ,    (6.20) 

The transformation which is the inverse of (6.20) can be obtained by replacing   by   : 

 
221

''

c

tx
x








 , 'yy  , 'zz  , 

22

2

1

''

c

x
c

t

t








  ,    (6.20а)  

Take a rod lying along the x-axis, at rest in reference system K  . The position coordinates of 

its ends, 1x  and 2x  are thus independent of  t  and 012 lxx   is the rest length of the rod. On 
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the other hand, we might determine the  length of the rod in system K' in the following way. We 

find 1x  and 2x  as functions of  t . Then the distance between the two points which coincide 

simultaneously with the end points of the rod in system K  will be called the length l  of the rod in 

the moving system:     ltxtx  12  

Since these positions are not taken up simultaneously in system K  , it cannot be expected that 

l  equals 0l . In fact, it follows from (6.20) : 

 
 

22

2
2

1

'

c

ttx
x








 ;   

 
22

1
1

1

'

c

ttx
x








  

and therefore 
22

0

1 c

l
l


  for infinitesimal time intervals of length dx  has form 

221 c

dx
xd


 .  

From here the scaling factor of the Lorentz transformation of coordinates (denote it as 
L

xk ) will 

be equal to:    

 L

L

x

cdx

xd
k 










221

1
,    (6.21) 

The corresponding element xx  of the metric tensor of the Lorentz transformation will be: 

  2''
Lxx

dx

dx

dx

dx
  ,    (6.22) 

The rod is therefore contracted in the ratio 1:1 22 c , as was already assumed by Lorentz.  

It therefore follows that the Lorentz contraction is not a property of a single measuring rod taken 

by itself, but is a reciprocal relation between two such rods moving relatively to each other, and 

this relation is in principle observable. 

Analogously, the time scale is changed by the motion. Let us again consider a clock which is 

at rest in K  . The time t  which it indicates in x  is its proper time,   and we can put its 

coordinate x' equal to zero. It then follows from (6.20a) that  
221 c

t





 , which for 

infinitesimal time intervals dt  give:  
221 c

td
dt




 .   

From here the scaling factor of the Lorentz transformation of time (denote it as 
L

tk ) will be 

equal to:  

 1221 


 L

L

t c
dt

td
k  ,    (6.23) 

The corresponding element xx  of the metric tensor of the Lorentz transformation will be: 

   2'' 
 Ltt

dt

dt

dt

dt
 ,      (6.24) 

Measured in the time scale of K, therefore, a clock moving with velocity   will lag behind one 

at rest in K  in the ratio 1:1 22 c . While this consequence' of the Lorentz transformation 

was already implicitly contained in Lorentz's and Poincare's results, it received its first clear 

statement only by Einstein. 

Then, in framework of  LITG the square interval will be as follows: 
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           2

33333

2

22222

2

11111

2

00000

3

0

22
 dxdxdxdxdxds 



 


,(6.25) 

where   is  the geometric metric tensor in LIGT (tensor of pseudo-Euclidian space);   is the 

physical metric tensor in LIGT. 

 

Using the values  
222

00 1 cLtt   
  и )1(1 222

11 cLxx    according to 

(6.22) and (6.24), we obtain in the Cartesian system of coordinates: 

              2222222
 dzdydxdtds LL 


 ,     (6.26) 

or 

            222222222
)1(11 dzdydxcdtcds   ,      (6.26’) 

6.7. Connection of the metric tensor of GR with the gravitational field 

 

Firstly, let us refer to GR for guidance, since a similar problem arises also in the solution of the 

equations of general relativity (see. (Landau and Lifshitz, 1971, § 100. «The centrally symmetric 

gravitational field"). Let us skip the details, contained in this book and focus on the question of 

our interest. Let us start from the point when the square of the interval is specified. 

 

Here, in the square of the interval, the designation h  corresponds to MT element xx , and l  

corresponds to the element tt , and it is assumed that eh  , as well ecl 2 , where   and   

are  some functions of r  and t . 

After substituting these exponents into the vacuum equation of general relativity 0R  and 

its integration, we get that rconstee  1 . 

At that, the constant const remains unknown (i.e., it is not defined by the solution of the 

equation of general relativity). According to Schwarzschild solution, this ―constant‖ can be easily 

expressed through a mass body, requiring that at large distances, where the field is weak, the law 

of Newton was opperating. 

From the results of the preliminary analysis (see (Landau and Lifshitz, 1971), §87 «Motion of 

a particle in a gravitational field" and §8 «Principle of least action."), 
2

00 21 cgg Ntt  , 

where N  is the Newtonian potential. In compliance with this, we assume that Nconst 2 . 

However, by tracing the sequence of this analysis, we can easily confirm that the "derivation" of 

expression 
2

00 21 cg   is not connected with general relativity. This means that the 

derivation of Schwarzschild’s solution is also found by trial and error method. 

However, this solution is proved to be correct, and shows us that the non-relativistic theory of 

gravitation of Newton is the basis of relativistic theory of gravitation for the Schwarzschild 

problem. In other words, the Newton solution is the zero approximation of the problem, and the 

relativistic theory should only add minor changes to this result in accordance with perturbation 

theory. 

6.8. Global and local Lorentz transformation  

It is interesting that the requirement to relate the velocity of the body with the gravitational 

field in framework of LIGT also follows from the fact of the equivalence of gravitational and 

inertial mass.  

As we know, the usual Lorentz transformations in classical relativistic mechanics are global; 

that is they take place for all spatial and temporal space-time points. 

Based on the factor of the equivalence of gravitational and inertial mass, Einstein and others 

showed, that Lorentz's transformation of  gravitation theory must be carried out locally, that is, 
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independently at each point of space-time. Thus, the question arises, what are these local L-

transformation? 

Let us use the analogy with phase invariance in quantum field theory, better known as "gauge 

invariance". The phase invariance is the invariance of wave equations regarding the internal 

rotation of the particle field. As it is known, in quantum field theory exist both global, and local 

phase (gauge) invariance. Moreover, all successes in QFT after the creation of QED are linked to 

the transition from the first to the second. 

Global invariance is discovered through the addition of a constant complex value i  to the 

phase of the wave function of the particle, where  is independent of place and time: const . 

Physical quantities, calculated according to the new wave functions are the same as they were 

before the introduction of this quantity (this fact means invariance). 

Later, local invariance was introduced to QFT, i.e., the invariance that is  true only at every 

point of space and time, but not for the entire space-time as a whole. It is characterized by a 

variable alpha: ),,,( tzyx  . 

In the L-invariant theory we are talking about the Lorentz transformations at the inertial 

motion. This is a global transformation: in relation to the spatial coordinates  )(' 0xx   and 

similarly for the time )(' 0tt  , where 0  is the particle speed constant. According to Einstein's 

equivalence principle, the gravitational field is equivalent to the non-inertial motion of the particle 

(movement with a variable speed). Therefore, we must introduce the Lorentz transformations for  

non-inertial motion, by taking into account the local interaction of the field with the particle. The 

obvious way to do this is described further.    

We introduce local transformation through transition to infinitely small distances and times:   

)(' dxdx   and )(' dtdt  ,  in which ),,,( tzyx   is the variable speed of particle 

motion. This transformation does not violate any laws of physics, but makes them local in space 

and time. Their correctness is verified by results, which are  confirmed by experiment. In this 

case, their use allows us to calculate the elements of the MT, identical to those that we have from  

the solutions of general relativity (this is the topic discussed in the following sections).  

Note that according to Poincare and Sommerfeld, Lorentz transformations describe invariance 

in relation to rotations in 4-dimensional space. This brings them close to phase transformations. In 

addition, they can be recorded through hyperbolic (i.e., exponential) functions. The question of 

how far these analogies go, requires a separate analysis. 

 6.9. The connection of motion velocity of the body in the gravitation field with 
characteristics of the gravitation field in the framework of LIGT 

In Section 6.6 we noted that for the bond of  the metric tensor with gravitational field, the 

speed of a body in the Lorentz transformation must depend on the gravitational field. In the 

previous section we came to the conclusion that the local L-invariance requires this rate to be 

variable. We show that both these requirements can be met within LIGT. 

Let us consider the equivalence principle of gravitational and inertial masses. Begin with the 

Newtonian law of motion of a particle with inertial mass inm  in a gravitational field of  source 

with a mass M : 
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2
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r

Mm
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d
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
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

  ,    (6.27) 

where grm  is gravitational mass. Since mmm grin  , then dividing (1.1) by m  we obtain in the 

case of gravitation the movement equation of the form: 

 0

2
r

r

M

dt

d
N






  ,    (6.27’) 

where acceleration is on the left and the Newton force per unit mass is on the right. 

It is easy to see that this equation is the mathematical expression of Einstein's principle of 

equivalence  of gravitational and inertial forces of Einstein. As we know, on the basis of this 
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principle, Einstein concluded that space should be heterogeneous and gravity must be described as 

a curved space-time of Riemann. 

The question arises whether it is possible to give another explanation to this principle. 

 

It appears, that based on the same mathematics, we can actually find this connection. As is 

known, the equation (6.27') can be represented in the energy form. For this  let us rewrite the 

Newton's motion law in the form: 

 dtr
r

M
d N

0

2


  ,    (6.28) 

Multiplying the left and right hand side of equation (6.28) on the speed 


, and taking into 

account that dtrd


   and  rdrrd 12 


, we have from (6.28) after integration: 

 const
r

M
N  



2

2

,    (6.29) 

where m 22  is the kinetic energy of the moving particle per unit mass, and 

mrM potN    is the potential energy of a particle per unit mass at a given point of the 

gravitational field. 

Thus, taking into account the postulate of equivalence and the expression for the potential of 

the gravitational field rMNN   , we obtain from (1.1), the relationship between the velocity 

of the particle and  potential of the gravitational field at the position of the particle: 

 constN   22
,    (6.30) 

If at the initial moment a particle was at rest, and the motion is only carried out via the  

potential energy outlay, then during the whole period of motion const = 0. For example, this 

occurs when the reference frame, that is related to the observer, falls freely to the center of gravity 

source along the radius (radial infall) from infinity, where it had a zero velocity. In this case, we 

have: 

 
r

MN
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
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2
22  ,    (6.31) 

Thus, as a mathematical consequence of Newton's theory of gravity, we have received another 

interpretation of the fact of the equality of inertial and gravitational mass. Following the example 

of Einstein's equivalence principle, it can be expressed as follows: the potential of the 

gravitational field is equivalent to the square of the velocity of the motion of particles in this field. 

In addition, (see chapter 4) the  electromagnetic basis of gravitational equations allows one to 

write the vector potential of the gravitational field through the scalar potential  )( cA 


.  

Expression (6.31) was obtained on the basis of non-relativistic energy conservation law (6.29). 

Obviously, to obtain the post-Newtonian corrections to (6.31), it is necessary to transition to the 

relativistic law of conservation (see more details in the full version of the theory). 

6.10. Derivation of the Schwarzschild metric  

It is easy to see that by substituting (6.31) in the L-invariant square of the interval (6.26’), 

obtained in  paragraph 6.6, we obtain the interval of Schwarzschild-Droste: 

 
 

 2222

2

2
2222  sin

21
21 


 ddr

c

dr
dtccds 


 ,  (6.32) 

Thus, we have, indeed, received the first tested and most important result of GTR, only in 

framework of the L-invariant gravitation theory. 
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7.0. The Kepler problem 

The Kepler problem is the problem of motion of a body of litle mass in a centrally symmetric 

gravitational field of a stationary source of great mass. 

7.1. Direct solution of the Kepler problem in the framework of LIGT 

As the motion equation of LITG we use the Hamilton-Jacobi equation. As we have shown 

above, the equation of motion of Hamilton-Jacobi has a one-to-one connection with the square of 

the interval (square of arc element of trajectory) in framework of LITG. Therefore, as we will 

show below, it is not necessarily to find an appropriate interval to write the corresponding 

Hamilton-Jacobi equation for particle motion in gravitation field. 

 

According to our results all features of the motion of matter in the gravitational field owed 

their origin to effects associated with the Lorentz transformations. 

 

Two of the most important effects from the point of view of mechanics that arise due to the 

Lorentz transformations, are the Lorentzian time dilation and contraction of lengths: 

 21
~

 dttd ,   
21

~


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dr
rd ,    (7.1) 

where, as shown previously, rrc S 222  , and  Sr  is the Schwarzschild radius. 

 

7.2. The equation of motion of a particle in a gravitational field with the Lorentz 
time dilation and length contraction 

We will use the Hamilton-Jacobi equation (7.3) in form: 
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Substituting in (7.11)  21
~

 dttd  and 21~  drrd , we  obtain: 
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Taking into account that in our theory rrs 11 2 , we obtain from (7.12) the well-known 

Hamilton-Jacobi equation for general relativity in the case of the Schwarzschild-Droste metric 

(Schwarzschild, 1916; Droste, 1917): 
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As is known (Landau and Lifshitz, 1971) the term 
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(which contains the Lorentz 

time dilation effect) in the classical approximation leads to the equation of motion with Newton's 

gravitational energy. From this it follows that the precession of the orbit ensure the introduction of 

an additional term 
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As is known, the Kepler problem solution, based on this equation, gives an additional term in 

the energy, which is missing in Newton's theory: 
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which is responsible for the precession of the orbit of a body, rotating around a spherically 

symmetric stationary center. From the above analysis it follows that the appearance of this term is 

provided by Lorentz effect of the length contraction. 

 

As is well known (Landau and Lifshitz, 1971), the solutions of this equation disclose three 

well-known effects of general relativity, well confirmed by experiment: the precession of 

Mercury's orbit, the curvature of the trajectory of a ray of light in the gravitational field of a 

centrally symmetric source and the gravitational frequency shift of EM waves. 

8.0. The Kerr metric calculation in the framework of LIGT 

 Here, we will use the  approach for obtaining the corresponding square of the interval, which 

is  described above for calculating of the Schwarzschild metric. 

In this chapter in the framework of LIGT we consider the problems arising in the description 

of the test particle motion in a gravitational field of a moving source. We will show that the 

solution for the moving body is connected with the solution for the fixed body on the basis of the 

Lorentz transformations. 

Perhaps the only book, in which the authors, to obtain the results of GTR, have used  such 

approach, is the review of the problems of gravitation in book (Vladimirov et al, 1987). In this 

book, along with the Schwarzschild solution, by means of  this method are obtained the solutions 

of Lense-Thirring and Kerr for the metric around a rotating body, and  solutions of Reissner-

Nordstrom and Kerr-Newman, when this source has an electric charge.  

We will present below the Kerr solution only. 

8.1. Gravitational fields around rotating source 

To begin with it is worth discussing some general properties of rotation (Vladimirov et al, 

1987).  

In order to describe the rotation of a rigid body an angular velocity   is introduced in addition 

to the conventional (linear) velocity V of a point of the body, because the angular velocity is 

constant for a rigid rotation, whereas the linear velocity of any point of the body is proportional to 

the distance between the point and the axis of rotation.  

The relationship between angular and linear velocities in cylindrical coordinates is 

 V ,    (8.1)  

and in spherical coordinates (here  sinr ). 

 sinrV  ,    (8.2)  

However, a body can rotate not as a rigid one (for example, Jupiter's atmosphere rotates with 

different angular velocities at different latitudes as a result having different periods of rotation). 

The rotation period is related to angular velocity thus:  2T . Hence the angular velocity 

may depend on position (coordinates) of point. 

A reference frame may be rotating, too; though a rigid body rotation is even less natural for 

such a system than a rotation with different angular velocities at different points. Also, if a 

reference frame extended to infinity could rotate as a rigid body, that is, with a constant angular 

velocity  , then a linear velocity at a finite distance from its axis (on a cylinder  c ) would 

reach the velocity of light c , and outside of this "light cylinder" would surpass it. Obviously, this 

kind of reference frame is impossible to simulate for any material bodies, therefore, the angular 

velocity of any realistic reference frame must change with distance from the axis. The slowdown 

must not be less than inversely proportional to that distance. But there should be a domain, well 

within the light cylinder, where the reference frame would rotate as a rigid body. 
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A rotating physical body possesses an angular momentum L  as a conserved characteristic, 

which in certain respects is related to energy and momentum, which are also subject to the 

conservation laws.  

In Newton's theory, mass (or energy, divided by the velocity of light squared)  is the source of 

a gravitational field, while linear and angular momenta have no such a role. In the GR, however, a 

gravitational field is generated by a combination of distributions of energy, and linear and angular 

momenta, and the stress, too. 

Let us examine the angular momentum of an infinitely thin ring (which has, however, a finite 

mass rM ) rotating around its axis. This angular momentum is a vector which is directed along the 

axis of rotation and has an absolute value of  

 2RMVRML rr   ,     (8.3) 

where rM  is the mass of the ring, V  is its linear velocity,   is its angular velocity, and R  is the 

radius of the ring. 

8.1.1. The satellite motion around rotational Earth 

In the real case, we have to evaluate the effect of rotation of the Earth to the satellite and to 

show that it is associated with the angular moment of the Earth. 

Here we will use the work of R. Forward (Forward, 1961), who, following to the work of 

Moeller (Moeller, 1952), presented an analogy between electromagnetism and gravitation,  which 

allows calculation of various gravitational forces by considering the equivalent electromagnetic 

problem. 

When the analogy is carried out and all the constants are evaluated, we obtain an isomorphism 

between the gravitational and the electromagnetic quantities. 

First we need to know the gravi-rotational field of the earth. From Smythe (Smythe, 1950) we 

find an expression for the external magnetic field produced by a ring current i  at a latitude     

on a spherical shell of radius R . By transforming the magnetic quantities in gravitational 

quantities, we obtain an expression for the gravi-rotational field of a rotating massive ring with 

mass current mi : 
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Since it is assumed that superposition is valid, we can construct the gravi-rotational field of a 

solid spinning body by integrating over the volume: 
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Since sinr  is the distance from the axis of rotation to the mass element, we see that the 

integral is merely the moment of inertia I  of the body (Earth). Thus, in general the rotational 

field of any rotation body is approximately: 
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Similarly, it can be show that: 
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But the Forward approach does not allow to compare the results of his calculation with metrics 

Lense-Thirring and Kerr. That is why we will try to obtain a metric which describes the 

gravitational field around the rotating ring using a technique like the above technique.  
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8.2. The Kerr metric in framework of LIGT 

Now, let us try to obtain a metric which describes the gravitational field around the rotating 

ring (Vladimirov et al, 1987). It is understood that solution for any body, which is symmetrical 

relative to the axis of rotation, can be obtained by integrating of solution for the ring  by the 

volume of this body. 

We begin with the Euclidean space-time in which we introduce spherical coordinates in a non-

rotating frame; we assume the basis is, thus relative to it the flat space-time metric will be 

        22222222
sin)('  drdrrdcdtds 


,       (8.4) 

A transition to a non-uniformly rotating reference frame is done by locally applying Lorentz 

transformations so that every point has its own speed of motion directed towards an increasing 

angle  . The absolute value of this velocity is a function V  which depends, generally speaking, 

on the coordinates r  and :   ,rVV  .  

Such a local Lorentz transformation is not equivalent to the transformation of the coordinates 

in the domain studied (in practice this domain is the whole of space) but is limited only to the 

transformation of the basis at each point.  

Thus, we have: 
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Now let the box with the observer be released from infinity. In this case we can write a new 

basis in which time has slowed down, and the lengths in radial direction have shortened. This is 

equivalent to the substitution of the 0'ds  in (1.5) by the basis linear elements from (1.16) 
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Thus, we have assumed that the observer makes his measurements in the rotating frame and 

notices the relativistic changes in his observations.  

Now let us do the reverse transformation to the nonrotating reference frame by applying 

Lorentz transformations (inverse to (8.5)) to the basis (8.6): 
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We now insert into (8.7) the basis ''ds , which is expressed in terms of the sd~  from (8.6), 

and then write this expression in terms of the 'ds  from (8.5). We postulate, as we did previously, 

that the resulting basis  (8.7) remains orthonormalized. A few manipulations yield:  
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But at the beginning, for simplicity we have made the assumption about a coordinate system  

as the normal spherical coordinate system, which is, of course, not suitable for a rotating body 

because its gravitational field should have the symmetry of an oblate spheroid. 
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To do this, at first we must pass to the ellipsoidal coordinates, and secondly, use Newtonian 

potential source (ring). If in accordance with what has been said we minimally modify the 

formula (1.22) without discarding any terms (of the type 22 cV  in (1.18), we can directly come 

to the exact Kerr metric. 

Here the Newton's potential N  represents a solution of the Laplace equation, though under 

the new symmetry, that is rotational and not spherical. Therefore it is now worth considering 

oblate spheroidal coordinates in flat space. These coordinates,  ,  , and   are defined as 
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We know that   01  r  when 0r , and this equality holds under any translation of 

coordinates. Let this translation be purely imaginary and directed along the z axis, i.e., 

,, yyxx   and ciazz  . Then we easily find that  
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21222 iaciaczarccr  . From here the expression for Newton's potential 

follows, 
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since the Laplace equation is satisfied simultaneously by both the real and imaginary parts of the 

potential. Hence we can get with the help of  NsN rM  222  :  
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We determine the velocity V  using a model of rotating ring of some radius 0  for the source 

of the Kerr field, this ring being stationary relative to the rotating reference frame (8.6).  

On the one hand,      sin 
212222122  cayxV  corresponds to the relation 

(8.2). On the other hand, it is clear that the reference frame cannot rotate as a rigid body, 

otherwise the frame wouldn''t be extensible beyond the light cylinder as we dropped our box from 

infinity. Therefore the angular velocity   has also to be a function of position.  

The ring lies naturally in the equatorial plane, so that its angular momentum is 
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We now introduce an important hypothesis which establishes a connection between the 

angular momentum and the Kerr parameter a, which is also a characteristic for spheroidal 

coordinates (8.9), namely we put sMLa  . These last three statements yield 
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If we now add a second hypothesis, that the field is independent of the choice of the ring radius 

(depending only on its angular momentum), then naturally we can get for  : 

       2222 acac    

and finally    

        sin
21222 

 accaV ,    (8.12) 

It only remains for us to choose the expression for a basis 'ds   which would correspond to the 

assumed rotational symmetry (i.e., to the oblique spheroidal coordinates). We may substitute the 

coordinates yx, and z  from (8.9) into the pseudo-Euclidean squared interval, 



  

                                                    23 

 

22222 dzdydxcdtds  , hence getting a quadratic form with a non-diagonal term. This 

term, which contains dd , can be excluded by a simple change of the azimuth angle: 

   daccadd
1222 

  thus leading to a diagonal quadratic form. If now the square 

roots of the separate summands are taken, we get the final form of the initial basis  'ds : 
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A mere substitution of these expressions into (8.8) yields the standard form of the Kerr metric 

in terms of the Boyer-Lindquist coordinates, 
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where we have introduced the notation  

 
22 arrr s  ,   2222 cosar  ,  SMLa  ,    (8.15)  

The resulting metric is a solution of Einstein's gravitational field equations, and the method 

does give some hint as to how to understand the Kerr metric and its sources, and it lets us look at 

the structure of the latter. 

If we assume in the calculations that   1
2
cV , thus dropping the corresponding terms in 

(8.5) and (8.7). This is the assumption of slow rotation (more exactly, of the smallness of L , the 

angular momentum of the source) and it leads to  raV sin  instead of (8.12). Thus instead of 

the Kerr metric (8.14) we will get the approximate the Lense-Thirring metric: 
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(we have written in it r instead of   and taken into account the approximate sense of the 

expressions). 

9.0.The cosmological solutions in the framework of LIGT 

9.1. Cosmological solutions of GR 

In addition to the non-cosmological solutions the solutions exist that are interpreted as 

cosmological, that is such which related to the entire Universe.  

At the moment, as a tested solution is considered the solution, obtained by means of the 

postulates of the homogeneity and anisotropy of Universe, jointly with the results of general 

relativity and thermodynamics. 

Basic cosmological solutions of general relativity (for three types of curvature of space-time 

Universe) were obtained by Friedman (1922). Their derivation is reported in numerous textbooks, 

lectures and monographs; See, for example.  (Bogorodsky, 1971; Dullemond et al. 2011, Ch. 4.). 

 

9.2. The Robertson-Walker Universe metric in framework of LIGT 

Since Newton's equation is a first approximation of the equations of gravitation LIGT, you can 

expect that the results of Friedman's (at least to a first approximation) can be derived from 

Newton's theory of gravitation. 
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Such solutions were indeed found in 1934 (Milne, 1934;  McCrea and Milne, 1934). 

Moreover, it appears that these solutions are the same as the solutions of Fridman. Later they were 

refined (Milne, 1948; Krogdahl, 2004). 

―A Lorentz-invariant cosmology based on E. A. Milne’s Kinematic Relativity is shown to be 

capable of describing and accounting for all relativistic features of a world model without space-

time curvature. It further implies the non-existence of black holes and the cosmological constant. 

The controversy over the value of the Hubble constant is resolved as is the recent conclusion that 

the universe’s expansion is accelerating. ―Dark matter‖ and ―dark energy‖ are possibly 

identified and accounted for as well‖ (Krogdahl, 2004). 

A modern formulation of this solution in Russian can be found, for example, in the 

presentation of the expert in the field of general relativity, academician Ya.B.Zeldovich; see 

Appendix I to the book (Weinberg, 2000), p. 190, titled ―The classical non-relativistic 

cosmology‖ , who note here: 

―All the calculations could have been made not only in the nineteenth century, but also in the 

eighteenth century‖. 

The lecture 2 from the modern cosmology course ((Dullemond et al. 2011, Ch. 2) is dedicated 

to this subject. 

 

Of the issues, identified in the statement of the problem, remains only the question of 

quantization of gravitation theory in framework of  LIGT. 

10.0. On the quantum theory of gravity 

Numerous attempts to quantize general relativity, which are continued for almost a century, 

have not led to a positive result. In framework of GR the quantization is only possible in the 

linearized theory. But also it has its own difficulties. 

Is it possible to build a quantum theory of gravity within the L-invariant gravitation theory?  

Since the L-invariant gravitation theory is tied to the theory of electromagnetic field, the 

problem of quantum gravity is placed differently here than in general relativity.  

Recall that, according to GR, the source (charge) of the gravitational field is the mass/energy. 

Its peculiarity lies in the fact that it has almost a sufficiently strong field only if its value is much 

larger than the mass-energy of the elementary particles (so even a small grain of sand contains up 

to 1910 electrons and nucleons). Let's call this gravitational charge "effective". Therefore, because 

of its value, it can be difficult to characterize by means of  the quantum parameters of an 

elementary particle. 

In addition, gravitational charge may have angular momentum (let us say, spin), but its 

quantization also does not make sense because of the magnitude of the effective charge. 

Therefore, from this point of view, we can not attribute the gravitational charge either to bosons or 

to fermions. At the same time it has the property of bosons: the superposition of individual 

masses-energies is possible and creates a new gravitational charge as the sum of mass-energy. In 

addition, as part of the GEM the gravitational radiation field is considered  as composed of bosons 

- gravitons: particles with spin 2. 

All this corresponds to the consequences of LIGT. Since we can conditionally say that the 

basis of LIGT is EM theory of the "massive photon" (see chapter 2), then we can assume that it 

can be the basis of the quantum theory of gravity. To some extent this is true. But such a theory is 

almost meaningless because of the size of the effective gravitational charge.  

However, these quantum equations can be used because they coincide with the classical ones 

as it is the case for all bosons: 

“Something similar can happen with neutral particles. When we have the wave function of a 

single photon, it is the amplitude to find a photon somewhere. Although we haven't ever written it 

down there is an equation for the photon wave function analogous to the Schrödinger equation 

for the electron. The photon equation is just the same as Maxwell's equations for the 

electromagnetic field, and the wave function is the same as the vector potential A. The wave 
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function turns out to be just the vector potential. The quantum physics is the same thing as the 

classical physics because photons are noninteracting. Bose particles and many of them can be in 

the same state — as you know, they like to be in the same state. The moment that you have billions 

in the same state (that is, in the same electromagnetic wave), you can measure the wave function, 

which is the vector potential, directly.  

Now the trouble with the electron is that you cannot put more than one in the same state‖ 

(Feynman, Leighton and Sands, 1964a). 

 

This means that, having  classical equations of gravity, we, in fact, already use quantum 

equations of gravity. 

According to our approach, the words of Feynman in bold, can be attributed to gravitation after 

some adjustments: 

The graviton equation is just the same as Maxwell's equations for the gravitation field, and 

the wave function is the same as the vector potential A. 
 

Therefore, it is obvious that the quantization of gravity has no practical value: we already use, 

so to say,  quantum theory, without introducing the requirement of quantization of energy-

momentum to it.. 

From a formal point of view we can accept the existence of the graviton in LITG. Moreover, it 

can be assumed that the graviton should have spin 2, not 1 as a photon, since neutral waves can 

only be radiated by a system of quadrupole gravitational charges (see. Ivanenko and Sokolov, 

1949, §56). 

What can be said in the framework of LIGT about the existence of graviton and its spin value? 

If we will consider the linear approximation of GR (e.g., GEM) as reliable enough, then, because 

the graviton is a boson, it makes no sense to speak about its spin; in this case it is enough to speak 

about the classical gravitational waves. 

Moreover, quantizing all waves does not make any sense. As we know, it does not make sense 

to quantize all the waves. In particular, the quantization of low-energy (long) EM waves does not 

make sense. The energy of gravitational waves in many orders of magnitude is lower, than of EM 

waves. As it is impossible to prove the existence of the graviton experimentally, it hardly makes 

any sense to discuss further. 

Above we demonstrated that all proven solutions of general relativity  can be obtained  on the 

basis of L-invariant gravitation theory. Thus our task can be considered exhausted. In detail the 

theory is expounded in the books (Kyriakos, 2016a) and (Kyriakos, 2016b).  The first variant of 

the theory provides more detailed information about the classical and quantum field theory and is 

intended for all specialists, including the undergraduate. The second book contains the abridged 

version of the theory, and is intended for professionals in the area of the gravitational field theory. 

 

But the question arises, what connection can  LIGT have with GR. In fact, it is often found that 

two theories which give identical results are often in a certain connection with each other. It seems 

to be impossible, to obtain general relativity from LIGT: they significantly differ by their initial 

postulates. But we can show that in the base of the cumbersome mathematics of general relativity 

lie the simple maths of LIGT. 

11.0. GRT as a hidden Lorentz-invariant gravitation theory  

Let us enumerate the distinguishing features of GTR compared to LITG. 

1) GR is a relativistic theory, but it is not a Lorentz-invariant theory. 

2) GTR is a general-covariant theory. 

3) GR is constructed on a geometrical basis, while in the rest of physics, geometry does not 

play any role. 

Does these features have a physical sense? Characteristic are the Fock remarks about the first 

two points (Fock, 1964): 
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(p.7): ―However, when Einstein created his theory of gravitation, he put forward the term " 

general relativity " which confused everything. This term was adopted in the sense of " general 

covariance ", i.e. in the sense of the covariance of equations with respect to arbitrary 

transformations of coordinates accompanied by transformations of the g . But we have seen 

that this kind of covariance has nothing to do with the uniformity of space, while in one way or 

another relativity is connected with uniformity. This means that " general relativity " has nothing 

to do with " relativity as such ". At the same time the latter received the name " special " relativity, 

which purports to indicate that it is a special case of  "general" relativity.".  

p. 7: ―Remembering that even in Newtonian mechanics one deals with the generally covariant 

Lagrange equations of the second kind, one would also have to say that Newtonian mechanics 

contain in itself  "general" relativity.".  

p. 120:. ―We refer to Lagrange's equations (of the second kind) which describe the motion of a 

system of mass points in generalized coordinates and also their generalization for continuous 

media. While they state nothing physically new as compared to equations in Cartesian 

coordinates, Lagrange's equations nevertheless play an important part both in practical 

applications and in theoretical investigations. In the Theory of Relativity general tensor analysis 

has a similar purpose.‖ 

It is clear that these two first features of general relativity have no physical meaning. Analysis 

of the third aspect - the geometric representation of general relativity - leads to the same 

conclusion, and is the cause of difficulties of general relativity , as we will show below. 

We will try to show that the verifiable results of general relativity do not depend on all these 

features. Strangely enough, in practice GTR demonstrates that the cumbersome mathematics of 

general relativity is equivalent to the simple math of LIGT. 

Let us analyze the solution of problems in GR in terms of the features of the mathematical 

apparatus of GR, which are associated with the geometric approach and the general covariance of 

the theory.  

The geometric foundation of general relativity is the Riemann curvature tensor. 

 

" The Riemann tensor consists of 4 × 4 × 4 × 4 = 256 components. Planes xy  and yx  etc. 

coincide, and planes xx , etc. are degenerated into a line and do not contribute to the 

mismatching A . Therefore many components of the Riemann tensor either vanish or are 

expressed through each other. As a result, the four-dimensional Riemann tensor contains 14 

independent components ...    

On the other hand, in differential geometry tensor of 4 × 4 can be determined, which also 

contains information about curvature. It is called the Ricci tensor and is obtained from the 

Riemann tensor by means of the defined summation of its components." Etc .. ( Beskin, 2009)   

 

The physical sense of the Riemann curvature tensor and the Ricci curvature tensor is unknown. 

It is known that it contains all possible relationships of the coordinate differentials, in recording, 

which fit for any possible coordinate systems. These relationships may be formulated in the form 

of a generalized metric tensor (MT).   

The invariance of the transition from one coordinate system to another is taken as some 

general principle of relativity. This principle is called the principle of general covariance.  

Let us now trace the accurate solution within the framework of GR through the example of the 

most important Schwarzschild solution (see book (Landau and Lifshitz, 1971, § 100)). 

Firstly, the original equation of general relativity is reduced to the equation:  

 0R ,      (8.1) 

The Ricci tensor R  (as, in fact also the Riemann tensor) can be expressed through 

Christoffel symbols, which represent complex mathematical differential expressions, containing 

the elements of the metric tensor and its derivatives.  
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To pass on to the physically meaningful quantities, the pseudo-Euclidean spherical rectangular 

coordinates are chosen. Next the symmetry of the problem is analysed (i.e., to simplify the task,  

conservation laws are used, contemplated in it according to Newton's mechanics). 

According to the results of the analysis, a conclusion is reached about the general form of four 

of the 16 elements of the metric tensor. It turns out that two of them are given by the geometry of 

the coordinate system. And only the other two elements are functions of the radius-vector and 

time of movement of the body. As suggested, they define the relativistic corrections of the 

Newtonian theory. 

Further, by substituting these 4 functions in 40 Christoffel symbols, 40 quantities should be 

calculated. Of these, only 11 are meaningful, while the rest equal zero or coincide with each other. 

These values are substituted in Ricci's tensor, and from the equation (8.1), we obtain a system 

of  3 ordinary differential equations after considerable simplifications. 

The solution of this system is obtained in the form of two components of the metric tensor, 

which include an undefined constant. It is suggested that this constant is connected to the 

gravitational field. As a characteristic of the gravitational field, this constant is interpreted using 

Newton's theory. Only then do these elements receive a connection with the gravitational field. 

Let us analyze these results.  

As it was noted by V. Fock (see above), Newton's mechanics (as well as any other theory) can 

be written in the general-covariance form. This is done, for example, in the books of J.L.Synge 

(Synge, 1960), and others. This form of course, does not give any new results of the theory, 

because it is just an other mathematical notation. 

It is important to note that in this form, for the sake of brevity all expressions are written, using 

the rule of summation over repeated indices Einstein. Let us compare the normal recording with 

the general covariant.  

For example, the basic invariant form of SRT and GRT - the square of the interval of the 

particle trajectory - in the Cartesian coordinate system is written as:  

        22222222
)()()()( dzdydxdtcrddtcds 
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,      (8.2) 

In the curvelinear rectangular coordinates this square of the interval has the form: 
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which in both cases has four summands (in the case of rotating bodies, one or two more terms 

are added). 

 In general relativity the transition of equation (8.2) to the general-covariant form is 

postulated: 
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dxdxgds ,     (8.4) 

or, using the rule of Einstein's summation:  
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2
,     (8.5) 

Comparing the expressions (8.3) and (8.5), we can conclude that in general relativity the 

mathematics is much simpler than the mathematics of STR (see (8.2), (8.3)). But this is a 

completely erroneous conclusion. We simply used new hieroglyphs, in which additional 

information is encrypted. Indeed, in the decrypted form (8.4) appears as the sum of 16 terms 
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The most remarkable thing here is that, the Schwarzschild solution allocates in Cartesian 

coordinate system just four of these 16 terms, conditionally speaking, "diagonal" elements 

("conditionally", since the expression (8.6) is not a tensor):   

 00

00 dxdxg ,  11

11 dxdxg , 22

22 dxdxg , 33

33 dxdxg ,     (8.7) 

which in a spherical coordinate system are displayed only by two elements:  

 
00

00 dxdxg  и  rr

rr dxdxg ,    (8.8) 

Each of these two elements 00

00 dxdxg   and rr

rr dxdxg  have each of them identical indexes  

00 , rr ,  which correspond to the transition from one coordinate system to an identical 

coordinate system. In general, these two systems can move relatively to each other. But this 

movement is not defined in the framework of general relativity. Therefore, additional postulates 

are required to enter it , as we saw in the analysis of the Schwarzschild solution. 

It is easy to understand that in framework of SRT this corresponds to the transition, which 

takes place at the Lorentz-invariant transformations. Moreover, these elements are identical to 

those that we have received in framework of LIGT directly from the Lorentz transformations. 

Similarly, each expression in the book of J.L Synge can be translated into a form of explicit 

sums. In this case, we will obtain a huge number of physically meaningless terms, compared to 

what we have in traditional mechanics. These terms owe their existence to the generalized 

coordinates: rectangular, oblique, and any others. 

Obviously, such a redundancy of results has nothing to do with physics, but only with  

mathematical form. In the transition to the usual rectangular coordinates, the majority of terms of 

the general-covariant recording, taking into account mutual perpendicular coordinates, will be 

zeros or will be coincide with each other. 

The only useful quality of general covariance is thatt, along with many meaningless terms, it 

contains a small number of terms, which are the basis for solving the problem. 

Thus, the geometric formulation of general relativity drastically complicates the theory, hiding 

and masking simple results that can be obtained in the framework of special relativity. 

This conclusion is particularly emphasized by the fact that Newton’s theory of gravitation can 

also be dressed in a meaningless from the physical point of view, geometric form.  

11.1. Riemannian’s form of Newton's theory of gravitation  

The geometrization of classic conservative theories is known for almost one and a half century. 

It is based on the variational principle and was proposed by Carl Gustav Jacobi in 1837 (Jacobi, 

1837; 1884). The results of this article are set out in many courses of mechanics; for example, see 

(Buchholz, 1972, p. 271-277; Encyclpedia of matematics; Polac, 1959). Therefore, we present 

only the conclusion of the analysis of the book of Buchholz: 

 ―Thus, the motion of a holonomic system under the action of potential forces can always be 

considered as an inertial motion in the Riemann space, the metric of which is determined by  a 

fundamental metric form‖. 

It is clear that the Riemann form adds nothing to Newton's theory of gravitation. This is a  

mathematical "form" that does not contain new physics. And as we have shown above, the 

exemption from this mathematical form in general relativity leads to a simple Lorentz-invariant 

theory, which provides in a simple way all GRT results without resorting to geometric 

representations.  

 

References 

Beskin, V.S. (2009). Gravitation and astrophysics. (in Russian). Moscow, Fizmatgiz. 

Buchholz, N. (1972) Basic Course of Theoretical Mechanics, vol 2. (in Russian). Moscow, Nauka. pp. 271-277 

Dawson, S. (1999). Introduction to Electroweak Symmetry Breaking.   http://arxiv.org/abs/hep-ph/9901280  

Encyclpedia of matematics. Variational principles of classical mechanics. Springer. 

http://www.encyclopediaofmath.org/index.php/Variational_principles_of_classical_mechanics 

http://arxiv.org/abs/hep-ph/9901280
http://www.encyclopediaofmath.org/index.php/Variational_principles_of_classical_mechanics


  

                                                    29 

 

Feynman R., Leighton R., Sands M. (1964). The Feynman Lectures on Physics, Vol. 2. 28-5 Attempts to modify the 

Maxwell theory. (Addison-Wesly, Palo Alto, 1964) . 

Feynman, R.P., Leighton, R.B. and Sands, M. (1964a). The Feynman Lectures on Physics , Vol. 3. (21-4 The meaning 

of  the wave function).  Addison-Wesly, Palo Alto 

Feynman, R.P., Morinigo, F. and Wagner, W. (2002).  Feynman lectures on gravitation. Westview Press 

Fock, V. (1964). The theory of space, time and gravitation. Pergamon Press, Oxford. 

Forger, M. and Römer, H. (2003). Currents and the Energy-Momentum Tensor in Classical Field Theory: A fresh look 

at an Old Problem. http://arxiv.org/abs/hep-th/0307199 

Forward, Robert L. (1961). General Relativity for the Experimentalist.  Proceedings of The Institute of Radio 

Engineers , vol. 49, no. 5, pp. 892-904, 1961. ttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4066418 

Gell-Mann, M. (1985). From Renormalizability to Calculability?//Shelter Island II: Proceedings of the 1983 Shelter 

Island Conference on Quantum Field Theory and the Fundamental Problems of Physics/. Cambridge, Mass.; 

London, England: The MIT Press, 1985.—P. 3—23. 

Houghton, Conor. (2005). Yang-Mills theory. Encylopedia entry in the Encyclopedia of Nonlinear Science 

(Routledge, New York, 2005). http://www.cs.bris.ac.uk/home/cscjh/physics_papers/YM.pdf 

Ivanenko, D.I. and Sokolov, A.(1949). Classical field theory. (in Russian). GITTL, Moscow-Leningrad. 

Jacobi, C. G. J. (1837). Crelle's Journal, 27, 97 (1837); Comptes Rendus, 5, 61 (1837). 

Jacobi, C.G.J. (1884). Vorlesungen über Dynamik, G. Reimer, Berlin, 1884 

Katanaev, M.O. (2013). Geometrical methods in mathematical physics. (in Russian) http://arxiv.org/abs/1311.0733  

Krogdahl, W.S. (2004). Cosmology in Flat Space-Time. http://lanl.arxiv.org/abs/gr-qc/0402016 

Krogdahl, W.S. (2007).  A Critique of General Relativity.  http://arxiv.org/pdf/0711.1145.pdf   ). 

Kyriakos, A.G. (2016a) The Lorentz-invariant gravitation theory (full book). http://viXra.org/abs/1611.0015 

Kyriakos, A.G. (2016b) The Lorentz-invariant gravitation theory (short book). http://viXra.org/abs/1611.0032  

Landau L.D. and Lifshitz E.M. (1971, 1973, 1975). The classical theory of field. Pergamon Press.  

Lightman, Press et al., 1979.   Problem book in relativity and gravitation. Princeton University Press 

Logunov A. A. and Loskutov Yu. M. (1988). Ambiguity of predictions of GRT. (in Russian) TMF, V.74, № 3, pp. 

323-330 

McCrea, W. H. and Milne, E. A. (1934). Quart. J. Math. Oxford 5, 73 (1934).   

Milne, E. A. (1934). A Newtonian Expanding Universe. Quart. J. Math. Oxford 5, 64 (1934), reprinted in Gen. 

Relativ. Gravit. 32 (9), 1939–1948 (2000).  

Moeller, C. (1952), The  theory  of  Relativity. Oxword Univercity Press, London 

Nielsen, M. (2007). 5 An introduction to Yang-Mills theory. http://michaelnielsen.org/blog/yang_mills.pdf) 

Page, L. (1912). Derivation of the Fundamental relations of electrodynamics from those of electrostatics. Amer. J. Sci. 

XXXIV (1912), с. 57; Phys. ZS. XIII (1912), с 609. 

Pauli, W. (1958).Theory of Relativit.y.  Pergamon, London.  

Polak, LS. (1959). Variational principles of mechanics. (in Collection: Variational principles of mechanics. Ed. LS 

Polak). (in Russian) M. GIF-ML, 1959). 

Purcell, E.M. (1985).  Electricity and magnetism. McGRAW-HILL BOOK COMPANY. 

Quigg, Chris. (2007) Spontaneous symmetry breaking as a basis of particle mass. Rep. Prog. Phys. 70 (2007) 1019-

1053. (http://iopscience.iop.org/0034-4885/70/7/R01 )  

Ruggiero, Matteo Luca and Tartaglia, Angelo. (2002)  Gravitomagnetic Effects, Nuovo Cim. 117B (2002) 743-768 

http://arxiv.org/abs/gr-qc/0207065 

Ryder, L.H. (1985).  Quantum field theory. Cambridge University Press, 1985. 

Sommerfeld, Arnold. (1952). Electrodynamics: Lectures on Theoretical Physics.  Academic Press,  (371 pp.) 

Synge, J.L. (1960). Relativity: The general theory.  North-Holland Publishing Co., Amsterdam 

Vizgin, V.P. (1981) Relativistic theory of gravity. Sources and formation. 1900 – 1915. (in Russian). Moscow, 

publisher ―Nauka‖ 

Vladimirov Yu,  Mitskievich, N. and  Horsky J. (1987). Space, time, gravitation. Moscow, Mir Publishers. 

Whittaker, E A. (1953). History of the theories of Aether and Electricity. The Modern Theories. 1900-1926. Thomas 

Nelson and Sons Ltd. London, Paris, New York. 

Zoellner, F., Weber, W. and  Mossotti, O.F. (1882). Erklaerung der  universellen Gravitation aus den statischen 

Wirkungen der Elektricitaet und die allgemeine Bedeutung des Weber’schen Gesetzes. Leipzig: Staackmann. 

(see also J.J. Thomson, Proc. Camb. Phil. Soc. XV (1910), с. 65). 

. 

http://arxiv.org/abs/1311.0733
https://www.researchgate.net/deref/http%3A%2F%2Farxiv.org%2Fpdf%2F0711.1145.pdf
http://vixra.org/abs/1611.0015
http://vixra.org/abs/1611.0032
http://iopscience.iop.org/0034-4885/70/7/R01
http://arxiv.org/abs/gr-qc/0207065

	OLE_LINK1
	OLE_LINK2

