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Abstract 

 
This paper is in response to a critique of the author’s earlier papers on the matter of a non-local communication 
system by Ghirardi. The setup has merit for not apparently falling for the usual pitfalls of putative communication 
schemes, as espoused by the No-communication theorem (NCT) - that of non-factorisability. The enquiry occurred 
from the investigation of two interferometer based communication systems: one two-photon entanglement, the other 
single-photon path entanglement. Both systems have two parties: a sender (“Alice”) who transmits or absorbs her 
particle and a receiver (“Bob”) who has an interferometer, which can discern a pure or mixed state, ahead of his 
detector. Ghirardi used the density matrix and found that the system wasn’t factorisable; this was seen as a 
fulfilment of the NCT. We revisit the analysis and say quite simply that Ghirardi is mistaken. The system is rendered 
factorisable by a Schmidt decomposition and entanglement swapping to “which path information” of the 
interferometer. Ghirardi’s misuse, by the inapplicability of the NCT in this situation, renders this general prohibitive 
bar incomplete or entirely wrong. 
 
1. Introduction 

 
This discussion takes place in the arena of the 
supposed limitation against communication by 
remote quantum state collapse by the No-
communication theorem[1, 2]. The author 
investigated two schemes using entangled 
communication[3, 4] (figures in the appendices 1 
and 2) and is currently seeking partners to 
corroborate either method.  
 
Referencing the first figure (appendix 1), a source of 
polarisation entangled photons is equidistant between 
a transmission gate (“Alice”), who intends to transmit 
a classical binary protocol by: either letting her 
photon through the gate (binary 0) or by absorbing it 
(binary 1). A detector, at just greater than the distance 
the left-hand gate is from the source of photons on 
the right-hand side, is at the output of an essentially 
Mach-Zehnder interferometer. The interferometer has 
a polarising beam-splitter that is able to form two 
arms in the horizontal and vertical basis. These two 
arms are then rotated to the diagonal by Faraday 
rotators by π/4 radians (one could be used of π/2 
radians but two are shown) and interfere at the right 
hand detector (“Bob”). We shall see later that 
Schmidt decomposition has occurred and that 
entanglement of the source has been swapped to local 
path entanglement in the right hand interferometer. 
Bob is able to discern whether Alice has measured 
her photon or not by discerning the pure state of 
entanglement or the mixed state after measurement. 
 
Another method (appendix 2) uses one single photon 
source and a conventional Mach-Zehnder 
interferometer to generate path entanglement. This is 
in direct analogue to the entangled two photon 
system shared between Alice and Bob in appendix 1; 
in appendix 2 they share a path entangled system. 
The subtle difference here is that Bob has no 
interferometer, but as appendix 1, he only has to 
interfere the two coherent (or incoherent) arms. In a 
way, much of the interferometer is subsumed into the 
source and the figure in appendix 1 could have been 
drawn this way. To repeat, Bob only interferes the 
two arms from the interferometer. 
 
Mathematically the entangled polarised two-photon 
system is similar to the one photon path-entangled 
system, as both are forms of the Bell states[5]. 
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One only has to enumerate the states above into the 
computational basis to see the similarity with path 

entanglement (especially the ±Ψ state for one 

particle path entanglement), even though the Hilbert 
space dimension is larger for the two-photon system: 
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The author has directly interacted with two of the 
founders of the No-communications theorem (NCT), 
Michael Hall (Australian patent office, whom granted 
a patent) and Giancarlo Ghirardi, whom offered a 
repost[6]. In this note, Ghirardi used the density 
matrix treatment. We seek to counter those arguments 
coherently and concisely.   
 
2. Analysis of the two-photon setup 

 
We are interested (appendix 1) in two endpoints of 
communication, so the joint evolution of a two 
particle system is used. The state vector formalism 
gives this as: 
 
 1' 2 ' 1 1 2 2O Oψ ψ ψ ψ⊗ = ⊗  eqn. 3 
 
Where the operators O1 and O2 (which themselves 
may be several operators) act on their respective 
quantum states, be they unitary or non-unitary. 
The ensuing bone of contention, as we shall see, 
arises when the states can’t be factorised and we shall 
discuss the first apparatus[3]/appendix 1 in this 
context. The evolution (not writing explicitly the 
tensor product symbol) is then: 
 

 12 ' 1 2 12O Oψ ψ=  eqn. 4 

 
For the first apparatus[3], if the input is: 

 ( )12 1 2 1 2

1

2
H V V Hψ = ⊗ + ⊗  eqn. 5 
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Then the evolution is: 12 ' 1 2 12O Oψ ψ=  
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  eqn. 6 
Where, 
 

� The first photon travels through free 

space: 1Û  (Unitary operation) 

 
� The polarising beam-splitter is the 

projection: 2 ' 2 2 ' 2
ˆ

PBS
U H H V V= + . 

Overall, considering the two arms, this 
operation is unitary too. 

 
� The Faraday rotators (there can be just one 

with angle π/2) are shown: 4
i

e

π
−

 and 4
i

e

π
+

 

 
� Then the phase plate to adjust the 

interference fringe is: i
e

θ−  

 
The two arms of the interferometer are brought 
together and interfered. Before measurement, the 
state is: 

 ( )12 '' 1' 2 ' 1' 2 '

1

2

i
H e D V D

θψ −= ⊗ + ⊗ eqn. 7 

Or 

 ( ) ( )12 '' 1' 1' 2 ' 2 ' 1' 1'

1

2
H V D D V Hρ = + +   

  eqn. 8 

Where D represents the diagonal basis and the 
arbitrary global phase on system 1 has been ignored. 
The system is now factorisable and the polarisation 
entanglement has been swapped to path 
entanglement. One final operation gives the effect of 

the detector by the number operator †

2 2 2
ˆ ˆ ˆn a a=  

projecting into the number basis: 
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Or 
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  eqn. 10 

It is easy to then trace out system one by a Schmidt 

decomposition[5] to see system two: 

(Before measurement) 

 ( )2 ''' 2 ''

1
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θψ −= −  eqn. 11 

Or 

 2 ''' 2 '' 2 ''(1 cos ) 1 1ρ θ= −  eqn. 12 

 

Measurement on either system and the spectral 
theory yields the mixed state: 
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We go straight to the number basis, rather than show 

the detector step. The factor, iRand
e

− is the random 

phase relation between the arms of the interferometer 
resulting from measurement upon the system; on the 
time scale of measurement it is easy to show[4] that 
this would lead to the density eqn. 14, the off-
diagonals would effectively be zero. The trace out 
yields (the phase of individual events is not important 
nor is there superposition) at the detector: 
 
(After measurement by Alice) 
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3. One-photon system 

 
Analysis of the one-photon system (appendix 2) is 
similar; as mentioned before, this has very similar 
mathematics (eqn. 1 and eqn. 2) if the zero particle 
state is viewed as an entangled particle. This is 
covered in a previous publication[4]. 
 
More disturbingly, it can be analysed by one particle 
quantum mechanics (graphic insert appendix 2) and 
leads to the same conclusion. This ought to be 
alerting the reader to the fact that the NCT, the 
machinery of it and the crux of the argument – taking 
the partial trace, are not relevant – what system is 
there to trace out? 
 
4. An erroneous belief about evolution and the partial 
trace and a crucial step in the overall argument 

 
For a long time, simple entangled communications 
schemes, such as projecting entanglement 
polarisation with a polarising filter into a supposed 
state, have been shot down. The physical reason is 
that measurement leads to a random collapse into the 
projected state and we simply obtain a noise channel. 
Mathematically this was codified into the notion, that 
isolating a system requires the partial trace to be 
taken – it leads to the mixed state.  
 
This mathematical operation of taking the partial 
trace, as part of the NCT, has been taken too literally 
by several academics to whom the author has been in 
correspondence. To them, even just considering one 
system would result in the mixed state; the 
implication was that joint evolution was not even 
possible and further discussion was not warranted! 
To them, the mantra is repeated, “Any form of 
entanglement communication is prohibited because 
the partial trace must be taken”. This trite summation 
of the NCT is a misunderstanding of its sentiments. 
 
This notion of not even being able to consider the 
joint evolution is easy to dispel: consider a source of 
entangled particles – how can they even travel 
through free space (a unitary transform)? If only one 
particle’s unitary evolution is considered the system 
is still entangled, otherwise entanglement wouldn’t 
exist as a phenomenon if it was decohered so easily, 
just from travelling in free space.  
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What is really being misunderstood by the research 
community is that the partial trace is synonymous 
with a non-unitary evolution, i.e. a measurement. If 
we trace out a particle from a joint wavefunction 
thus: 

 ( )†

2 1 12 12 12tr U Uρ ρ′ =  eqn. 17 

 
The partial trace is exactly synonymous with the 
spectral decomposition of measurement, which is a 
non-unitary operation: 
 

( ) ( )† † †

2 2 2 2 2 2 2M M tr M M tr M Mψ ψ ρ= =  

 
Because the partial trace when “distributed” into the 
joint evolution U12 even if it was unitary, renders the 
operator acting on system non-unitary. 
 
Having established that the joint evolution can be 
taken is a crucial step in our argument: individual 
operations can be taken on one subsystem to swap the 
joint entanglement to local path entanglement, as was 
seen with the interferometer arrangements of the 
figures in the appendices. 
 
5. Conclusion 

 
The No-communication theorem since its inception 
has been extensively cited. The simple and obviously 
correct proof herein shows a glaring flaw in its 
application regarding a system that maintains 
entanglement information, by swapping joint 
entanglement to local path entanglement and 
performing a Schmidt decomposition, which renders 
the system factorisable. The NCT only applies to 
non-factorisable systems and the slavish, unthinking 
citing of it must cease. 
 
Single particle path-entanglement experiments 
alone[4], without all the machinery of multi-particle 
quantum systems, show obvious known experimental 
fact; yet if one transforms it into a two particle 
system by considering the vacuum state as a quasi-
particle and uses the incorrectly applied rationale of 
the NCT, we arrive at a result not just in abeyance of 
experimental fact but also in abeyance of the 
treatment for a single particle system too. This is a 
ridiculous situation. 
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Appendix 1 – Two H-V entangled photon communication scheme 

Transmission gate 
Phase delay 
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Appendix 2 – Single photon path entangled communication scheme 

Phase delay 


