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Abstract: Path planning in a completely known environment has been experienced various ways. 
However, in real world, most humanoid robots work in unknown environments. Robots’ path 
planning by artificial potential field and fuzzy artificial potential field methods are very popular 
in the field of robotics navigation. However, by default humanoid robots lack range sensors; thus, 
traditional artificial potential field approaches needs to adopt themselves to these limitations. 
This paper investigates two different approaches for path planning of a humanoid robot in an 
unknown environment using fuzzy artificial potential (FAP) method. In the first approach, the 
direction of the moving robot is derived from fuzzified artificial potential field whereas in the 
second one, the direction of the robot is extracted from some linguistic rules that are inspired 
from artificial potential field. These two introduced trajectory design approaches are validated 
though some software and hardware in the loop simulations and the experimental results 
demonstrate the superiority of the proposed approaches in humanoid robot real-time trajectory 
planning problems. 
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1 Introduction 

Ideally, we expect that robots work similar to expert labours 
and we want robots to work in industry with or instead of 
human labour forces. Robots that have same physical body 
as human bodies are more useful than other types, because 

human beings have built their environments in proportion to 
their ergonomic (Tsay and Lai, 2009). Still, it is not possible 
to build humanoid robots totally adapted with industrial 
environments. Stability, mapping, interacting, computing 
and grasping are some research gaps, and path planning 
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make humanoid robots’ navigation an open problem (Du  
et al., 2012). The ultimate goal for humanoid robot is a 
robot to work in every environment. Since the real world is 
dynamic, saving all environments in robot memory is 
impossible. This means humanoid robots must work in 
unknown environments. 

Path planning problem has been investigated in several 
research works (Dai and Yang, 2012). Trajectory planning 
for a mobile robot to move from an initial position to a 
target position in a known environment is a well-known 
problem in robotics. There are some methods in path 
planning for unknown environment, for example fuzzy logic 
based methods have been used in some research projects 
(Liu and Yu, 2012). 

A fuzzy-based navigator has been proposed by 
Zavlangas et al. (2000) for obstacle avoidance and 
navigation problem of omnidirectional mobile robots. The 
proposed navigator considers only the nearest obstacle to 
decide upon the robot next move. This method has been 
established based on three parameters, which are the 
distance between the robot and the nearest obstacle, the 
angle between the robot and the nearest obstacle, and the 
angle between the robots direction and the straight line 
connecting the current position of the robot and the goal 
configuration. Although the presented method has been 
evaluated as an accurate and real-time method, but these 
three parameters cannot be prepared in one camera 
humanoid robots. In other word, this method needs 
omnidirectional range sensors. 

A useful method to deal with the problem of wheeled 
mobile robot navigation has been demonstrated by Fatmi  
et al. (2006). Issues such as individual behaviour design and 
action coordination of the behaviours were addressed by 
fuzzy logic. The coordination technique employed in this 
work includes two layers. A layer of primitive basic 
behaviours and the supervision layer which is based on the 
context make a decision about which behaviour(s) to 
process (activate) rather than processing all behaviour(s) 
and then blends the appropriate ones, as a result time and 
computational resources are saved. This method employs  
14 range sensors to achieve position of any obstacle around 
of the robot and so cannot be used in most humanoid robots. 

Iancu et al. (2010) have presented a fuzzy reasoning 
method of Takagi-Sugeno type controller and has applied 
this in two wheels autonomous robot navigation. This 
mobile robot is equipped with a sensorial system. The robot 
sensors area is divided into seven radial sectors labelled as: 
large left, medium left and small left for the left areas, EZ 
for the straight area, and large right, medium right and small 
right for the right area, respectively. Each radial sector has 
been further divided in other three regions like small, 
medium and large. The range of applied sensors were able 
to recognise up to 30 metres, and the robot could identify an 
obstacle anywhere inside the interval between –90 and  
90 degree. Indisputably, most humanoid robots have not the 
same sensors and therefore, this way is not feasible for 
humanoid robots. 

The simplest path planning algorithms for unknown 
environment are called bug algorithms. Bug algorithms 
solve the navigation problem by storing only a minimal 
number of way points, but without generating a full map of 
the environment. Traditional bug algorithms (Lumelsky and 
Stepanov, 1984; Sankaranarayanar and Vidyasagar, 1990; 
Noborio, 1990, 1992; Horiuchi and Noborio, 2001) worked 
only with tactile sensors. Continuously updating position 
data is mandatory when bug algorithms are used. As we 
know, it is not possible to achieve a continuous data 
updating in practice. In addition, the bug models make some 
simplifying assumptions such as the robot is a point object 
has perfect localisation ability and perfect sensors. These 
three assumptions are unrealistic for real robots, and 
therefore, bug algorithms are usually not directly applied in 
practical navigation tasks. New bug algorithms such as  
dist-bug (Kamon and Rivlin, 1997), vis-bug (Lumelsky and 
Skewis, 1990), tangent-bug (Kamon et al., 1998) and  
sens-bug (Kim et al., 2003), unlike old ones work with 
range sensors. 

Besides, a path planning algorithm for humanoid robots 
is proposed by Michel et al. (2005). There algorithm needs 
information of position of robots and obstacles as input 
data. So they used an external camera to show a top view 
from environment. Unfortunately, in most situations, the 
camera failed to prepare a global view from robot working 
environments. Other path planning project on HRP-2 
humanoid robot has been done by Michel et al. (2006). 
Their method used several cameras in robot environment to 
produce a map. As we know using cameras wherever we 
want to use humanoid robots is not practical. 

In addition, Nakhaei and Lamiraux (2008) used online 
3D mapping and combined it with path planning. They used 
3D occupancy grid that was updated incrementally by stereo 
vision for constructing the model of the environment. A 
roadmap based method was used for path planning, because 
the dimension of the configuration space is high for 
humanoid robots. Indeed, it is necessary to update the 
roadmap after receiving new visual information because the 
environment is not static. The test results on HRP2 were not 
acceptable, due to long time processing; this algorithm 
needs exact stereo vision and a lot of time to find a path in 
each step. 

Furthermore, Sabe et al. (2004) have presented a method 
for path planning and obstacle avoidance for the QRIO 
humanoid robot. The mentioned robot allowed walking 
autonomously around a home environment. A* algorithm 
was used in this method that needed a lot of time to process. 
Moreover, they used online mapping and stereo vision. 
Their method seems effective, but it needed high 
computational processes in addition to stereo vision. As a 
result, this method is not applicable in most conditions too. 

Additionally, in another study, best-first search and A* 
algorithms has been used for foot step path planning on H7 
humanoid robot by Chestnutt et al. (2003). This research 
showed that A* is more effective than best-first search. But 
it is important to know that both of them need stereo vision 
and high computational processes. 
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Okada et al. (2003) have presented another way for 
humanoid robot path planning. In this way, robot and 
obstacle were supposed as cylindrical shapes. In this 
research, based on vision, the robot extracted the floor map 
and made decision. This method encountered to a big bug 
when robot started in front of a big obstacle, because it 
could not find the floor and so path finding was disturbed. 

Also, artificial potential field algorithm has been 
employed in a recent path planning research on an iCub (a 
humanoid robot) by Gay et al. (2010). In this algorithm, 
iCub calculated 3D position of each obstacle Firstly, and 
then transform it into 2D, and calculated artificial potential 
field. Their method needed exact image understanding to 
find position of obstacles. Therefore, it was not applicable 
in some humanoid robots. 

This paper suggests two new distinct methodologies for 
producing artificial potential field by fuzzy inference 
systems and by using only one camera in a humanoid robot. 
In the first method, artificial potential field is calculated by 
fuzzified relations; and in the second method, some 
linguistic rules give direction of artificial potential field. It 
is supposed that humanoid robots have a camera and an 
odometer. These two introduced trajectory design 
approaches are compared with each other though some 
software and hardware in the loop simulations and the 
experimental results demonstrate the superiority of the 
proposed approaches in humanoid robot real-time trajectory 
planning problems. 

2 Problem statement and functional block 
diagram 

In path planning process, the location of the obstacles or the 
forbidden zones and free spaces must be clarified for the 
mobile robots. In the humanoid robots, this information 
could be achieved from a vision system. To meet this 
purpose, firstly the images are segmented. For added safety 
margins, dilation process can be used. Dilation means 
expanding the obstacles to obtain a configuration space 
(Choset et al., 2005). Figure 1 shows the functional block 
diagram of both proposed methods. 

Figure 2 shows original images in comparison with the 
segmented and the final images. Humanoid robots’ cameras 
are usually located in the head of humanoid robots and have 
an elevation angle with the local horizon. Therefore, 
captured images may be defined in perspective styles. 

Figure 3 shows the effect of the perspective view on a 
checkerboard. Therefore, in order to extract the distances 
from images, the image is meshed non-homogeneously. 
Because the angle and height of the camera is considered 
fixed approximately, the obstacle location with respect to 
robot could be found by pre-measuring of the centre of each 
box. 

In the first method, the robot computes the artificial 
potential field of each box of the image. Then, total artificial 
potential field is extracted with fuzzy inference. At the end, 
robot moves according the artificial field. 

In the second method, the membership function of any 
working spaces, including the target, free spaces and the 
obstacles, for each part could be calculated. Then, fuzzy 
inference system simulates the artificial potential field using 
the linguistic rules to provide a reliable passage for robot 
movement. 

Figure 1 Functional block diagram for humanoid robot path planning with fuzzy artificial potential (FAP) fields 
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Table 1 Comparison our method with others 

Method Real-time Work with approximate positions Vision Map Work on front of obstacle 

Nakhaei and Lamiraux 
(2008) 

  Stereo 3D  

Sabe et al. (2004)   Stereo 2D  
Chestnutt et al. (2003)   Stereo 2D  
Okada et al. (2003)   Stereo Floor (3D)  
Gay et al. (2010)   Stereo Independent  
Our methods   Mono Independent  

 
Figure 2 (a) Original images, (b) segmented images (c) final 

images (see online version for colours) 

 
(a) (b) (c) 

Figure 3 Example of effect of camera’s angle (a) top view  
(b) perspective view 

 

 
(a)   (b) 

Some prevalent researches on path planning strategies in 
unknown environment are listed in Table 1, and as we can 
see some of these methods need range sensors that are not 
applicable on humanoid robot and the others are not  
real-time. 

Superposition principle could be employed with 
potential field approach to accelerate the path planning 
procedure. Furthermore, resorting to fuzzy analysis has 
obviated the necessity of having knowledge of the precise 
shape, position and orientation of the surrounding obstacles, 
as well as the need for relatively enormous volumes of 
memory for stocking information gathered in 2D and 3D 
maps. 

3 Problem definition and formulation 

3.1 Fuzzification with Takagi-Sugeno method 

The resultant force in a traditional potential field could be 
defined as follows: 

( )= −∑a d
k

F F F k  (1) 

where aF  is the attractive force and ( )dF k  is the distractive 
force of kth obstacle. In a 2D discrete space, equation (1) 
could be re-written as follows: 

( , )= −∑a dF F F i j  (2) 

Equation (2) could be decomposed in x and y directions as 
follows: 

( , )
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∑
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By substituting equation (4) in to equation (3), we will have: 
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( , )( , )
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By inspiration of the gravity potential field principal in 
defining the attractive and distractive forces, equation (5) 
will be expanded as follows: 

3 3

3 3

( , )

( , )
( , )
( , )

⎧ = −⎪
⎪
⎨
⎪ = −
⎪
⎩

∑

∑

t
x a d

t

t
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 (6) 

Equation (5) is a crisp artificial potential field equation. It 
shows that for calculating the artificial potential field, a 
robot needs exact distance of each pixel to the robot. As it 
was mentioned, due to the use of only one camera without 
range sensors in many humanoid robots, calculating the 
exact distance is impossible. To solve this problem, we 
suggest that instead of using pixel data, robot uses a set of 
pixels, i.e., the square between meshes of image. In this way 
robot must calculate the membership function of each 
meshes for obstacle, target, and free spaces, as follows: 

( , )( , )
( , )

=
j

j
number of obstacle pixels in square iP i

number of all pixels in square i j
 (7) 

Membership function of each square to obstacle could be 
defined as follows: 

( )( , ) ( , )=μ i j f P i j  (8) 

In the above equation, f is an ascending function which  
f(0) = 0 and f(1) = 1. In other words, if there is no obstacle 
in square, the output must be zero; and if all pixels in the 
square show obstacle, the output must be one. The simplest 
function that could be effective in this work is identity 
function. The fuzzified of equation (6) is: 

3 3

3 3
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 (9) 

Therefore, the direction of the mobile robot path is 
determined as follows: 

3 3

3 3
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Since the potential field force is related to the inverse of 
distance, as the distance tends to zero, then the force tends 
to infinity. Therefore the distractive force has been 
discretised in order to avoid from singularity conditions and 
for eliminating singularity condition in the attractive forces 
(goal potential) denominator has been changed in to a small 
non-zero number. 

3 3

3 3

( , )arctan 2 ( , ) ,
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 (12) 

Also, the filed lines in real potential field are connected to 
each other. This property could be found in continuous 
artificial potential field. When the mobile robot working 
space is discretised, the calculated artificial potential  
field could be representative of the artificial potential field 
of the box centre. Because continuous artificial potential 
field of each point is different from the discrete artificial 
potential field, the field lines of discrete artificial potential 
field does not have the same property of the continuous  
one. In other words, field lines in discrete artificial potential 
field collide with each other. Discretising could make 
oscillation or rotation in robots motion. In order to avoid 
from this situation, saturation function could alleviate this 
problem. Instead of computing the direction of the potential 
field, it is sufficient to calculate the saturation function as 
follows: 

( ),=final newθ Sat θ α  (13) 

where 

,
( , ) ,

,

− ∅ < −⎧
⎪∅ = ∅ − ≤ ∅ <⎨
⎪ ∅ >⎩

Sat
α α

α α α
α α

 (14) 

As a result, we will have: 



 Revision on fuzzy artificial potential field for humanoid robot path planning in unknown environment 179 

3 3

3 3

( , )arctan 2 ( , ) ,
1 ( , )

( , )( , ) ,
1 ( , )

⎛ ⎛= −⎜ ⎜⎜⎜ +⎝⎝
⎞⎞− ⎟⎟⎟ ⎟+ ⎠ ⎠

∑

∑

t
final a d

t

t
a d

t

y y i jθ Sat k k μ i j
r r i j

x x i jk k μ i j
r r i j

α

 (15) 

3.2 Fuzzification with Mamdani method 

In the logic inspired from Mamdani fuzzification method, 
questions about the trajectory direction do not involve any 
mathematical responses. In the other word, the response is 
including some linguistic phrases such as ‘near’, ‘far’, and 
so on. In the same way, it is possible to define some 
linguistic phrases to guide a robot. The Mamdani method 
may help us to implement these linguistic phrases for a 
mobile robot. 

The effect of each pixel could be calculated using the 
traditional potential field, i.e., equation (7). In order to apply 
this methodology, at first, the robot onboard computer must 
calculate the membership function of each mesh for 
obstacle, target, and free spaces as follows: 
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 (16) 

In the equation (16), f is an ascending function which  
f(0) = 0 and f(1) = 1. In other words, if there is no obstacle 
in the square, the output must be zero; and if all pixels in the 
square involve obstacle, the output must be one and so on. 
According to artificial potential field, the force that is 
created by a near object is greater than one which is created 
by the farther object. Based on the above description, we 
wrote rules in Tables 2 to 5. In these tables, ‘V’ means very; 
‘Z’ means zero; ‘S’ means small; ‘M’ means medium; ‘B’ 
means big; ‘P’ means positive; ‘N’ means negative; ‘A’ 
means attraction case; ‘R’ means repulsion case. 

Table 2 Linguistic rules for axis X repulsion 

j\i –2 –1 0 1 2 

5 VSPR VSPR Z VSNR VSNR 
4 VSPR VSPR Z VSNR VSNR 
3 SPR SPR Z SNR SPR 
2 MPR MPR Z MNR MNR 
1 BPR VBPR Z VBNR BNR 

 

Table 3 Linguistic rules for axis Y repulsion 

j\i –2 –1 0 1 2 

5 VSNR VSNR VSNR VSPR VSPR 
4 VSNR SNR SNR SNR VSNR 
3 SNR MNR MNR MNR SNR 
2 MNR BNR VBNR BNR MNR 
1 MNR VBNR VBNR VBNR MNR 

Table 4 Linguistic rules for axis X attraction 

j\i –2 –1 0 1 2 

5 VSNA VSNA Z VSPA VSPA 
4 VSNA VSNA Z VSPA VSPA 
3 SNA SNA Z SPA SPA 
2 MNA MNA Z MPA MPA 
1 BNA VBNA Z VBPA BPA 

Table 5 Linguistic rules for axis Y attraction 

j\i –2 –1 0 1 2 

5 VSPA VSPA VSPA VSPR VSPR 
4 VSPA SPA SPA SPA VSPA 
3 SPA MPA MPA MPA SPA 
2 MPA BPA VBPA BPA MPA 
1 MPA VBPA VBPA VBPA MPA 

Usually, the attraction force may be greater than the 
repulsion force. In the other word, MPA > MPR and VSNA 
< VSNR. 

To extract the resultant number from these tables, there 
are a lot of ways to defuzzify the results of the mentioned 
rules. Because the natural potential field has super position 
property, the weighted average method of defuzzification 
may be chosen as follows: 

( )
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( )
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1

1
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ˆ ˆ. .

=

=

=

=
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⎨
⎪ +
⎪ =
⎪ +⎩

∑
∑

∑
∑

N k k k k
o rx axtk

x N k k
o tk

N k k k k
o ry aytk

y N k k
o tk

μ f μ f
F

μ μ

μ f μ f
F

μ μ

 (17) 

In equation (17), Fx is force in x direction; Fy is force in y 
direction; N is number of meshes; k

tμ  is membership 
function of the target in kth square; k

oμ  is membership 
function of obstacle in kth square; k

rxf  will produce a 
repulsive force in x direction if the kth mesh involves an 
obstacle; ˆ k

axf  will produce an attractive force in x direction 

if the kth mesh involves the target; ˆ k
ryf  will produce a 

repulsive force in y direction if the kth mesh involves an 
obstacle; ˆ k

ayf  will produce an attractive force in y direction 
if the kth mesh involves the target. 
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Although other methods could be applicable, but 
weighted average method is more coincident to nature of 
potential field. 

According to the nature of the potential field, the robot 
should have non-zero magnitude for attractive force. When 
robot may not able to find the target, sub-goal is necessary 
for robot movement toward the real target. 

Sub-goal is defined as a virtual goal in vision space that 
achieving it could help us to conduct the robot in to the 
original target. Figure 4 shows how sub-goal state could be 
calculated. As it could be seen, if the target is considered as 
a dark green circle, then the assumed state with light green 
will be sub-goal; in a similar way, if blue circle is chosen as 
the target, then the state with cyan circle will be sub-goal 
state. After determination of sub-goal, the robot could 
assume that it is the real goal and then may apply the 
equation (17). 

Figure 4 Example of determining sub-goal states (see online 
version for colours) 

 

In artificial potential field, the direction of the resultant 
forces is important, unlike the magnitude of them. Thus, we 
could rewrite the equation (17) as follows: 

( )
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f μ f μ f

f μ f μ f
 (18) 

The direction of the resultant forces could be computed as 
follows: 

( )arctan ,′ ′= y xθ f f  (19) 

From equations (18) and (19), the direction of resultant 
forces could be obtained as follows: 

( )(
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1

1

ˆ ˆarctan . . ,

ˆ ˆ. .

=

=

= +

+

∑
∑

N k k k k
o ry aytk

N k k k k
o rx axtk

θ μ f μ f

μ f μ f
 (20) 

 

 

 

4 Experiments 

In order to show the capability and effectiveness of our 
proposed methods, we applied them to a Nao H25 V4 robot 
which is produced by Aldebaran Robotics French Company 
(Gouaillier et al., 2009) (Figure5). 

In the experimental phase, robot took an image with 
160*120 pixels. We did many experiments but to show the 
ability of the proposed methods two case studies are 
investigated here. 

Figure 6 is related to Takagi-Sugeno fuzzy type, the 
target is considered as a virtual point that is given to the 
robot in the beginning of the process. In the first step, robot 
decides to move to the target directly because it has not seen 
the obstacle and feeling only absorption force. When the 
robot sees the first target in its way, i.e., right obstacle, the 
distraction force will be added. If the equation (12) is fired 
to run in the mathematical process, distraction force is so 
high in comparison with the absorption force that causes to 
redirect the robot. But, with the help of saturation function, 
i.e., equation (15), the robot turns only with a limited 
reliable angle. At this experiment, we choose the robot 
maximum turning angle about 0.3 radian and therefore, the 
robot may step and turn 0.3 radian instantaneously. At this 
state, robot may see both obstacles. The resultant force 
cause robot prefers to go from the middle of obstacles. In 
the other words, robot does not go toward the target 
directly. In fact, we could conclude that the artificial 
potential fields’ direction is affected by the pre-positioned 
obstacles. After passing all obstacles, the robot goes toward 
target whereas the saturation function may cause the turning 
mode happens smoother. 

Figure 5 Aldebaran Robotics – NAO H25 V4 (see online 
version for colours) 
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Figure 6 Path planning with Takagi-Sugeno fuzzy type  
(see online version for colours) 

 

Figure 7 Path planning with Mamdani fuzzy type (see online 
version for colours) 

 

Figure 7 is related to path planning with Mamdani fuzzy 
type. The approximation of the target may be given to the 
mobile robot. In the beginning, the robot could not see the 
obstacles and the target. Therefore, the robot uses the  
sub-goal and may move toward the approximated target 
position. When the robot determines the first target,  
it may turn instantaneously with stepping according the 
linguistic rules that is introduced by equation (20).  
After few steps, the robot could see the obstacle number 
two. Therefore, linguistic rules may result that the mobile 
robot moves among the obstacles toward virtual target. 
Then, robot sees the real target. Now, if robot goes directly 
to the target it will not collide with obstacles. In the other 
words, linguistic rules may produce artificial potential 
fields. 

Results showed that the robot could walk to the target 
without any collisions to the obstacle. 

5 Discussion 

In this research, a new method which may produce artificial 
potential field as the natural potential field to apply as the 
state variable constraints in an online path planning 
approach based on the data producing by a humanoid robot 
vision subsystem has been introduced. In the prevalent 
method of artificial potential field, the absorption force has 
a direct relation with the distance to the target (Khatib, 
1986). Conversely, in our methods and natural potential 
field, the absorption force has relation with inverse of 
distance to the target.  

Generally, both our proposed method and prevalent 
methods employing natural potential field, encounter a 
problem with local minimums. As mentioned later, some 
researchers have suggested expediting changes in the 
prevalent artificial potential filed in order to avoid to 
catching in local minimums. By the way, this strategy may 
be applied in our proposed method. However, the premier 
goal of this research is fastened to generate a faster process 
to develop reliable artificial potential fields, without 
knowing the exact distance to the obstacles and in order to 
be applicable to the humanoid robot path planning software. 

In the first proposed methodology, we try to produce 
strong absorption force near the target and weak absorption 
force when it may be far from the target. Therefore, the 
mobile robot behaves differently according to its distance to 
the target. The prevalent method conversely, produces weak 
absorption force in vicinity of the target and strong 
absorption force when it is far from the target. 
Notwithstanding, in our proposed second methodology 
which employing sub-goal, the moving robot behaves 
similarly and the decision making process designating the 
humanoid robot passageway does not affected by distance 
with the target position. 
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6 Conclusions 

In this paper, two new successful and efficient 
methodologies have been proposed for real-time path 
planning process of autonomous humanoid robots in 
unknown complex environments using the data collecting 
with the vision sensors to get knowledge about the 
surroundings. The method of calculating the artificial 
potential field without having the exact distance and shape 
of the obstacles was described and demonstrates via some 
simulations. In the first method, Takagi-Sugeno fuzzy 
inference system is used whereas in the second one 
Mamdani fuzzy inference system type is used. Both 
proposed methods may use box instead of pixel and they 
use an approximate distance to the obstacles with an 
admissible degree of uncertainty; thus, unlike other existing 
approaches, the proposed methods could consider the effect 
of the process and output noises to handle a reliable walking 
corridor for the humanoid robot. Also, these methods could 
use homogeneous meshes that make it simpler, while other 
methods need non-homogeneous meshes. Generally, the 
whole locomotion, vision, path planning, motion planning 
are thus fully autonomous. These results confirm that robot 
can work in real world situations. These methods need only 
one camera and are independent of range computing and the 
principle of superposition may make the algorithms 
corresponding with these methods very fast. The outputs of 
the first method are more close to natural potential fields 
because this method uses a similar function. Unlike 
traditional artificial potential field, the second method does 
not encounter any singularity problem, because of using a 
linguistic method. Moreover, the traditional artificial 
potential field has a problem with distant of the robot from 
the target point. In other words, in the traditional artificial 
potential field based on the fact that the robot is near or far 
from the target, may show different behaviour. While, the 
second proposed method in this paper, does not have this 
problem by using the sub-goal concept. 
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