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Abstract

Collatz conjecture (or 3x+1 problem) is out for about 80 years. The
verification of Collatz conjecture has reached to the number about 60bits until
now. In this paper, we propose new algorithms that can verify whether the
number that is about 100000bits (30000 digits) can return 1 after 3*x+1 and
x/2 computations. This is the largest number that has been verified currently.
The proposed algorithm changes numerical computation to bit computation,
so that extremely large numbers (without upper bound) becomes possible to
be verified. We discovered that 2100000− 1 can return to 1 after 481603 times
of 3*x+1 computation, and 863323 times of x/2 computation.
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1. Introduction

The Collatz conjecture is a mathematical conjecture that is first proposed
by Lothar Collatz in 1937. It is also known as the 3x+1 conjecture, the Ulam
conjecture, the Kakutani’s problem, the Thwaites conjecture, or the Syracuse
problem [2].

Simply speaking, the conjecture can be stated as follows. Take any pos-
itive integer number x. If x is even, divide it by 2 to get x/2. If x is odd,
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multiply it by 3 and add 1 to get 3 ∗ x + 1. Repeat the process again and
again. The Collatz conjecture is that no matter what the number (i.e., x) is
taken, the process will always eventually reach 1.

The contributions of the paper are listed as follows:

1. A new computing algorithm is proposed that can verify Collatz con-
jecture up to a new upper bound. The proposed algorithm changes
numerical computation to logical computation, and compute 3 ∗ x + 1
bit by bit in binary. This upper bound is significantly larger than
any existing known algorithms and experimental witness. The current
known upper bound for starting value that has been checked (or can
be checked) is up to about 60bits [1, 2], but the proposed algorithm in
this paper can check starting numbers up to 100000bits.

2. A new computing algorithm is proposed that can verify Collatz con-
jecture up to theoretically unlimited upper bound, only depending on
the timing cost. The rationale in the algorithm is using outer memory
(such as a data file in a hard disk) instead of inner memory (such as
an array or allocated memory) for data processing.

The rest of the paper is organized as follows. Section 2 presents relevant
background. Section 3 details our proposed algorithms and analysis. Section
4 provides some experimental results. Finally, Section 5 concludes the paper.

2. Preliminary

Definition Collatz Transformation

CT (x) =

{
TPO(x) = 3 ∗ x + 1 (TPO) (x ∈ [1]2),

H(x) = x/2 (H) (x ∈ [0]2),
(1)

where [1]2 = {a|a ≡ 1 mod 2, a ∈ N}, [0]2 = {a|a ≡ 0 mod 2, a ∈ N}.
N = {a|a ∈ Z, a ≥ 1}. TPO(x) can be simply denoted as TPO, and H(x)
can be simply denoted as H.

Definition The Collatz Conjecture. ∀x ∈ N. After finite times of Collatz
Transformation x ⇐ CT (x), x will become 1. (Here “⇐” is assignment
symbol and “x ⇐ y” means to assign value y to x.)
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Example The dynamics after each Collatz Transformation from a starting
value (at head) to 1 (at rear) are as follows:

(1) 1 → 4 → 2 → 1;
(2) 7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 →

16 → 8 → 4 → 2 → 1.

3. Proposed Algorithms

Two notations will be used in the paper as follows:

1. (x) returns the least significant bit (LSB) of binary number x.
2. 〈x〉 returns the most significant bit (MSB) of binary number x.

Simply speaking, if x ≤ 3, (x) returns rightmost bit of binary represen-
tation of x, and 〈x〉 returns leftmost bit of binary representation of x.

E.g., (10) = 0, 〈10〉 = 1, where 10 is a binary number;
Besides, (1 + 0) = 1, (1 + 1) = 0, 〈1 + 1〉 = 1, 〈1 + 0〉 = 0.

Fig.3 depicts the design rationale in the proposed algorithm. Suppose the
length of binary representation on x is n. a[0] is MSB (leftmost bit) of x, and
a[n− 1] is LSB (rightmost bit) of x. 2 ∗ x is one bit of left shift. The LSB of
2 ∗ x is thus 0. 3 ∗ x + 1 can be looked as x + 2x + 1. Suppose the resulting
summation is b[0]b[1]...b[n−1]. The carrier bit is c[0]c[1]...c[n−1]. As x is odd
(due to 3∗x+1 is to be computed), a[n−1] = 1. The rightmost bit of result
(i.e., 3∗x+1) is (a[n−1]+0+1), which is (1+0+1) = 0. The carrier bit at
this location is c[n−1] = 〈a[n−1]+0+1〉 = 〈1+0+1〉 = 1. Next, b[n−2] =
(a[n−2]+a[n−1]+c[n−1]), where a[n−1] = 1 and c[n−1] = 1. The following
computation of the other bits is b[n−k] = (a[n−k+1]+a[n−k]+c[n−k+1]),
c[n − k] = 〈a[n − k + 1] + a[n − k] + c[n − k + 1]〉. See Eq.2 and Eq.3 for
further details.

Major computational logics in the proposed algorithm are listed in Eq.2
and Eq.3. Note that, before the computation of 3 ∗ x + 1, x is firstly repre-
sented as binary string like a[0]‖a[1]‖...‖a[n− 2]‖a[n− 1] from MSB to LSB.
The computation is from LSB to MSB.
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a[n-1]=1a[n-2]a[n-3]a[1]a[0]=1

a[n-1]=1a[n-2]a[2]a[1]a[0]=1

c[n-1]=1c[n-2]c[2]c[1]c[0]

b[n-1]=0b[n-2]b[n-3]b[1]b[0]
1

(c[0]=0)

1 0

(c[0]=1)

+1

2x

x

0

Figure 1: Fast algorithm for 3 ∗ x + 1 (TPO) on an extremely large number x via bits
computation instead of numerical computation.





b[n− 1] = (a[n− 1] + 0 + 1) = (1 + 0 + 1) = 0

c[n− 1] = 〈a[n− 1] + 0 + 1〉 = 〈1 + 0 + 1〉 = 1,

b[n− 2] = (a[n− 1] + a[n− 2] + c[n− 1]) = (a[n− 1] + a[n− 2] + 1)

c[n− 2] = 〈a[n− 1] + a[n− 2] + c[n− 1]〉 = 〈a[n− 1] + a[n− 2] + 1〉,
...

b[n− k] = (a[n− k + 1] + a[n− k] + c[n− k + 1])

c[n− k] = 〈a[n− k + 1] + a[n− k] + c[n− k + 1]〉,
...

b[1] = (a[1] + a[2] + c[2])

c[1] = 〈a[1] + a[2] + c[2]〉,
b[0] = (a[0] + a[1] + c[1]) = (1 + a[1] + c[1])

c[0] = 〈a[0] + a[1] + c[1]〉 = 〈1 + a[1] + c[1]〉.
(2)

Head is the font one bit or two bits of 3 ∗ x + 1, depending on c[0] = 0 or
not. 1 is one bit; 10 are two bits. The final result of 3 ∗ x + 1 is represented
as binary string like Head‖b[0]‖b[1]‖...‖b[n− 2]‖b[n− 1], where Head is one
bit “1” or two bits “10”. ‖ is concatenation.

Head =

{
c[0] + a[0] = c[0] + 1 = 0 + 1 = 1, c[0] = 0,

c[0] + a[0] = c[0] + 1 = 1 + 1 = 10 c[0] = 1.
(3)
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According to Eq.2 and Eq.3, the proposed algorithm (Algorithm 1) is
given as follows:

Data: x
Result: TPO(x). That is, result = TPO(x) = 3 ∗ x + 1.
b[n− 1] ⇐′ 0′;
c[n− 1] ⇐ 1;
for (i = n− 2; i >= 0; i−−) do

sum ⇐ a[i + 1] + a[i] + c[i + 1];
if sum == 2||sum == 3 then

c[i] ⇐ 1;
end
if sum == 0||sum == 1 then

c[i] ⇐ 0;
end
if sum == 0||sum == 2 then

b[i] ⇐′ 0′;
end
if sum == 1||sum == 3 then

b[i] ⇐′ 1′;
end

end
if c[0] == 1 then

result ⇐′′ 10′′‖result;
end
if c[0] == 0 then

result ⇐′ 1′‖result;
end
return result;

Algorithm 1: Input an extremely large number x that is represented
in binary. Output TPO(x) that is 3 ∗ x + 1.

Algorithm 1 changes numerical computation of 3 ∗ x + 1 into simple bit
computation. That is, only addition of three bits is conducted (in sum ⇐
a[i+1]+a[i]+c[i+1]), avoiding to compute 3∗x directly in which x is upper-
bounded by memory limitation in computer. Thus, it becomes possible to
compute 3 ∗ x + 1 of an extremely large number by our algorithm.
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The numerical computation sum ⇐ a[i+1]+a[i]+c[i+1] can be changed
to logical computation as follows (Algorithm 2):

Thus, Algorithm 2 computes a starting number x with binary length n
in O(n) time. Besides, in each time of loop execution (i.e., For), only one
decision instruction (i.e., If) is executed. The result (i.e., 3 ∗ x + 1) can be
computed in one pass traverse of x from LSB (i.e., a[n − 1]) to MSB (i.e.,
a[0]).

Above algorithms are used for outputting and analyzing the dynamics
of Collatz transformations on extremely large inputting numbers, e.g., out-
putting whole procedure from starting number that is an extremely large
number to final number that is 1. The invoking of TPO(x) function is given
in Algorithm 3 as follows:

Algorithm 3 outputs dynamics called code. The count_up is the occurred
times of “up”, and count_down is the occurred times of “down” in dynamics
(or code). Next, we explain what are “up” and “down”.

The procedure (or dynamics) from starting number to 1 consist of two
Collatz transformations or computations, which is 3 ∗ x + 1 and x/2. The
dynamics are recorded by Algorithm 3 in terms of a serial of Collatz trans-
formations. 3∗x+1 is denoted as TPO(·) and x/2 is denoted as H(·). That
is, TPO(x) = 3 ∗ x + 1, H(x) = x/2. We are aware following fact.

Proposition 3.1. If TPO occurs, H occurs intermediately after it. That is,
“TPO, H” always together occurs in any dynamics.

Proof If x ∈ [1]2, TPO(x) = 3 ∗ x + 1 ∈ [0]2. Thus, the next Collatz
transformation immediately after “TPO” must be “H”. Therefore, H always
occurs after a TPO transformation. That is, “TPO” and H always together
occurs. ¤

Therefore, (3∗x+1)/2 can be written together as H(TPO(·), and denoted
as “−” in outputting code in our computer program. For better contrast and
outputting vision, we denote H(x) as “0” in outputting code in our program.

For example, the outputting code (or dynamics) for x = 5 is “−000”,
which means H(TPO(·)), H(·), H(·), H(·).

In other words, 5 → 16 → 8 → 4 → 2 → 1.
As 3 ∗ x + 1 > x, we call TPO(x) as “up” computation. As x/2 < x, we

call H(x) as “down” computation. The times of “up” equals the count of “−”.
For example, the times of “up” in code for 5 is 1, as there exists one “−” in

6



code. Note that, as in (3 ∗ x + 1)/2 “down” also occurs, its times is also the
count of “−”. Thus, the total times of “down” equals the summation of two
parts - the count of − and the count of “0” in outputting code. For example,
the times of “down” in code for 5 is 4, because there are 3 “0” in code and 1
“−” in code.

Algorithm 3 outputs code that represents dynamics, which consists of “−”
and “0”, to represent occurred Collatz transformations in the procedure from
starting number x to 1. The count_up is the total times of “up” computation,
or 3 ∗ x + 1 computation, which equals the count of “−” in outputting code.
The count_down is the total times of “down” computation, or x/2, which
equals the summation of two parts - the count of “0” and the count of “−”.
Thus, the count of “0” can be looked as count_down − count_up, or gap
between “down” and ”up”. The ratio can be looked as the gap over times of
“up” to measure the major characteristics of dynamics, which indeed is the
count of “0” over the count of “−”.

Besides, to support extremely large numbers that is even in binary, we
need to break the limitation of inner memory in computer (e.g., the array
size, the size of data type such as “long long integer”). Therefore, in the
implementation of Algorithm 3, to break the limitation of inner memory, we
use a data file in hard disk to process those extremely large numbers (see
Algorithm 4 in Appendix). That is, the reading and writing operation are
changed to “from a data file in hard disk”, instead of “from an data array
or an allocated memory in inner memory”. Thus, it can support any length
of manipulated number without any upper bound (i.e., starting number x
and occurred intermediate numbers during the procedure can be unlimited
large).

4. Experiment Results

Example Some examples for dynamics from starting number x to final num-
ber 1 are listed as follows (− represents H(TPO(x)), or (3 ∗ x + 1)/2; 0
represents H(x), or x/2):

(1) x = 7, (x)2 = 111. (x)2 means x is represented in binary.
Dynamics (intermediate numbers after Collatz transformations):
1011 → 10001 → 11010 → 1101 → 10100 → 1010 → 101 → 1000 →

100 → 10 → 1.
Thus, code is “−−−0−00−000”. U = 5, D−U = 6, ratio = (D−U)/U =

1.2000000.
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(2) x = 63, (x)2 = 111111.
Code is “−−−−−− 000−−0−−− 0−−−−0− 00−−− 0−−0−

−−−−−00−−−−000− 0− 0− 000− 00−−− 0000− 000”.
U = 39 D − U = 29 ratio = (D − U)/U = 0.7435898.

Example W.l.o.g., we select numbers with binary form liking 1MAXLEN as
testing examples. E.g., 1100 = 111...11︸ ︷︷ ︸

100

, 11000 = 111...11︸ ︷︷ ︸
1000

, and so on.

The dynamics of the largest number x that has been computed until now
is as follows:

(x)2 = 1100000 = 111...1︸ ︷︷ ︸
100000

, where (x)2 means x in binary.

In its dynamics, the total times of “up” computations (i.e, 3 ∗ x + 1) or
the count of “−” in outputting code is 481603; the total times of “down”
computations (i.e., x/2) is the count of “0” in outputting code, together with
the count of “−” in outputting code. That is, 381720 + 481603 = 863323.
The ratio is 0.7926030 (namely, ratio = (D − U)/U = 381720/481603 =
0.7926030. In other words, this number endures 481603 times of TPO Collatz
transformation, and 863323 times of H Collatz transformations to become 1.

The details of data is provided as supplement (upon request by email or
on my personal web site), as it is too long to present in the paper.

The dynamics is from starting number to 1. The count of computations
is listed in Tab. 1. (Besides, in our another paper, we proved the bound of
ratio.)

5. Conclusion

In this paper, we proposed several algorithms that can be used for veri-
fying Collatz conjecture to extremely large numbers. The advantages of the
proposed algorithms are as follows: (1) The computation is only symbol log-
ical computation (i.e., ∧, ∨), which is very fast comparing with numerical
computation. (2) The computation of 3 ∗ x + 1 for extremely large number
x becomes possible, as x is represented in binary and computed bit by bit.
(3) The computation has no memory limitation. Theoretically, x = 2+∞, as
intermediate and final computation results are written to a file in hard disk
instead of to an array or allocated memory in inner memory. The experi-
mental results show that current the largest binary number with the form
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1100000 = 111...11︸ ︷︷ ︸
100000

can return to 1, after 481603 times of TPO Collatz trans-

formation, and 863323 times of H Collatz transformations.

Acknowledgement

The research was financially supported by the National Natural Science
Foundation of China (61170217).

References

[1] Silva, Tomas Oliveira e Silva. Computational verification of the 3x+1
conjecture. http://sweet.ua.pt/tos/3x+1.html, Retrieved 28 Jan. 2016.

[2] Wikipedia. Collatz conjecture. https://en.wikipedia.org/wiki/Collatz_conjecture,
Retrieved 28 Jan. 2016.

9



Data: x
Result: TPO(x). That is, result = TPO(x) = 3 ∗ x + 1.
b[n− 1] ⇐′ 0′;
for (i = n− 2; i >= 0; i−−) do

if (a[i + 1] == 1)&&(a[i] == 1)&&(c[i + 1] == 1) then
c[i] ⇐ 1;
b[i] ⇐′ 1′;

end
if (a[i + 1] == 1)&&(a[i] == 0)&&(c[i + 1] = 1) then

c[i] ⇐ 1;
b[i] ⇐′ 0′;

end
if (a[i + 1] == 0)&&(a[i] == 1)&&(c[i + 1] = 1) then

c[i] ⇐ 1;
b[i] ⇐′ 0′;

end
if (a[i + 1] == 1)&&(a[i] == 1)&&(c[i + 1] == 0) then

c[i] ⇐ 1;
b[i] ⇐′ 0′;

end
if (a[i + 1] == 1)&&(a[i] == 0)&&(c[i + 1] == 0) then

c[i] ⇐ 0;
b[i] ⇐′ 1′;

end
if (a[i + 1] == 0)&&(a[i] == 1)&&(c[i + 1] == 0) then

c[i] ⇐ 0;
b[i] ⇐′ 1′;

end
if (a[i + 1] == 0)&&(a[i] == 0)&&(c[i + 1] == 1) then

c[i] ⇐ 0;
b[i] ⇐′ 1′;

end
if (a[i + 1] == 0)&&(a[i] == 0)&&(c[i + 1] == 0) then

c[i] ⇐ 0;
b[i] ⇐′ 0′;

end
end
if c[0] == 1 then

result ⇐′′ 10′′‖result;
end
if c[0] == 0 then

result ⇐′ 1′‖result;
end
return result;

Algorithm 2: Input an extremely large number x that is represented
in binary. Output TPO(x) that is 3 ∗ x + 1.
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Data: x
Result: code, count_up, count_down− count_up, ratio
IsEven(input);
TXPO(input, result);
while current 6= 1 do

if IsEven(current) 6= 1 then
result ⇐ TXPO(current);
% It is intermediate one “down” (x/2) after “up” (3*x+1) ;
flag_first_down ⇐ 1;
count_up + +;
continue;

end
else

if flag_first_down == 1 then
code ⇐ code‖−;
count_down + + ;
flag_first_down ⇐ 0;

end
else

code ⇐ code‖0;
count_down + + ;

end
continue;

end
end
return code, count_up, count_down− count_up, ratio =
(count_down− count_up)/count_up;

Algorithm 3: Input an extremely large number x. Output
code, count_up, count_down − count_up, ratio = (count_down −
count_up)/count_up.
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Table 1: Times of “up” computations is denoted as U . Times of “down” computations is
denoted as D. ratio = D−U

U . x is in binary with the form 1MAXLEN , and its length is
MAXLEN . The dynamics is recorded from starting number to 1.
MAXLEN x in binary digits of x (U,D − U) ratio
100 1100 = 111...1︸ ︷︷ ︸

100

30 (528, 409) 0.7746212

500 1500 = 111...1︸ ︷︷ ︸
500

150 (2417, 1914) 0.7918908

1000 11000 = 111...1︸ ︷︷ ︸
1000

300 (4316, 3525) 0.8167285

5000 15000 = 111...1︸ ︷︷ ︸
5000

1500 (24131, 19116) 0.7921761

10000 110000 = 111...1︸ ︷︷ ︸
10000

3000 (48126, 38152) 0.7927524

50000 150000 = 111...1︸ ︷︷ ︸
50000

15000 (239020, 189818) 0.7941511

100000 1100000 = 111...1︸ ︷︷ ︸
100000

30000 (481603, 381720) 0.7926030
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Appendix

Algorithm 4.

Example Some examples for dynamics from starting number x to final num-
ber 1 are listed as follows (− represents H(TPO(x)), or (3 ∗ x + 1)/2; 0
represents H(x), or x/2):

(1) x = 2100 − 1. (x)2 = 1100 = 111...11︸ ︷︷ ︸
100

.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−0000−00−−−00−000−−0−
−000−000−−0000−0−−00−−−00−0−−−00−0−−−0−−−0−00−−−
0−0−−−0000−−00−0−00−−−0−0000−−−00−−−−−0−00−0000−
000−−000−000−−−0−00−00−0−−00−−−−−−0−−−−−00−−−0−
0−0000−0−−000−0−−−−0−00000−−−000−0−0000−0−−−−−−00−
−00−00−−−0−0−00000−0−0000−0−−−−00−−−−−00−−0−−0−
000000−−0−−0000−00−00−−−00−−0−−0−−000−0−−−−0−−−−−
−0−−−−00−0000−−−0−−−0−00−−0−−−000−00000−00−−−−−
0−−0−−0−0−−−0−−0−−−−−−000−00−−−00−0−0−0−−−0−00−
0000−00−−−0−0−0−−00−00−00−0−−0−00−0000−−−−−−0−−−
00−−0000−−−−−0−0−0−0−−−−00−0−−0−0−−−−0−−000−−−
−−−0−00−−0−−−00−00−0−00−−−0−−00−−0−000−000−0−−−−−
00−−−−−0−−−0−−0−0−0−000−−0−−000000−−000−−0−0−−0−
0−0−00−−−−0−−00−0−0−−0−−−000000−−−0000−−0−00−−−
−0−0−0−−000−0000−0−−0−−−−−−0−−000−0−−00−00−0−00−
0−−−0−0−00−00−000−−−−−00−−−−−00−−−0−0−00000000−−−
−0000−0−−−−−−0−−0−0−0−0−−−−0−0−0−00−0−0−−0−−00−
00−0000−0−−0−−0−00−0−−000000−0−00−00−0000−−−0000−000.

(2) x = 2500 − 1. (x)2 = 1500 = 111...11︸ ︷︷ ︸
500

.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Data: The file with the file name “TESTNUMBER”
Result: The file with the file name “CODE”
GenTestNumber(′′TESTNUMBER′′);
FileCopy(“TESTNUMBER′′,′′ input_start′′);
FileCopy(“TESTNUMBER′′,′′ current_x′′);
while (GetF ileLength(”current_x”)! = 1) do

if IsEven(′′current_x′′) == 0 then
TXPO(′′current_x′′,′′ temp′′);
FileCopy(′′temp′′,′′ current_x′′);
Firstdown ⇐ 1;
count_up ⇐ count_up + 1;
continue;

end
else

if Firstdown == 1 then
CutF ileRear(′′current_x′′);
AppendToF ile(′′CODE ′′,′−′);
count_down ⇐ count_down + 1;
Firstdown ⇐ 0;
FileAppend(′′current_x′′,′′ DY NAMICS ′′);

end
else

CutF ileRear(′′current_x′′);
AppendToF ile(′′CODE ′′,′ 0′);
count_down ⇐ count_down + 1;
FileAppend(′′current_x′′,′′ DY NAMICS ′′);

end
continue;

end
end
ratio ⇐ (count_down− count_up)/count_up;
return(count_up, count_down, ratio);

Algorithm 4: Main algorithm for outputting dynamics. Output
CODE(x) to a file named “CODE”, where x is the starting number
that is the content of the file named “TESTNUMBER”.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−0000−0−00−−00000−−−−0−−−00−
−−00−−−−00−0−00−−000−−0−−000−−000−−0−−−0−−−0−00000−
0−−−00−−000−0−00−−00−−000−0−−−0−−−00000−−−0−−00−
00−−−00−0000−0−−00−−0−000−00−0−−0−0−00−00−−−00−−00−
000−00000−−−−−00−00−0−0−−−−−00−00−00−−−00−−0−−0−−−
−−−−−00−−00−000−0−0000−−00−0−−−−0−000−−−000−−000−
−00−−−00−−−0−0−0−000−0−0−−0−0−0000−−00−0−−0−−−000−
00−−−−−00000000000000−00−0−−0−−00−0−0000−−0−000−00000−
−0−−0−0−−0−0−−0−−0−0000000−−0−−−00−0−000000−−0000−
00−0−0−0−0−−−00−−−0−−00−−0−0−00−−−0−−0−0−−0000−0−
0−0−000−0−00−0−−0−0−0−0−00−−−0−−0−−−000000−−−−−−0−
0−0−−0−−0−00−−00−−−00−−−−000−−00−−00−−0−0−000−00−
0−−−0−0−00000000−−00−00−0−−−00−0−−−−0−−0−0000−−0−
−−0000−−−−−−−−000−−00−0000−0−−−0−00−0−−−−−−−00−
−000−0−0−−0−−−0−−−0−−−0−−−00−0−−−00−0−−−0−0−00−
−0−−0−−−00−00−−−0−00−0−−0−0000−00−000−−−−0−−000000−
0−−−0−000−000−−00000000−−−−−−−0−−−00−−0−00−0−−0−
−0−00000−0−−−−−00000−−−−−−−−−0−0−−−−−00−0−−−−00−
0−00−−00−−−−−−00−−0−−−−−−−00000−−−−−00−00000−0−
0−0−0−−−0−0−−−−0−−−0−0−0−0−0−−−−−00−−0000−−−0−
00−0−0−00−00−−000−00−−0000−0−0−000−0−−000−−000−0000−
0−−00000−00−−−−−00−0000000−00−000−0−−00−00−−0−−−00−
0−00−000000−0−−00−−−−0−0−−0−00−−−0−0−0−000−−0−−00−
0−0−−0−−0−−−000−−000−−−0000−000−0−00−−00000−00−−−0−
000−−000−0−00−0000−0−0−−0−0−−00−000−−−−0−−−000−−0−
0−−−−0−0−−0−−−−−0000−−−−−−−−0−0−0−−−000−−0−−0−
000000−00−0−−0−−−00−00−0−0−−−00−0−0−0−00000−−0−0−0−
00−0−0−0−0−00000−000−00−00−−−0000−000−0−−0−−−−−−0−
0−−0−−−−−−0−−−0−000−−000−−0−−0−−0000−−−−−0000−−−
000−−00−0−−0000−00−0−0−00−0−0000−00−−−0−0−−−0−−00−
0−−0−−0−00−0−0−00−0−00000−−00−−0−−−−00−−−0−−−0000−
−00−0−−0−0−00−000−−−−000−00−0−−−00−−−000−00−0−0−
0000−−0−0000−−−−00−−−−−0−00−00−0−00−−−0−000−−00−0−
00−0000−000000−000−−00−000−00−0−−0000000−−0−−0000−00−−−
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00−−00−−−0−0−−0−00−0−−0−−−0−0−−−−0000−0−−−00−−−
−0−−000−−−0−−00−0−−−00−00−−0−−0−−000−−0−0−0000−−0−
−−000−−−0−0−−−−0−0−0−−0000−−−−−000−−00−−−−0000−
−0000−000−−−−0−000−−−−000−−0000−−0−−−−0−−0−0−0−00−
−00−−−0−00−−−−−0−−000−00000−00−000−0−−00−00−00−−−
−00−−−00−−−−−0−−−00−−00−0−0−−−0−000−00−−0−−−−−
−0−00−−00−−0−−0−0−0−−−0000−0−0−−00−−−00−000−−−00−
0−−−0−00−00−00−−−000−0−−−0000−0−−00−00−0−00−0−0−00−
0−−0−−−000−00−00−0−−0−0−−−0−00−0−0−−−−0−00−0−00−0−
−00−−−−00−0000−00−0−−−0−−000−00−00000−0−0−0000−0−−−
−−−−00−0−−−0−−00−−00000−0−000−−0−0−000−0−00−0−00−
000−0−−00−−−−−000−−0000−−0−−00−−00−−−00−00−−00−0−
−0000000−−−00−−−−−−−0−−−−−−−00−00−−00−0−−0−−−0−
00−−0−−00−−−000−−−−−00000−−−−0000−0−−0−−−000−0−00−
−−000−−−−−0−−00−−−00−−−00−0−−00−−−−−−000−00−−00−
0−00000000−−0−−0−0−0−0−−00−−000000000−−−000−−0−0−0−
−0−−0−00000−−−−−0−0−−000000000−−−00−−−−00−0−000−0−
0−−−−−000000000−000000−00−−−−00−00000−−0−00−−−−−00−
0−−−−00000−−0−000−0−000−−−0−−−00−−−0−0−0−−−00000000−
−−0−000−00−00−00−00−0000−−0−0−0−−−−00−−0−−00−−000−
00−00−00−0−0−−−0−000−−−−−0−0−−−−−0−0−−−0−−−−00−
−−−0−0−00−−−−0−−000−0−−−−−−−−0−−−0−00−00−0−−0−0−
−−−0−0−0−0000−−0−−0−0−−−−0−−−−−00−−−−0−0−−000000−
00−0−0−−0000−−−−−−00−−0−−0−00−0−0−−−0−−0−0−0−00−
−0−−−−−−00−0−000−−−0−−0−−−00−000−0−0−−0−0−0−−0−
−−0−−0−−00−−−0−−−00000−00−0−0−000−−−−0−0000000−−−
00−−−−000−−−−0−−000−00−−−−0−−−0−−−0−−−−0−−−−−0−
−−−0−000−0−000−−−−00000−−−−0−000−−−−−0−0−−−000−00−
00−0−00−00−0000−0−−−00−00−00−−−−−00−−−−−−−0−−−−−
0−0−00−−0−0−−−−−000−−−−0−−0−00000−−−−−−0000−−−0−
−−0−000−0000−−000−−−0−00−−0−−00−0−−000−−00−−−−0−−−
−−0−−0−−−−−00−00−−0000000−00−0−00−−00−−−−000−0−0−
−00−0−−−0−0−−−−−−00−−−000−−0−−0000000−00−0000−−0−
−0−000−−0−0−000−−00−−−−−−000−000−−−000−0000−−−0000−
0−−−0−000−−00−−000−−−0−0−0000−00−000−−0−00−−0−−00−
0000−−00−000−−−−0−00−−−−0−−−−−−0000−0−−−−0−0−−0−
00−0−0−000−0−−00−00−0−0−−000−0−0−0−−000−−000−00000−−−
0−−0−0−00−−−−−−0−−0−00−00−00−0−000000−−−−−000−−−0−
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−00−00−00−0−−0−−0−−−0−−00−−00000−−0−00000−−−00−−−−−
−0−0−−−−−−−0−−00−00−0000−−0−−0−−00−−0−0000−0000000−
−0−−00−−0−−−0−−000−0−−00−−−−0000−0−−−−00−−−000−
0000000−−−00−−−−000−00−000000−−−−−0−−000−0000−−−00−
−−−−0−−0−00−0−0−0−−0−−−0−−−−−0−−0−0−−00−−−000−0−
−−−000−000−−000−−00−−−0−00−−0−00−00000−00−−−0000−000.

More examples will be given in supplement materials or upon request.
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