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1 can calculate the motion of heavenly bodies, but not the madness of people.

Isaac Newton

What I cannot create, I do not understand.
Richard Feynman.

Abstract.

The challenge of this works to connect physicsith the concept of intelligenceBy intelligence we
understand a capability to move from disorder to order without external resources, i.e. in violation of the
second law of thermodynamics. The objective is to find such a mathematical object described by ODE that
possesses such a caiiah The proposed approach is based upon modification of the Madelung version of
the Schrodinger equation by replacing the force following from quantum potential witbonservative

forces that link to the concept of information. Mathematical formadim suggests that a hypothetical
intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such
properties like selfmage, seHawareness, selsupervision, etc. that are typical for Livings. However since

this particle being a quantuofassical hybrid acquires ndfewtonian and noguantum properties, it does

not belong to the physics matter as we know it: the modern physics should be complemented with the
concept of theinformation force that represents a bige to intelligent particleAs a followup of the
proposed concept, the following question is addressadartificial intelligence Al) system composed

only of physical components compete with a human? The answer is proven to be negative if themAl syste
is based only on simulations, and positive if digital devices are included. It has been demonstrated that
there exists such a quantum neuralthet perforns simulations combined with digital punctuations. The
universality of this quanturalassical hykd is in capability to violate the second law of thermodynamics

by moving from disorder to order without external resources. This advanced litgpakillustrated by
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1.Introduction.

The recent statement about completeness of the physical picture of our UnieglsennGeneva raised
many questions, and one of them is the ability to create Life and Intelligence out of physical matter without
any additional entities. The main difference between living andlinimg matter is in directions of their
evolution: it hasbeen recently recognized that the evolution of livings is progressive in a sense that it is
directed to the highest levels of complexity. Such a property is not consistent with the behavilareaf
Newtonian systems that cannot increase their contpledthout external forces. That difference created

so called Schridinger paradox: in a world governed by the second law of thermodynamics, all isolated
systems are expected to approach a state of maxidiumdier, since life approaches and maintains a
highly ordered statebDone can argue that this violates the Second Law implicating a paradox,[1]

But livings are not isolated due to such processes as metabolism and reproduction: the increase of order
inside an organism is compensated by an increase irddisoutside this organism, and that removes the
paradox. Nevertheless it is still tempting to find a mechanism that drives livings from disorder to order. The



purpose of this paper is to demonstrate that moving from a disorder to order is not a precbggigme
systems: an isolated system can do it without help from outside. However such system cannot belong to the
world of the modern physics: it belongs to the world of living matter, and that lead us to the concept of an
intelligent particleDthe firststep to physics of livings. In order to introduce such a particle, we start with

an idealized mathematical model of livings by addressing only one aspect of lbfesignature,i.e.
mechanical invariants of Life, and in particular, thgeometry and kinmatics of intelligent behavior
disregarding other aspects of Life such as metabolism and reproduction. By narrowing the problem in this
way, we are able to extend the mathematical formalism of physicsO First Principles to include description of
intelligentbehavior. At the same time, by ignoring metabolism and reproduction, we can make the system
isolated, and it will be a challenge to show that it still can move from disorder to order.

2. Starting with gquantum mechanics.

The starting point of our apprdads the Madelung quation that is a hydrodynamiagersion of the
Schridinger equation
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Here! and S are the components of the wave functior \/:e'S/' , and! is the Planck constant

divided by 2! . The last term in Eq. (2) is known as quantum potential. From the viewpoint of Newtonian
mechanics, Eq. (1) expresses continuity of the flow of probability density, and Eg. tt® Hamilton

Jacobi equation for the actighof the particle. Actually the quantum potential in Eq. (2), as a feedback
from Eqg. (1) to Eq. (2), represents the difference between the Newtonian and quantum mechanics, and
therefore, it is solely responsibfor fundamental quantum properties.

The Madelung equations (1), and (2) can be converted to the Schr8dinger equation using the ansatz

Jp = Wexp(=iS / h) @
where! and S being real function.

Our approach is based uparmmodification of the Madelung equation, and in particular, upon replacing the
guantum potential with a different Liouville feedback, Fig.1
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Figure 1. Classic Physics, Quantum Physics and Physics of Life.

In Newtonian physics, the concept of probapilit is introduced via the Liouville equation
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g.enerated by the system of ODE

dv
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wherev is velocity vector.
It describes the continuity of the probability density flowgorated by the error distribution

=p(t=0) (6)
in the initial condition of ODE (b

Let us rewrite Eq. (2) in the following form
=F[! (v)] @

wherev is a velocity of a hypothetical particle.

This is a fundmental step in our approach: in Newtonian dynamics, the probability never explicitly ente
the equation of motiarin addition to that, the Lioullé equation generated by Eq) (2 nonlinear with
respect to the probability densify

LV pFlp(V)]} -0 ®

and therefore, the system (7),@eparts from Newtonian dynamics. However although it has the same
topology as quantum mechanics (since now the equation of motion is coupled with the equation of
continuity of probabiliy density), it does not beng to it either. Indeed Eq. X7s more general than the
Hamilton-Jacoby equation (2): it is not necessarily conservative,Faigl not necessarily the quantum
potential although further we will impose some restriction uponhdtt links F to the conceptof
information The relation of the system (7),)® Newtonian and quantum physics is illustrated in Fig.1.

Remark. Here and below we make distinction between the randeble v(z) and itsvalues V in probability space
3. Information force instead of quantum potential.

In this section we propose the structure of the fér¢kat plays the role of a feedbaftkbm the Liouville
equation (8) to the equation of motion.(Turning to onedimensional case, let us specifystiiéedback as

2
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Then EQq.(9) can be reduced to the following:

1 ap C, 8p
V= C,+=Cp- (11)
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and the corresponding Liouville eqgigat will turn into the nonlineaPDE
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This equation is known as the KeBergersO PDE. The mathematical theory behind the KdV equation
became rich and interesting, and, in the broad sense, it is a topic of active mathematical research. A
homogeneous version of this equation thlatstrates its distinguished properties is nonln®DE of
parabolic type. Bua fundamental difference between the standaid-Bergers equation and Eq. (12) is

that Eq. (12 dwells in the probability spacend therefore, it must satisfy the normdii@a constraint

#
Pav=1 (13
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However as shown in J2this constraint is satisfied: in physical space it expresses conservation of mass,
and it can be easily scatlown to the constraint (33n probability spaceThatallows one to apply all the
known results directly to Eq. (L2However it should be noticed that all the conservation invariants have
different physical meaning: they are not related to conservation of momentum and energy, but rather
impose constraints @p the Shannon information.

In physical space, Eq. (Lchas many applications from shallow waves to shock waves and solitons.
However, application of solutions of the same equations in probabilitg spdandamentally different. In

the following sectioa we will present @henomena that exist neither in Newtonian nor in quantum physics.

4. Emergence of randomness.

In this section we discuss a fundamentally new phenomenon: transition from determinism to randomness in
ODE that coupled with their LiouvilleDE.

In order tocomplet the solution of the system (11), J1@ne has to dstitute the solution of Eq. ()2

I=r(v,t) aa V=v (14)

into Eg.(13. Since the transition from determinism to randomness occlrd atO, let us turn to Eq.
(12) with sharp initial condition

L,V)="(vV)at t=0, (15)

Then applying one of the standard analytical approximations of thefdettdon, one obtains the
asymptotic solution
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Substitition this solution into Eq.1(l) shows that
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and therefore, the first three termsHq. (1) can be ignored
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or after substitution of Eq. ()6



4c Vv°
V= t'j at t! 0 v"O (20)
Eq. (20 has the following solution (see Fig. 2)
3
v:t—3 a t! 0 v"O (21)
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where C is an arbitrary constant.
This solution has the following property: the Lijitzhcondition att I Ofails

v 8cv 8c3t3
vt (4, +CF)
and as a result of that, the uniqueness of the solution idrideed, as follows from Eq. (2for any value

of the arbitrary constant C, the solutions are different, bytshésfy the same initial condition

v—=0 at t—0 (23)

Due to violaton of the Lipchitz condition (22 the solution becomes unstable. That kind of instability
when infinitesimal errors lead to finite deviations from basic motion (thehitip instabiity) has been
discussed ind]. This instability leads to unpredictable shift of solution from one valu€ tof another. It

means that appearance of any specified solution out of the whole family is random, and that randomness i
controlled by the feedback {9from the Liouville equation (12). Indeed if the solution X2Llins
independently many times with the same initial conditions, and the statistics is collected, the probability
density will saisfy the Liouville equation (12 Fig.3.
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Figure 2. Family of random solutions describing transition from determinism to stochastisity.




Figure 3. Stochastic process and probability density.

5. Departure from Newtonian and quantum physics.

In this section we will derive a distinguished pedy of the system (16),(17) that is associated with
violation of the second law of thermodynamics i.e. with capability of moving from disorder to order
without help from outside. That property can be predicted qualitatively even prior to analytizldue

to the nonlinear term in Eq. (17), the solution form shock waves and solitons in probability space, and that
can be interpreted as OconcentrationsO of probability density, i.e. departure from disorder. In order to
demonstrate it analytically, les turn to Eq. (17) at

¢, >>|c, |,c, (24)
and find the change of entropy
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At the sane time, the original system (11), {18 isolated: it has no external interactions. bale¢he
information force Eq(9) is generated by the Liouville equation that, in turn, is geeéray the equation of

motion (1). In addition to that, the particle described by ODE (11) is in equilibr%m Oprior to
activation of the feedback (9yherefore thesolution of Egs. (11), and (12an violate the second law of
thermodynamics, and that means that this class of dynamical systems does not belong to physics as we
know it. This conclusion triggers the following question: are there any phenomena in tiatucan be

linked to dynamical systems (11), Y22he answer will be discussed bellow.

Thus despite the matherical similarity between Eq.(}2and the KdVBergers equation, thehpsical
interpretation of Eq.(12is fundamentally different: it is part of the dynamical system (11),(12) in which

Eq. (19 plays the role of the Liouvd equation generated by Eq. (11). As follows from Eq),(®%s
system being isolatechnd being in equilibrium, has tleapability to decrease entropy, i.e. to mowarfr
disorder to order without external resources. In addition to that, the system displays transition from
deterministicstate to randomness (see Eq.)}22

This property represents departure from classical and quantum physics, and, as shown in [Ri&,gorov
link to behavior of livingsThat suggests that this kind of dynamics requires extension of modern physics
to include physics of life.

The process of violation of the second law of thermodynamics is illustrated in Fige Higher values of
@ propagate faster than lower ones. As a result, the moving front becomes steeper andastépat,

leads to formation of solitons £€0), or shock waves {g0) in probability space This process is
accompanied by decrease of entropy.
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Figure 4 Formation of shock waves in probability space.

Remark. The system (11), (d2displays transition from deterministgtate to randomness (see Eg. (22))

and this property can be linked to the similar property of the Madelung equationgalttautly speaking,

Eq.(1) is a OtruncatedO version of the Liouvile equation: it does not include the contribution of the quantum
potential.

6. Comparison with quantum mechanics

a. Mathematical ViewpointThe model of intelligent particle iepresated by a nonlinear ODE \&nd a
nonlinear parabolic PDE Y&oupled ina mastesslave fashion: Eq. {8s to be solved independently, prior

to solving Eqg. ((J. The coupling is implemented by a feedback that includes the probability density and its
spacederivatives, and that converts the first order PDE (the Liouville equation) to the second or higher
order nonlinear PDE. As a result of the nonlinearity, the solutions to PDE can have attractors (static,
periodic, or chaotic) in probability spe. The saition of ODE (7§ represents another major departure from
classical ODE: due to violation of Lipchitz conditions at states where the probability density has a sharp
value, the solution loses its uniqueness and becomes random. However, this essdismootiolled by

the PDE (8in such a way that each random sample occurs witbatresponding probability, Fig.3

b. Physical ViewpointThe model of intelligent particle represents a fundamental departure from both
Newtonian and quantum mechanics. The funelatal departure of all the modern physics is the violation
of the secondaws of thermodynamics,(see Eq.J28nd Fig. 4. Howevera more detailed analysis, [3],
shows that due to similar dynamics topology to quantum mechanics,(seetlgripdelpreseves some
guantum properties such as entanglement and interference of probabilities.

c. Biological Viewpoint. The Ly model illuminates the Oborder lineO between living andiving systems.

The model introduces a biological particle that, in additione@a/fénian properties, possesses the ability to
process information. The probability density can be associated with tHenagk of the biological particle

as a member of the class to which this particle belongs, while its ability to convert the densthein
information force- with the selfawareness (both these concepts are adopted from psychology). Continuing
this line of associations, the equation of motion (such as Egs (3.11)) can be identified with a motor
dynamics, while the evolution of densifgee Egs. (3.12pwith a mental dynamics. Actually the mental
dynamics plays the role of the Maxwell sorting demon: it rearranges the probability distribution by creating
the information potential and converting it into a force that is applied to thelpa@ne should notice that
mental dynamics describes evolution of the whole class of state variables (differed from each other only by
initial conditions), and that can be associated with the ability to generalize it as a privilege of living
systems. Coimiuing our biologically inspired interpretation, it should be recalled that the second law of



thermodynamics states that the entropy of an isolated system can only increase. This law has a clear
probabilistic interpretation: increase of entropy correspoadse passage of the system from less probable

to more probable states, while the highest probability of the most disordered state (that is the state with the
highest entropy) follows from a simple combinatorial analysis. However, this statement & ocotyeif

there is no Maxwell® sorting demon, i.e., nobody inside the system is rearranging the probability
distributions. But this is precisely what the Liouville feedback is doing: it takes the probability density
from Equation (3.12), creates functionals and functions of this density, converts them into a force and
applies this force to the equation of motion (3.11). As already mentioned above, because of that property of
the model, the evolution of the probatyilidensity becomes nonlinear, and the entropy may decrease
Oagainst the second law of thermodynamicsO, Fig.6. Obviously the last statement should not be taken
literary; indeed, the proposed model captures only those aspects of the living systems Ssiciated

with their behavior, and in particular, with their metaental dynamics, since other properties are beyond

the dynamical formalism. Therefore, such physiological processes that are needed for the metabolism are
not included into the model. Thi why this model is in a formal disagreement with the second law of
thermodynamics while the living systems are not. In order to further illustrate the connection between the
life-nonlife discrimination and the second law of thermodynamics, considerlapdsical particle in a

state of random migration due to thermal energy, and compare its diffusion i.e. physical random walk, with
a biological random walk performed by a bacterium. The fundamental difference between these two types
of motions (that maybe indistinguishable in physical space) can be detected in probability space: the
probability density evolution of the physical particle is always linear and it has only one attractor: a
stationary stochastic process where the motion is trapped. On ttrargpa typical probability density
evolution of a biological particle is nonlinear: it can have manyfdient attractors, but eventually each
attractor can be departed from without any OhelpO from outside.

That is how H. Berg, [11], describes the ramdwalk of an E. coli bacterium:O If a cell can diffuse this

well by working at the limit imposed by rotational Brownian movement, why does it bother to tumble? The
answer is that the tumble provides the cell with a mechanism for biasing its random Wwatkit\wims in

a spatial gradient of a chemical attractant or repellent and it happens to run in a favorable direction, the
probability of tumbling is reduced. As a result, favorable runs are extended, and the cell diffuses with
driftQ. Berg argues thdtet cell analyzes its sensory cue and generates the bias internally, by changing the
way in which it rotates its flagella. This description demonstrates that actually a bacterium interacts with
the medium, i.e., it is not isolated, and that reconcileseitgbior with the second law of thermodynamics.
However, since these interactions are beyond the dynamical world, they are incorporated into the proposed
model via the selfsupervised forces that result from the interactions of a biological particle igiéhf,O

and that formally OviolatesO the second law of thermodynamics. Thus, medél offers a unified
description of the progressive evolution of living systems. Based upon this model, one can formulate and
implement the principle of maximum increasfecomplexity that governs the lardiene-scale evolution of

living systems. It should be noticed that at this stage, our interpretation is based upon logical extension of
the proposed mathematical formalism, and is not yet corroborated by experiments.

7. Origin of intelligence.

a. Relevance to model of intelligent particl&@he proposed model illuminates the Oborder lineO between
living and nonliving systems. The model introduces an intelligent particle that, in addition to Newtonian
properties, possess the ability to process information. The probability density can be associated with the
self-image of the intelligent particle as a member of the class to which this particle belongs, while its ability
to convert the density into the information foromith theself~awareness (both these concepts are adopted
from psychology). Continuing this line of associations, theadqo of motion (such as Eq (319an be
identified with a motor dynamics, whil&e evolution of density (see Eq. (1 Bwith a mentaldynamics.
Actually the mental dynamics plays the role of the Maxwell sorting demon: it rearranges the probability
distribution by creating the information potential and converting it into a force that is applied to the
particle. One should notice that maintlynamics describes evolution of the whole class of state variables
(differed from each other only by initial conditions), and that can be associated with the ability to
generalize that is a privilege of intelligent systems. Continuing our biologicedpired interpretation, it
should be recalled that the second law of thermodynamics states that the entropy of an isolated system can
only increase. This law has a clear probabilistic interpretation: increase of entropy corresponds to the
passage of the siem from less probable to more probable states, while the highest probability of the most



disordered state (that is the state with the highest entropy) follows from a simple combinatorial analysis.
However, this statement is correct only if there is naxM&IO sorting demon, i.e., nobody inside the
system is rearranging the probability distributions. But this is precisely what the Liouville feedback is
doing: it takes the probability densily from Equation (12), createsinctions ofthis density, converts

them into the information force and applies thicéto the equation of motion (L1As already mentioned

above, because of that property of the model, the evolution of the probability density can become nonlinear,
and the entropynay decrease Oagainst the seédaw of thermodynamics@ctually the proposed model
represents governing equations for interactions of intelligent agents. In order to emphasize the autonomy of
the agentsO decisiotaking process, we will associate thegmsed models witlselfsupervised (SS)

active systemsBy an active system we will understand here a set of interacting intelligent agents capable
of processing information, while an intelligent agent is an autonomous entity, which observes and acts upon
an environment and directs its activity towards achieving goals. The active system is not derivable from the
Lagrange or Hamilton principles, but it is rather created for information processing. One of specific
differences between active and physical systés that the former are supposed to act in uncertainties
originated from incompleteness of information. Indeed, an intelligent agent almost never has access to the
whole truth of its environment. Uncertainty can also arise because of incompletenessoarattiness in

the agentOs understanding of the properties of the environment. Thatggantayn-inspired SS systems
represented by the particles under consideration are well suited for representation of active systems, and the
hypothetical particle imoduced above can be associated with the term OintelligentO particle. It is important
to emphasize that sedupervision is implemented by the feedback from mental dynamics, i.e. by internal
force, since the mental dynamics is generated by intelligentlpatself.

b. Comparison with control systemin this subsection we will establish a link between the concepts of
intelligent control and phenomenology of behavior of intelligent particle.

Example. One of the limitations of classical dynamics, andarticular, neural networks, is inability to
change their structure without an external input. As will be shown below, an intelligent particle can change
the locations and even the type of the attractors being triggered only by information forcesaire. by
internal effort. We will start with a simple dynamical system

V=0, v=0 att=0 (26)

and than apply the following control

F:—k\7+a\:/—0ilnp, 27)
av

where V = | $V#V)2dv, V= | $vadv, (28)
#" #"

and k,a, O are constant coefficients.

Then the controlledersion of the motor dynamics (P& changed to
= H
V=Ikv+av! " —In$ (29)
#v

while F represents the information forces that play the rolatefnal actuator.
Let us notie that the internadctuator (2Yis a particular @se of the information force Y@t
c,=—kv+av, ¢,=0, ¢,=0, ¢,=0 (30)

For a closure, Eq. (29 complemented by the corresponding Liouville equation
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to be solved subject to aip initial condition

L,V)="(vV)at t=0, (32)

As shown above, the solution of Eq.(29) is random, (see Ey.afl Fig. 2) while this randomness is
controlled by Eq. (3L Therefore in order to describe it, we have to transfereartean value¥ and V.
For thatpurpose, let us multiply EQL) by V" .Then integrating it with respect f6over the whole space,
one arrives at ODE for the expectation(?)

(1)

V=l kv+av (33)

Multiplying Eq.(31) by V2, then integrating it with respect toover the whole space, one arrives at ODE
for the varianceV (1)

V= —2kv +2av ¥ + 20 (34)

Let us fird fixed points of the system (33) and \®4 solving the system of algebraic equations:

0=!kv+av (35)
0=!2kv+2avv+2" (36)
By selecting
k3
oO=—— (37
2a’
we arrive at the following single fixed point
2a’ 2a’

In order to establish whether this fixed point is an attractor or a repeller, we have to analyze stability of the
homogeneous version of the system (33),)(Bdearized wih respect to the fixed point (38

V=l kv+av (39)
2
4 = —
V=lkv+—V (40)
a
Analysis of its characteristic equation shows that it haspusitive roots:
I = I ="
| =0, !,="2k<0

ard therefore, the fixed poinB8) is a stochastic attractor with stationary mean and variance. However the
higher moments of the probability density are not necessarily stationary: they daonbefrom the
original PDE (3].



Thus as a result of mental control, anisolateddynamicalsystem (2 that prior to control was at rest,
movesto the stochastic attractor (388aving the expectatiow * and the varianc& * .

The distinguished property of the particle introduced above definitely fitghit@oncept of intelligence.
Indeed, the evolution of intelligent living systems is directed toward the highest levels of complexity if the
complexity is measured by an irreducible number of different parts that interact inregegtedashion.

At the same time, the solutions to the models based upon dissipative Newtonian dynamics eventually
approach attractors where the evolution stops while these attractors dwell on the subspaces of lower
dimensionality, and therefore, of the lower complexity (umt®masterO reprograms the modiégrefore,

such models fail to provide an autonomous progressive evolution of intelBgst@ms (i.e. evolution
leading to increase of complexity). At the same time, a-czwlifrolled particle can create its own
complexty based only upon ainternal effort.

Thus the actual source of intelligent behavior of the particle introduced above is a new type oftferce
information force- that contributes its work into the Law of conservation of energy. However this force is
internal: it is generated by the particle itself with help of the Liouvile equation. The machinery of the
intelligence is similar to that of control system with the only difference that control systems are driven by
external actuators while the intelliggparticle is driven by a feedback from the Liouvile equation without
any external resourceew modification of intelligent particléhat lead to modeling decisions based upon
intuition and utilizing interference of probabilitiase introduced in [12].

8. Quantum recurrent neural nets.
a. Background

In the previous sections, we presentedathematicalanswer to the ancient philosophical questionWHo

mind is related to matterO. We provkdt in mathematical world, the bridge from matter to mind regui
extension and modification of quantum physics. In this context, we will comment on the recent statement
made by Stephen Hawking on December 2, 2014, in which he warns that artificial intelligence could end
mankind. Based upon our work, partwfich is presented in the previous sectipitscan be stated that
machines composed only out of physical componentsvatitbut any digital devicedeing included,

cannot, in principle, overperform a human in creativity, regardless of the level of technBidgyhat
happens if a machine does include digital devices? The answer to this question is the subject of the
following sections. In these sections we propasguantum version of recurrent neural nets (QRN) that
along with classical performance, possessctygability to move from disorder to order without external
recourses, and that makes their intelligence comparable with that of a human. ThindcRidrate
classical feedback loops into conventional quantum networks. It is sijihatdynamical evaltion of

such networks, which interleave quantum evolution with measurement and reset operations nexfeibit
dynamical properties. Moreover, decoherence in quantum recurrent networks is less problematic than in
conventional quantum network architecsidue to the modest phase coherence times needed for network
operation. It is proven that a hypothetical quantum computer can implement an exponentially larger number
of the degrees of freedom within the sasime.
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c¢. Quantum Collapse and Sigmoid Function.
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Figure 5. The simplest architecture of quantum neural net.
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17. Mathematical machinery of perception

In this section,we connect the concept of intelligent particle and the phenomehgerception, i.e.
representation andnderstanding the environmetit.shouldbe noticedthat our model is not necessarily
associated with a violation of the second law of thermodynamnidsed, these violations occur only if

C1 >0, (this casecorresponds tdormation of a shock wave in probability space, Fig.o¢)C2 <0,

(this casethat leads to negative diffusion has been analyze@l®}). Thereforethe second law of
thermodynamics does not bind study of the perception phenomena

a. System of intelligent particlesSinceperception is aallective phenomenoras a first step, we have to
move from oneto n-dimensional caséor illustration, we confineurselves with a particular case

c,!0, ¢,=¢=¢,=0 (104)

Then as aidect generalization of Egs. (11) ari], one obtains
' n n % M
v=1"$#, 7o MYV, D), 121200 (105)
= j

where !; are function of the correlation momentg D

! i =! ij(Dll""Dks""Dnn) (106)
and
D, = #HV, ! V)(v,! V)$dvdv,, v, =Hv$dv, (107)

Egs. (10% have to be complemented by the corresponding Liouville equation



| n ' 2n

—= Aﬁ

T i ' VZ (108)

Here E is a positive constant that relates Newtonian and information forces. It is introduces in order to
keep the functions;!dimensionless.

The solution of Egs. (105) and (108
v=v(t), '=1(V,.V,t), i=12.n (109)

must satisfy the constraint that isadimensional generalization of the constraint D " 0, namely, a non
negativity of the matrix |}, i.e. a nomegativity of all the lefcorner determinants

Det|D, | 0, i=12,.n (110)

b. Entanglement.In this subsection,we will show thatthe system (105) is isolated and entangkth
of thesepropertiesfollow from the fact thaEqgs.(105)are coupled by information foes derived from the
joint probability The entanglement canibestrated fortwo dimensional case:

Vv, =!a,- —In#' alz—ln# (112
l 2
,=lay, - —In#' a.zz—ln# (112)
1 2
I 2 | 2 | 2

T Ayt (et B gy e g (113)

As in the onedimensional case, this system describes diffusion without a drift
The solution to Eq. (1)3as a closetbrm
1 1 .
I = — exp(#—bH/V,), i=1,2. (114)
szamﬂt 4t

Here

b1=[4]" &, =&,,&8,=a,, 8, =&, =a,+a,. § =45 =b), (115
Substituting the solution (1}4nto Egs. (11)1and (112, one obtains

b11V1 b,v, \ —M, b =hbl@® (116)
= o 2 ot i

Eliminatingz from these equations, one arrives at an ODE in the configuration space

dV2 bV ¥ b,V v,! 0 at v,! 0, (117)

dv bvbv2 !

1 171 M1272
This is a classical singular point treated in textbooks on ODE.
Its solution dependspon the roots of the characteristic equation

|2 b'+b2 "b b, =0 (118)

11722




Since both the roots are real in our case, let us assume for concreteness that they are of the same sign, for
instance/, =1, /, =1. Then the saition of Eq. (3.44) is represented by the family of straight lines

v, =Cv ¢ =const. (119)

1’
Substituting this solution int&q. (3.42))yields

2 (1¢2
v, Ct2 o) —C'lCtzhl ") (120)

Thus, the solutions of Eqs. (111) and (LE?e represented by twmarametrical families of random

samples, as expected, while the randomness enters through thed&pendent parametefsand C!:that
can take any real numbers. Let mew find such a combination of the variables that is deterministic.

Obviously, such a combination should not include the random pararﬁ‘edteé;. It easily verifiable that

d b,+Ch,

a(|nvl)— (In )= o (121)
and therefore,

d I / d I !
(E nv,) (E nv,)!'1 (122)

Thus, the ratio (122is deterministic although both the numerator and denator are random,(see
Eq.(12). This is a fundamental nerlassical effect representing a global constraint. Indeed, in tledory
stochastic processes, two random functions are considered statistically equal if they have the same
statistical invariants, but their poitd-point equalities are not required (although it can happen with a
vanishingly small probability). As demonsedtabove, theéiversion of determinism into randomness via
instability (due to a Liouville feedback), and then conversion of randomness to partial determinism (or
coordinated randomness) via entanglement is the fundamental nedlassical paradigm that magdd to
instantaneous transmissionhiditional information on remote distance.

c. Measure of survivability. Since we aralealingwith physical systems that are supposedstmulate
behavior of livings we aapt the principle of survivabilityf livings to create incentive focomplexity of
perceptions in artificiakystems.We will introduce, as a measure of survivability, the strength of the
random force that, being applied to a particle, nullifies the decrease of entropy

—<0 (123)

For better physical interpretation, it will be more convenient to present this inequality in terms of the
varianceD

D<o (124)

remembering that for normal probability density distribution

=log, V2! eD?

while the normal density is the first term in the Gr@fmarlier series for representation of an arbitrary
probability distribution.

Thus, the ability to survive (in terms of preserving fivoperty (128 under action of aandom force)
can be achieved only with help of increased complexity. However, physical complexity is irrelevant: no
matter how complex is Newtonian or Langevin dynamics, the second law of thermodynamics will convert
the inequality (12Binto the opposit@ne. The only complexity that counts is that associated with mental
dynamics. Consequently, increase of complexity of mental dynamics, and therefore, complexity of the
information, is the only way to maximize the survivability of Livings. This conclusitirbe reinforced by
further evidence to be discussed in the following-settion.

g. Chain of abstractionsIn view of importance of mental complexity for survival of Livings, we will take
a closer look into cognitive aspects of information forceshdtufd be recalled thatlassical methods of



information processing are effective in a deterministic and repetative world, but faced with the uncertainties
and unpredictabilities, they fail. At the same time, many natural and social phenomena exhibikg@ae d

of regularity only on a higher level of abstraction, i.e.in terms of some invariants. Indeed, it is easier to
predict the state of the solar system in a billion years ahead than to predict a price of a stock of a single
company tomorrow. In this sedection we will discuss a new type of attractors and associated with them a
new chain of abstraction that is provided by complexity of mental dynamics.

I . Attractors in mental dynamics. Significant expansion of the concept of an attor as well as
associated with it generalization via abstraction is provided by mental dynaffecsuill start with the
model (105108 being discussed in the previous sséction

2
Let us expess Eq. (10Bin terms of the correlation moments: multiplyiit by\/i , then using partial
integration, one arrives at ardimensional analog of EqL(8)

[!)ii =2!",(D

1"

.D_), n=12..n, (125)

Thenextstep is to choose such a struetof the functions (1Q@hat woud enforce the constraints (@)1
ie.

D.!0, i=12,...n, (126)

The simplest (but still sufficiently gerad) form of the functions (1Q6is a neural network with terminal
attractors|[3],

. D.
I :%(Wij tanhD. " ¢ /B,), i=12.n, DB,=—L

1 DO

that reduces Eqgs.(1p® the following system

D, =! (w, tanh [!)jj " qJ[bT), i=12,..n, (128)

Here D0 is a constant scaling coefficient of the same dimensionality as the correlation coefﬁbliients

and V\lij are dimensionless constants representing theitgerfthe system.

Let us now analyze the effect of terminalrattor and, turning to Eq.(1R8starting with the matrix

|—” | Its diagonal elements, i.e. eigenvalues, become infinitely negative when the variances vanish

since
1D.

iz 1 vy whenD" o0 (129)
'D; 2D,

while the rest terms are bounded. Therefore, dueetdettminal attractor, Eq. (128nearized with respect
to zero variances has infinitely negative characteristic roots, i.e. it is infinitely stable regardless of the

parameterWij. Hencethe principal variances cannot overcome zero if their initial values are positive. This
provides the welposedness of the initial value problem.

Now we can present Eg. (105) in the form



Vo=(! v +w; tanhv, ) —In#(v,,...v, ) (130
v

j
Here, for further convenience, we have introduced new compressed notations

V= #SIV, V=D, = #Y, ! V)'SA,
H H (3.131)

= RYAE

Viiii #(Vii : Vu) $dvii - &tC
o

The corresponding mental dynamics in the netations follows from Eq.128)

KL 2l|

| t p (132)

J
In the same Way the mehneural nets can be obtad from Eqgs. (105and (12§

Vo= v +W tanhv ) (133)

where the state variablétéIi represent variances of .

I Hierarchy of higher order mental abstractions. Following the samegpattern as those discussed in the

previous suksection, and keeping tha@rse notations, one can introduce the next generation of mental
neural nets starting with the motor dynamics

=[( V2 +w, tanhv””) InSAV,,,.. nn)]Wln$(v V)
|| i
Here, in adition to the original random state variables new random variable¥; are included into the

structure of information forces. They represent invariants (variances) of the original variables that are
assumed to beandom too, while their randomness is described by the secondary joint probability

denS|ty ( Vnn). The corresponding Fokk&lanck equation governing the mental part of the

1"
neural net is

——[(Vﬂz#w tanhV””)—|n"$V11, ' )]

n

2|l

| V2
Then, followngthe same pattern as in Eqgs. (130), (132), 366)( one obtains

Vo= (v +w tanhv””) In$#v,,,..v_) (136)

| | 2#n
——[(Vﬂz$ “”)W (137)

n

Vi =(tvy i Wi tanhvjjjj) (138)

Here Egs. (136) and188) describe dynamics dhe variances‘\/ii and variances of variancétéIiii
respectively, while Eq. 187) governs the evolution of the secondary joint probability

denS|ty (Vll, ) As follows from Eqgs. (134)(138), the only vagbles that have attractors are the



variances of variances; these attors are controlled by EdL38) that las the same structure as Et33).

The stationary values of these variables do not depend upon the initial conditions: they depend only upon
thebasins where the initial conditions belong, and that specifies a particular attractor out of the whole set of
possible attractors. On the contrary, no other variables have attractors, and their values depend upon the

initial conditions. Thus, the attracethave broad membership in terms of the variablllelzs and that

represents a high level of generalization. At the same time, such OdetailsO as \Mllllmnj\ilfl at the

attractors are not defindzbing omitted as insignificant, and that represent a high level of abstraction.
It should be noticed that the chain of abstractions was built upon only principal variances, while co
variances were not included. There are no obstacles to sugitlasion; however, the conditions for

preserving the positivity of the tenso\;% anol\/ijkq are too cumbersome while they do not bring any

significant novelty into cognitive aspects of the problem other than incretise mimber of attractors.

I Activation of new levels of abstractions. A slight modification of the model of motenental dynamics
discussed above leads to a new phenomenon: the capability to activate new levels of ahstedtidd
preserve the inequality (123The activation is triggered by the growth of variance caused by applied
random force. In order to demonstrate this, let us tuanamedimensional version of Egs. (134)138) in
which the neural net structuireplaced by a linear term and to which noise of the streAgghadded

0]
V=g (t)+" %% where! =P expy/D (139)
Then the equations of the mental dynamics are modified to
" [ expyD)l 0
T q P Ve (140)

B =[2q%(! " expy/D)] (141)

respectively. Here/ is a new variable defined by the following differential equation

=@ )b (142)

One can verify that Eq. (24 implements thedilowing logic:
=0 if D"0Oand !=1if D>0, (143)

Indeed, Eqg. (12) has two static attractos:=1 and ! =0; When[!) >0, the first attractor is

stable; When[!) <0, it becomes unstable, and thewimn switches to the second one that becomes stable.
The transition time iginite since the Lipchitz condition at the attractors does not hold, and theréfere,
attractors are terminal, [3Hence, when there is no random force applied,qig), the frst level of

abstraction does not need to be activated, sinceljhe?ro, and thereforel is zero. However, when
random force is applied, i.€ ! O, the varianceD starts growing, i.ed >0. Then the first level of

abstraction becomes activatet, switches ® 1, and, according to Eq. (I the growth of the entropy is
eliminated. If the first level of abstraction is not sufficient, the next levels of abstraatan be activated
in a similar way.

I Measure of complexity. Let us turn to the system of Eq4.30) and(132). Its solution is represented by
n random function¥, (t) i=1,2..n and a deterministic functioh ({V} ,t} representing the density of
their joint probability distribution. As a measure of complexity of this system, one can choose a maximum

number of independent coefficients of the linear regressjghat express each varlab\/i (t) via the rest
n-1 variables while



= e

i
WhereH! H is the matrix of variances.

The system (130),182) that has one mental layer of complexity requitesoeficients (144), and that

number characterizes its complexity, iNl = n2
The system (136(143) has two mental layers of complexity, and its solution is represented by the

functions V. (t) and \/ij (t) . It is easy to calculate that the number of the coefficients of linear regression

in this case, and therefore, the complexity, will |st = n2 + n“. Now it is clear that complexity of a
system withm mental layers is

N =l n* (145)

k=1
In this connection, it is interesting to pose the following problem. What is a more effective way for Livings
to promote Life: through a simple multiplication, i.e. through increase of the number of OprimitioesO
through individual selperfection, i.e. through increase of the numberof the levels of abstractions
(OWhat do you think | think you think. . . O)? The solution of this problem may have fundamental social,
economical and gepolitical interpretations. But the answer rimadiately folows from Eq. (18)
demonstrating that the complexity growsonentially with the number of the levels of abstractiemsbut
it grows only linearly with the dimensionalityn of the original system. Thus, in contradistinction to
Darwinism, a more effective way for Livings to promote Life is through higher individual complexity (due
to mutually beneficial interactions) rather than trough a simple multiplication of “primitives”. This
statement can be associated with recent consensus among biologists shathttesis, or collaboration of
Livings, is even more powerful factor in their progressive evolution than a natural sélection

#K!"L,0*/00,68"<8G"*68*7/0,68!"

The objective of this paper is to relate the concepttefligenceto the first principles of pysics, and, in
particular, to answer the following question: can Al system composed only of physical components
compete with a human? THigst part of the answer has been addressed in the sections 2 #ptigh
second parin the sections 8 through 16

The first seven sections introduce and discuss the concept of an intelligent pasticld.$#+-!
0%#)*'01%.1 2'8"*.3(+4! #! $#%&'$#Y ()#* %&'.,-! /I SFI (01 #:0'+)'L /141 2'/(+(%(.+! /! (+%"**(4'+)"! Y%&# %!
5.1%21/(%! (+%.! $#%&'$#Y0 () #*! /., $#*(0$! (+!%&'! /., Pl #! 0%#%' 8#, (#:*'6!V1)&! 2'/(+(%(.+!5#0!3,.3.0'2!
(+1%&'1/(,0%! 0")%(.+O! (+%'**(4'+)"! /ixelated! 2-+#$()#*! 0-0%'$S! (0! 2'/(+' 21 #O! #! y#3#:(*(%-! %.1 $.8'!
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This concept was inspired bye discovery of the Higgs boson and the following fromcl@im of
completeness of the physical picture of our Univetseweverthe abilty to create Life and Mind out of
physical mattewithout any additional entities is still a mystefyhe primary objective of this paper is to
presents anathematicalanswer to the ancient philosophical question, OHow mind is related to matterO in
connecion with this outstanding accomplishment in physics. The paper is inspired by analysis of the
Madelung equation and discovery of the origin ofd@mness in quantum mechanid, [t turns out that
replacement of the quantum potential by the informatiooef, while preserving some quantum properties,
introduces fundamental changes in the first and the second laws of thermodynamics, and that leads to a
mathematical model that captures behavior of livings. The idea of an intelligent particle has been
introduced as a first step of physics of life since it does not include such properties as metabolism and
reproduction. Instead it concentrates attention to intelligent behaiothe same time, by ignoring



metabolism and reproduction, we can make the sysietatéd, and it will be a challenge to show that it
still can move from a disorder to the ordEe&#0! :"+!2'$.+0%,#%'2! %&#%! %&' $.2'*! /! (+%"**(4'+%!
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The next nine seitins introduce a model of quantum recurrent nets for implementation of intelligent
particles as a challenge to human intelligethce. !
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1L, SL1#%(+! %&' Schridinger equatign[11]: the proposed model is based upon reformulatiothef
Madelung version of th&chr3dinger equatignand after thathere is no way back to thechrsdinger
equation
This work has intergmg philosophical implications associated with the theory of heat dela¢htheory of
heat death stems from teecond law of thermodynamiosf which one version states thettropytends to
increase in aisolated systemFrom this, the theory infers that if the universe lasts for a sufficient time, it
will asymptoticallyapproach a state where atiergyis evenly distributed. In other words, according to this
theory, in nature there is a tendency todtssipation(energy loss) ofnechanical energgmotion); hence,
by extrapolation, there exists the view that the mechanical movement of the universe will run down, as
work is conveted to heat, in time because of the second d&whermodynamics7&'! 2(0).8',-! ./}
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