A Simple Proof of the Collatz-Gormaund Theorem (Collatz Conjecture)

Caitherine Gormaund

October 2016

1 Definitions

We define a function \(c(n) \) \((n \in \mathbb{N})\) such that

\[
c(n) = \begin{cases}
\frac{n}{2} & \text{n even} \\
3n + 1 & \text{n odd}
\end{cases}
\]

Furthermore, we define \(c_i(n) \) such that

\[
c_i(n) = c(c(...c(n)...))) \quad \text{\(i\) times}
\]

We now define a statement \(P(n) \), meaning

\[
P(n) : \exists i \in \mathbb{N}.C_i(n) = 1
\]

Thus, we can state the Collatz Conjecture in the following way

\[
\forall n \in \mathbb{N}.P(n)
\]

2 Proof

\[
c(1) = 1
\]

\[
\therefore P(1)
\]

Now, assume \(P(n) \forall n < k \) for some \(k \in \mathbb{N} \) (Complete Induction)

If \(k \) is even:

\[
c(k) = \frac{k}{2}
\]

\[
\frac{k}{2} < k
\]

1
\(P\left(\frac{k}{2} \right) \) is assumed.

\[\therefore P(k) \]

If \(k \) is odd:

\[k = 2m - 1 \text{ for some } m \in \mathbb{N} \]

\[c(2m - 1) = 3(2m - 1) + 1 = 6m - 2 = 2(3n - 1), \text{ which is even.} \]

\(P(k) \) has already been shown for even \(k \)

\[\therefore P(k) \]

\(P(1) \) and \(P(n < k) \implies P(k) \)

Hence, by complete induction, \(P(n) \forall n \in \mathbb{N} \)

\(Q.E.D \)