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Abstract

We present notes on the Marcus-de Oliveira conjecture. The
conjecture concerns the region in the complex plane covered by
the determinants of the sums of two normal matrices with pre-
scribed eigenvalues. Call this region ∆. Let ∆S be the restric-
tion of ∆ to determinants of sums of symmetric normal matri-
ces. This paper focuses on boundary matrices of ∆. We derive
some properties of boundarymatrices and boundary points. We
conjecture that ∂∆ ⊆ ∂∆S. Speculations on how to prove this
conjecture are given. We also present a second conjecture with
regards to the form of normal matrices with magnitude symme-
try. This paper builds on work in [1].

Keywords:
determinantal conjecture; Marcus-de Oliveira; determinants;
normal matrices; convex-hull

MSC:
15A15

1 Introduction

Marcus [3] and de Oliveira [2] made the following conjecture. Given
two normal matrices A and B with prescribed eigenvalues a1, a2...an
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and b1, b2...bn respectively, det(A+B) lies within the region:

co
{∏

(ai + bσ(i))
}

where σ ∈ Sn. co denotes the convex hull of the n! points in the
complex plane.

As described in [1], the problem can be restated as follows:

Given two diagonal matrices, A0 = diag(a1, a2...an) andB0 = diag(b1, b2...bn),
let:

∆ =
{
det(A0 + UB0U

∗) : U ∈ U(n)
}
, where U(n) is the set of n × n

unitary matrices. Then we can write the conjecture as:

(D.1)
Marcus-de Oliveira conjecture
∆ ⊆ co

{∏
(ai + bσ(i))

}
.

(E.1)
let R(U) = det(A0 + UB0U

∗).

Then the points forming the convex hull are at R(P0), R(P1)...R(Pn!−1),
where the P’s are the n × n permutation matrices. We will refer to
these as permutation points from now on.

2 Restriction to real orthogonal matrices

∆S =
{
det(A0 +OB0O

∗) : O ∈ O(n)
}
, where O(n) is the set of n×n real

orthogonal matrices.

As proven in [4], p.207, theorem 4.4.7, a matrix is normal and sym-
metric if and only if it is diagonalizable by a real orthogonal matrix.

Therefore ∆S is the set of determinants of sums of normal, symmetric
matrices with prescribed eigenvalues. We know ∆S contains all the
permutation points.

(D.2)
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Restricted Marcus-de Oliveira conjecture
∆S ⊆ co

{∏
(ai + bσ(i))

}
.

3 Two conjectures

(C.1)
Boundary Conjecture
∂∆ ⊆ ∂∆S∂∆ ⊆ ∂∆S∂∆ ⊆ ∂∆S.

This conjecture is supported by computational experiments.

Suppose P is a boundary point of ∆ and U is a unitary matrix such
that R(U) = P , then we call U a boundary matrix of ∆. A boundary
point may have multiple boundary matrices. A regular boundary
point is a point where the boundary is smooth. A non-permutation
boundary matrix for a regular boundary point is called a regular
boundary matrix.

If every boundary point on ∆ has a real orthogonal boundary matrix,
this would prove (C.1).

In order to state the next conjecture we need to define some terms:

A quasi-symmetric matrix is a matrix that can be written as DSD∗
where S is a complex, symmetric matrix and D is a unitary diagonal
matrix.

A quasi-hermitian matrix is a matrix that can be written as eiθH
where θ is real and H is hermitian.

A matrix M is magnitude-symmetric if |Mij | = |Mji| for all i,j.

(C.2)
Magnitude-Symmetry Conjecture
Given a complex, normal matrix N that is magnitude-symmetric,
N is quasi-symmetric or quasi-hermitian.

The conjecture is trivial for n = 2. If n = 2, we can always find a
unitary diagonal matrix D such that S = D∗ND is symmetric. So N

3



is quasi-symmetric.

We came upon (C.2) while attempting to prove (C.1).

4 Properties of unitary matrices given A0 and
B0

In this section, we define four properties of unitary matrices that
will be very useful when examining boundary matrices of ∆. These
properties will be referred to throughout the paper in relation to a
given unitary matrix.

The first three of these properties are matrices related to U. These
matrices are defined in [1], p.27. They provide a language to talk
about unitary matrices within the context of the determinantal con-
jecture.

B-matrix
B = UB0U

∗

C-matrix
C = A0 + UB0U

∗

Using (E.1), R(U) = det(C)

F-matrix
F = BC−1 − C−1B

We can change the F-matrix into a more useful form:

F = (C −A0)C−1 − C−1(C −A0)
F = C−1A0 −A0C

−1

The F-matrix is only defined when C is invertible or equivalently
R(U) 6= 0.

Since A0 is diagonal, we see that F is a zero-diagonal matrix.
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As demonstrated in [1], p.27, the F-matrix is 0 if and only if U is a
permutation matrix.

The fourth property is conditional. Given a unitary matrix U with
R(U) 6= 0 and with F-matrix F 6= 0. let T = tr(ZF ), where Z is any
skew-hermitian matrix. T is a complex number and can be seen
as a vector in the complex plane. If for all possible skew-hermitian
matrices Z, all values of T are either parallel or anti-parallel, then we
say that U is trace-argument constant. We take the zero-vector as
being parallel to any vector.

5 Tangent at ∂∆

Our aim is to examine boundary matrices of ∆. Towards this aim, it
is useful to consider smooth unitary matrix functions going through
these boundary matrices and see how they behave under (E.1). For
this reason, we introduce the functional form of (E.1):

R(t) = det(A0 +U(t)B0U
∗(t)), where t is real and U(t) is some smooth

function of unitary matrices.

Suppose U(t) goes through a boundary matrix of interest, U0 at t =
0.

Every unitary matrix can be written as an exponential of a skew-
hermitian matrix. So we can write:

U(t) = eS(t)U0, where S(t) is a smooth function of skew hermitian
matrices with S(0) = 0.

Every choice of S(t) with S(0) = 0, gives us every possible U(t) that
passes through U0 at t = 0.

We wish to examine U(t) and R(t) near t = 0.

For small ∆t,

U(∆t) = (eS(∆t))U0
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U(∆t) = (eS(0)+(∆t)S′(0))U0

U(∆t) = (e(∆t)S′(0))U0

If we take the above function and plug it into R(t) we’ll get R(∆t), but
it won’t be in a form useful to us. We use a result from [1], p.27 for
this purpose. In order to state this result within the context of this
paper, we first need the functional forms of the B-matrix, C-matrix,
F-matrix (these were defined in section 4):

B(t) = U(t)B0U
∗(t)

C(t) = A0 +B(t)

F (t) = C−1(t)A0 −A0C
−1(t)

Now we can state the result from [1]:

When F (0) 6= 0,
R(∆t) = R(0) + (∆t) det(C(0))tr(S′(0)F (0)) +O((∆t)2)

Therefore,

When F (0) 6= 0,
R′(0) = det(C(0))tr(S′(0)F (0))

If F (0) = 0 then U0 is a permutation matrix (section 4). The permuta-
tionmatrix is already real and orthogonal so we needn’t be concerned
with this possibility.

Assume F (0) 6= 0.

Note that C(0) is just the C-matrix of U0 and F (0) is just the F-matrix
of U0. Also, F (0) is only defined as long as R(0) 6= 0.

Suppose U0 is a regular boundary matrix, the tangent line to the
curve R(t) at t = 0 must remain the same regardless of our choice of
S(t). This is illustrated in (F.1) where the closed curve indicates ∂∆.
R′(0) can be seen as a vector in the complex plane. So all possible
values of R′(0) are either parallel or anti-parallel.
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(F.1)

Figure 1:

S′(0) is a skew hermitianmatrix since the difference of skew-hermitian
matrices is also skew-hermitian. S′(0) can turn out to be any skew-
hermitian matrix. Proof: Suppose we choose an arbitrary skew-
hermitian matrix and multiply each element of the matrix by t. Then
we get a smooth function of skew-hermitian matrices S(t) with S(0) =
0 such that S′(0) is the skew-hermitian matrix we initially chose.

So we can rewrite R′(0) without any reference to the S(t) function:

R′(0) = det(C(0))tr(ZF (0))

where Z is a skew-hermitian matrix. All values of tr(ZF (0)) are par-
allel or anti-parallel, regardless of the choice of Z.

So we have the following result:

(T.1)
THEOREM 1
Every regular boundary matrix U of ∆∆∆ with R(U) 6= 0R(U) 6= 0R(U) 6= 0 is trace-
argument constant. (as defined in section 4)

7



6 ∂∆∂∆∂∆ is smooth at all non-zero, non-permutation
points.

In [1], p.26, Theorem 4, Bebiano and Queiró prove that if within the
neighborhood of a non-zero point z ∈ ∂∆, ∆ is contained within an
angle less than π, then z must be a permutation point.

We extend this result here.

(T.2)
THEOREM 2
Given a non-zero point z ∈ ∂∆z ∈ ∂∆z ∈ ∂∆. If within the neighborhood of z,
∆∆∆ is contained within an angle greater than πππ, then z must be a
permutation point.

Proof:

Assume we have a non-zero point z ∈ ∂∆, such that within the
neighborhood of z, ∆ is contained within an angle greater than π
. Since the angle is greater than π, we can find two smooth func-
tions R1(t) ⊆ ∆ and R2(t) ⊆ ∆ such that R1(0) = R2(0) = z and R′1(0)
is not parallel or anti-parallel to R′2(0).

Assume z is not a permutation point. Let U be a boundary matrix
for z and let F be the F-matrix of U. Then using the tools developed
in section 5,

R′1(0) = tr(Z1F )
R′2(0) = tr(Z2F )

where Z1 and Z2 are two skew-hermitian matrices. But since R′1(0)
and R′2(0) are not parallel or anti-parallel, they form a basis for all
the complex numbers as a vector space over the real numbers.

So V = a × tr(Z1F ) + b × tr(Z2F ) goes in any direction depending on
the choice of real numbers a and b.

V = a× tr(ZF ) + b× tr(Z2F )
V = tr((a× Z1 + b× Z2)F )
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Zn = a× Z1 + b× Z2 is also a skew-hermitian matrix.

So given any direction, there exists a skew-hermitian matrix Zn such
that tr(ZnF ) goes in that direction. Hence there exists a smooth
function Rn(t) ⊆ ∆ such that Rn(0) = z, and R′n(0) is parallel or anti-
parallel to that direction.

So there are functions going through z in all directions, contained
within ∆. So z is not a boundary point. We arrive at a contradiction,
and so z must be a permutation point.

So within the neighborhood of a non-zero, non-permutation point z ∈
∂∆, ∆ is contained within an angle of π. This means the boundary
is smooth at all non-zero, non-permutation points.

7 Properties of trace-argument constant matri-
ces

(T.3)
THEOREM 3
Given a unitary matrix U that is trace-argument constant, its
F-matrix is quasi-hermitian.

Proof:

For n = 3, we define the following 12 skew-hermitian matrices with
zero diagonal:

Z12 =

0 −1 0
1 0 0
0 0 0

 Z13 =

0 0 −1
0 0 0
1 0 0

 Z23 =

0 0 0
0 0 −1
0 1 0



Z21 =

 0 1 0
−1 0 0
0 0 0

 Z31 =

 0 0 1
0 0 0
−1 0 0

 Z32 =

0 0 0
0 0 1
0 −1 0


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Z12,i = Z21,i =

0 i 0
i 0 0
0 0 0

 Z13,i = Z31,i =

0 0 i
0 0 0
i 0 0

 Z23,i = Z32,i =

0 0 0
0 0 i
0 i 0


Note that the commas do not indicate tensors. They’re just used here
as a label to distinguish imaginary and real matrices.

We define Zab and Zab,i similarly for all n > 3, where a 6= b. For a given
n we have n(n− 1) real matrices and n(n− 1) imaginary matrices.

Suppose Fab = Fab,r + iFab,i
where Fab,r and Fab,i are real numbers.

tr(ZabF ) = Fab − Fba

tr(Zab,iF ) = (Fab + Fba)i

Substitute in for Fab and Fba

tr(ZabF ) = (Fab,r − Fba,r) + i(Fab,i − Fba,i)

tr(Zab,iF ) = (−Fab,i − Fba,i) + i(Fab,r + Fba,r)

Since U is trace-argument constant,

(Fab,i − Fba,i)(−Fab,i − Fba,i) = (Fab,r + Fba,r)(Fab,r − Fba,r)

We can simplify this to get:

F 2
ab,r + F 2

ab,i = F 2
ba,r + F 2

ba,i

|Fab| = |Fba|

We can write:
Fab = |Fab| 6 θab
Fba = |Fab| 6 θba

slope of tr(ZabF ):

sin(θab)−sin(θba)
cos(θab)−cos(θba) = − cot( θab+θba

2 )
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similarly,
slope of tr(ZcdF ) = − cot( θcd+θdc

2 ), where c 6= d

cot( θcd+θdc
2 ) = cot( θab+θba

2 )

therefore either:

θcd+θdc
2 = θab+θba

2

or,

θcd+θdc
2 = θab+θba

2 + π

For some specific x, y where x 6= y

let β =
θxy+θyx

2

let H = e−iβF

For any a 6= b,

Hab = |Hab|6 αab

αab+αba
2 = 0 or π

H is zero-diagonal, with transpositional elements of equal magnitude
and opposite arguments. Therefore H is hermitian and F is quasi-
hermitian.

(CR.1)
COROLLARY
Given a unitary matrix that is trace-argument constant with C-
matrix C, C−1C−1C−1 is magnitude-symmetric.

Proof:

F = C−1A0 −A0C
−1

Fij = C−1
ij (aj − ai) where ai and aj are the ith and jth eigenvalues of

A0
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Fji = C−1
ji (ai − aj)

Since F is magnitude-symmetric by (T.3), C−1 must be magnitude-
symmetric.

(T.4)
THEOREM 4
Suppose we are given that for every unitary matrix that is trace-
argument constant, its C-matrix is quasi-symmetric. Then the
boundary conjecture is true.

Given C is the C-matrix of an arbitrary trace-argument constant uni-
tary matrix.

Assume C is quasi-symmetric. Then using [4], p.207, theorem 4.4.7,

C = A0 + DOB0O
TD∗, for some diagonal unitary matrix D and real

orthogonal matrix O.

Using (E.1), R(O) = det(C). Then using (T.1) every non-zero bound-
ary point of ∆ has an orthogonal boundary matrix.

We’re left to deal with a possible zero boundary point. We can use a
topological argument to include zero.

We’ll prove the following theorem first before finishing Theorem 4:

(T.5)
THEOREM 5
Let S be of a connected subset of a euclidean space E. If S has
more than one point, then ∂∂∂S has no isolated points.

Given S is a connected subset of some euclidean space E. Given S
has more than one point.

We will use a proof by contradiction. Assume ∂S has an isolated
point P. Then there exists an open ball B centered on P that contains
no other boundary points. Since S is a connected subset with more
than one point, B contains at least one other point in S, say Q. And
since P ∈ ∂S, B contains at least one point not in S, say R.
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We can draw a path from Q to R that is completely inside B and goes
around P. That means there exists a boundary point on this path.
But this contradicts the fact that B has no boundary points other
than P. So our initial assumption that P is an isolated point of ∂S is
false.

Now we can complete our proof of (T.4).

Suppose ∂∆ includes the point P = 0. We already know that ∂∆S

contains all of ∆’s boundary points other than P. Since the unitary
is a connected subset of the n × n complex matrices, we know that
∆ is a connected subset of the complex plane. By (T.5) we know that
P is a limit point of ∂∆. Therefore it is a limit point of ∂∆S as well.
Since the boundary of a set is closed, it must contain all of its limit
points. Hence ∂∆S contains P.

We’ve shown that ∂∆ ⊆ ∂∆S given the quasi-symmetry assumption.

This completes our proof (T.4).

8 Speculations on how to prove C is quasi-symmetric.

C = A0 +B

We know by (CR.1) that C−1 is magnitude-symmetric.

Suppose we can prove that if C−1 is magnitude-symmetric then C is
magnitude-symmetric. And suppose we can prove the magnitude-
symmetry conjecture, (C.2). That would mean that B would have to
be quasi-symmetric or quasi-hermitian. Now we’d have to eliminate
the possibility that B is quasi-hermitian but not quasi-symmetric.
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9 Conclusion - Implication of the boundary con-
jecture

(T.6)
THEOREM 6
If the boundary conjecture is true, then the restricted Marcus-
de Oliveira conjecture implies the full Marcus-de Oliveira con-
jecture.

Proof:

The unitary group and the real orthogonal group are compact sub-
sets of the n × n complex matrices. Since a continuous image of a
compact set is compact, ∆ and ∆S are compact subsets of the com-
plex plane. Hence they are both closed.

Suppose we know that (D.2) is true. Then ∆S along with its boundary
is within the convex-hull. Suppose we also know that the boundary
conjecture is true. Then we know that ∂∆ is inside the convex-hull.
Can we have a unitary matrix U such thatR(U) is outside the convex-
hull? No, because that would mean we have points of ∆ on both the
inside and outside of ∂∆. This is impossible since ∆ is a closed set.
So ∆ is within the convex hull proving (D.1).

Many thanks to the referee whose suggestions vastly improved the
paper.
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