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Abstract We examine how a thermodynamic model of the
boundary of 4d-manifolds can be used for an approach to
quantum gravity, to keep the number of assumptions low and
the quantum degrees of freedom manageable. We start with
a boundary action leading to Einstein’s Equations under a
restriction due to additional information from the bulk. Op-
tionally, a modified form with torsion can be obtained. From
the thermodynamic perspective, the number of possible mi-
croscopic states is evaluated for every macroscopic config-
uration, and this allows to compute the transition probabil-
ity between quantum states. The formalism does not depend
on specific microscopic properties. The smoothness and the
topological space condition of the manifold structure are
viewed as a preferred representation of a macroscopic space
on mathematical grounds. By construction, gravity may be
interpreted as thermodynamic model which is forced to be
out of equilibrium depending on the restrictions imposed by
matter. Instead of an ill-behaved path integral description of
gravity, we obtain a non-divergent concept of sums over mi-
crostates.

1 Introduction

In a recent article [1], ’t Hooft has discussed several chal-
lenges that might have to be considered carefully in order
to progress towards a quantum gravity approach on solid
grounds. One particular aspect is about the fundamental de-
grees of freedom of gravity, i.e. what quanta we expect to
find within elementary ”volumes” or units of ”space”. This
aspect might be better understood in conjunction with the
thermodynamic interpretation of gravity, as we infer from
black holes [2, 3]. Another, perhaps related challenge is the
complexity of the underlying quantum description which ’t
Hooft suggests should be simpler than quantum mechanics.

This article is intended as a contribution to progress to-
wards a quantum gravity with the above-mentioned proper-
ties. It addresses several issues to this end: 1. From how few
fundamental assumptions can we construct a theory com-
patible with Einstein’s general relativity (GR) (or an exten-
sion accounting for torsion)? 2. What is the interpretation
of these fundamental assumptions? 3. To what extent is this
interpretation related to a model of quantum gravity? The
article is structured in the same order as these issues.

In the first issue, restricting the fundamental assumptions to
the minimum allows us to prevent a possible loss of phys-
ically relevant configuration while keeping the formulation
as simple as possible. We need at least one condition to re-
strict the solutions in the classical limit to be compatible
with GR. However, this relation will have a direct thermody-
namic interpretation. The thermodynamic interpretation will
help us to find a quantum model, and its degrees of freedom
will be encoded along 2d-surfaces or ”thin layers”, some-
what similarly to black hole thermodynamics. We hope to
obtain a quantum model of especially low complexity.

The above-mentioned relation can be cast into a (classi-
cal) action principle. We will first check that we can recover
GR starting from the following action on the orientable bound-
ary of a 4-dimensional manifold M :

I =
∫

∂M
d3x
√

γ τ
kn
K eK

k , (1)

up to an irrelevant multiplicative and additive constant
(cosmological constant), where γ and and eK

k are the deter-
minant of the Euclidean metric γi j and the triad, respectively,
on ∂M , k is a Lorentz- and K a Minkowski-index ranging
from 1 to 3,

τ
kn
K = Lnek

K− ek
KeJ

jLne j
J (2)

with unit vector nµ normal to ∂M and h̄ = 1 (the derivation
is analogous to [5]). Additional restrictions will be shown
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to be directly related to the matter content and other specific
knowledge about M . In addition to the usual gauge freedom
on the metric, some freedom remains also for allowing op-
tional torsion and, for this reason, the GR-type model strictly
requires one more assumption than the model with allowed
torsion.

The second issue (interpretation) is important in view of a
physical justification of the assumptions, revealing their low
level of complexity. Concretely, we will obtain a thermody-
namic interpretation for (1). We will show that this action
corresponds to a statistical model of 2d-layers. The statisti-
cal description is proposed on the 3d-boundary of a closed
manifold, as in [9], in order to obtain a simple formalism.
The 3d-space is also the space that one quantises in canoni-
cal quantum gravity.

The third issue (relation to a model of quantum gravity) will
be addressed by using the thermodynamic interpretation of
(1) and clarifying the domain of validity, once for classical
gravity and once for a model of quantum gravity which re-
sults. Interestingly, the thermodynamic model will not refer
to a canonical ensemble. Rather, gravity is forced, depend-
ing on the constraining function on the bulk, to be out of
equilibrium. Our interpretation of the thermodynamic ap-
proach is thus somewhat different from [4–6]. Besides the
constraining function, the total number of possible quantum
states is not restricted by any dynamical equations or by any
equilibrium condition or by any microscopic graph struc-
tures. This means, that the statistical model is fundamentally
different from the canonical quantisation procedure.

We can identify two important features following from our
assumptions: a. It is not restrictive to consider only smooth
manifolds, the specific mathematical space-time structure is
not physically relevant. b. No explicit knowledge is required
on the properties of the quanta of gravity.

2 How few assumptions do we need?

a. Quanta and macroscopic space-time

We start with a 3-dimensional space parameterised by ther-
modynamic variables.

A quantum model of space-time must not necessarily be
equipped with commutator relations of the form [Â, B̂] =
constant with operators Â, B̂, . . . (conventional quantisation
method) in order for a ”physical” state space to be defined.
Although commutator relations induce dynamics and the tech-
nique has been successfully applied until now, they might
nevertheless restrict the theory of the most elementary build-
ing blocks unnecessarily. Namely, there is yet an intriguing
alternative for defining what is ”physical”, using a statistical

model. A statistical model can be a good option whenever
we deal with systems of many objects. The objects occur in
a certain number of different microscopic states (or points of
phase space) within the same macroscopic state. Depending
on this number, every macroscopic state has a certain prob-
ability to occur. In order to define macroscopic states, we
need macroscopic variables. The space-time structure gives
us a set of macroscopic variables in the form of distances
ore metric. From this perspective, all observable space-time
quantities are the classical limit of the collective behaviour
of a large number of quanta, and space-time is undefined
at the quantum level. This concept is consistent with the
Hawking-Bekenstein interpretation of the Schwarzschild or
Kerr-Newman black hole horizon, the area of which repre-
sents the entropy - a macroscopic variable. In gravity the-
ories like e.g. loop quantum gravity (LQG), space-time (or
its boundary) also emerges from certain quantum states in
the semi-classical or classical limit, as can be shown by e.g.
spin-foam computations.

Using fairly general arguments, ’t Hooft has argued that
the elementary degrees of freedom of quantum gravity must
live in a 2-dimensional space, and one more dimension would
evolve their states [7]. This hint suggests that we start with a
3-dimensional space (thinking of the space-time boundary)
and partition it into 2d-layers.

b. GR-compatible space-time structure and dimension

The macroscopic variables defining space-time must be con-
sistent with general relativity (GR) when evaluated at large
scales (and in the experimentally verified curvature regime).
In other words, in this large-scale limit, there must be a 4-
dimensional manifold structure M together with a gravi-
tational field represented by tetrads eI

a in a covariant for-
mulation. For negligible curvature, this large-scale approx-
imation still holds with high accuracy at scales for which
the matter fields require a quantum treatment (QFT). The
simplest assumption is therefore that the manifold structure
be valid (in good approximation) at any scales significantly
larger than the Planck length. We also assume that M is
globally hyperbolic.

Assumptions a. and b. have dramatic consequences on the
concept of space-time. Space-time is commonly described
using a 4-dimensional C∞-manifold. However, we would not
really need a C∞-manifold if it was not for reasons of math-
ematical preference. For example, we could also constuct
a discontinuous structure O by discretising a C∞-manifold
(space-time triangulation at the Planck scale). Or we could
construct a non-Hausdorff space with local charts sending
points p to n-tuples (xi) with the pseudo-metric g̃(xi,y j) =

L2
p trunc(xiyi/L2

p), where trunc means truncation to the in-
teger with next lower absolute value. Or we could also turn
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the (densitized) vielbeins Ei into operators Êi with the semi-
classical limit given by a discretization of M .

The good news is: For any space O representing space-time,
we can find large-scale coarse-grainings Oc of O matching a
C∞-manifold M , i.e. there is an isomorphism I: Oc→Mc⊂
M ) in the large scale regime (δx� Lp). Due to this map I,
M and O can both be used as equivalent descriptions for the
same large-scale behaviour. Therefore, a 4-dimensional C∞-
manifold is a preferred, but not unique mathematical model
of space-time at large scales, and the small scale details are
irrelevant.

We now check that we can recover Einstein’s Equations (for
vanishing torsion) from Equation (1) defined on the orientable
boundary T = ∂M . We can use Gauss’ Theorem to con-
vert (1) into an integral over the Euclidean 4d-manifold M .
In local coordinates at every boundary point, we introduce
an (outward) normal unit vector (nγ) = (0, . . . ,0,1). The
boundary element can be written as dσγ = nγ ddx. To rewrite
the boundary integral expression, we extend the notation ac-
cording to

τ
kn
K eK

k = τ
k4
K eK

k = τ
kγ

K eK
k nγ , (3)

where the new components τ
k j
K , j = 1 . . .3 are free gauge

components. Clearly, there can be many bulk space-times
with the same boundary. We use the notation xµ for the bulk
vector components and the tetrads e∆

δ
and the metric gµν

(determinant g). Gauss’ Theorem then yields:

I =
∮

T
d3x nγ

√
γ [τ

kγ

K eK
k ] =∫

M
d4x
√

g [∇̃γ(τ
δγ

∆
e∆

δ
)], (4)

where ∇̃γ is the torsionless covariant derivative and remem-
bering that ∂M is orientable. The integrand of (4) can be
expanded:

ρ = ∇̃γ(τ
δγ

∆
e∆

δ
) = δ

δ
µ ∇̃γ(τ

µγ

Λ
eΛ

δ
)

= gµν gνδ
∇̃γ(τ

µγ

Λ
eΛ

δ
)

= e∆
µ η∆Γ eΓ

ν gνδ
∇̃γ(τ

µγ

Λ
eΛ

δ
)

= e∆
µ eΓ

ν Φ
µν

∆Γ
, (5)

where

Φ
µν

∆Γ
= η∆Γ gνδ

∇̃γ [eΛ

δ
τ

µγ

Λ
]. (6)

In order to obtain the classical equations of motion, the stan-
dard procedure is to set the variation of the action to zero.
If we consider the pure gravitational action, we obtain the
vacuum space-time. This is precisely what happens if we
vary I. In general, we we need more information about the
space-time configuration. To encode additional information,
we must impose certain restrictions in the set of possible
functions ρ(xµ). One method is to introduce a constraining
function µ(xµ) which contains a certain number of free pa-
rameters besides the tetrads. If we work with the total action

It =
∫

M
d4x
√

g [e∆
µ eΓ

ν Φ
µν

∆Γ
+µ] (7)

instead of I, this yields a space-time different from the vac-
uum. Because ρ is purely given by the geometry of space-
time, µ must contain the Lagrangian of matter fields. Setting
the variation of It to zero yields the equation of motion with
matter content:

δ It = δ

∫
M

d4x
√

g [e∆
µ eΓ

ν Φ
µν

∆Γ
+µ] = 0. (8)

The constraining function µ can be splitted into two parts.
The first part is caused by imposing to ρ inhomogeneous
mode patterns as caused by the Lagrangian of matter fields
Lm(a j, f j) with a set of free constants a j and fixed functions
f j(e∆

µ ,x
µ). In the presence of torsion, one can easily add the

connection to the list of variables. In the limit of negligible
gravitational field, (8) reduces to δ µ = 0. This equation of
motion determines the physically relevant wave functions of
the matter fields on flat space-time.

The second part of µ arises from observable data. Typically,
one performs a few local measurements and / or imposes
conditions on part of the geometry or part of the free param-
eters of the matter fields, depending on the specific scientific
need. This is given by constraint relations

Cl(e∆
µ ,a

j,xµ) = 0. (9)

Introducing Lagrange multipliers λ l yields the full constrain-
ing function

µ = Lm +λ
lCl , (10)

where we sum over double indices l, and complete the vari-
ation problem with the constraint condition (9).

To obtain the full physical interpretation of (8), we need to
perform a Wick rotation at every point of M to obtain the
metric with Lorentzian signature, which is always possible
for a globally hyperbolic manifold. Our relation (5) has the
form as the Palatini action and Φ

µν

∆Γ
has the form of the cur-

vature two-form, and (2) is proportional to the momentum
γ−1/2δ I/δeK

k on ∂M according to GR, while µ is the La-
grangian of the matter Lm. We will check below that, in-
deed, (8) leads us to Einstein’s field equations.
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We consider the option of including the possibility of torsion
as Lm may contain matter fields with spin. To this end, we
define

ω =
√

γτ
kγ

K eK
k nγ dx1∧dx2∧dx3, ξ

γ = τ
kγ

K eK
k (11)

and rewrite

∫
∂M

√
γτ

kγ

K nγ d3x =
∫

∂M
ω =

∫
M

dω

=
∫

M
∑
γ

(−1)γ−1d(
√

gξ
γ)∧dx1∧ . . . d̃xγ

. . .∧dx4

=
∫

M
∑
γ

(−1)γ−1
∂γ(
√

gξ
γ) dγ x∧dx1∧ . . . d̃xγ

. . .∧dx4

=
∫

M

√
g∑

γ

1
√

g
∂γ(
√

gξ
γ) dx1∧ . . .∧dx4

=
∫

M

√
g∇̃γ(τ

kγ

K eK
k ) dx1∧ . . .∧dx4, (12)

where d̃xγ means skipping the differential, ∇̃γ ξ γ is the torsion-
less divergence, and M is orientable.

The case of non-orientable manifold M must be expected
to occur but can be managed by using a double cover of M
which is orientable and splits into two isomorphic compo-
nents.

2.1 GR

Under the condition of vanishing torsion, we can easily show
that (8) leads to a field equation of the form of Einstein’s
Equations, up to the observationally relevant second order
in the dimension of the derivatives of gµν . We only sketch
the proof as it is fully analogous to the procedure of standard
text books on GR. We first ignore the cosmological constant
for a while and use the Lorentzian signature for the metric.

Due to the definition of the tetrads and the metric, the metric-
ity condition ∇γ gαβ = 0 is satisfied. With ταβγ = τ

αγ

Γ
ηΓ ∆ eβ

∆

and ραβ = ∇γ ταβγ , we have

ρ = ∇γ(τ
αβγ gαβ ) = ρ

αβ gαβ . (13)

Then define the tensor

χµν = ρµν −ρgµν/2 (14)

and

θ
µν =

2√
−g

δ (
√
−gµ)

δgµν

. (15)

With these preliminaries, it is straight-forward to show:

δ

∫
M

dd+1x
√
−g [ρ +µ]

=
∫

M
dd+1x

√
−g [χµν +θµν ] δgµν

+
∫

M
dd+1x

√
−g gµν

δρµν = 0, (16)

where we have dropped one contribution to the variation
which contains a divergence form. This directly yields the
field equations

χ
µν =−θ

µν . (17)

Following a standard procedure, it is easy to show that θ µν

and therefore χµν is divergence-free if we express the vari-
ation δgµν induced by a transformation xµ → xµ + εaµ(xν)

with infinitesimal ε , while fixing θ λ
ν aν = 0 on the boundary.

If we consider contributions no higher than quadratic in the
dimension of derivatives of gµν , it immediately follows from
[8] (after restoring the cosmological constant) that the only
possible form of χµν is

χµν = AGµν +Bgµν , (18)

where A and B are constants, Gµν is the Einstein tensor
and the second term is the cosmological constant term. With
(18), we have checked that (8) with vanishing torsion leads
to Einstein’s Equations to quadratic order in the dimension
of derivatives of gµν when choosing the constants A and B
according to GR. By fixing A, we also fix the proportionality
constant relating θ µν to the stress tensor T µν while setting
χµν = Rµν .

3 Thermodynamic interpretation of the action I

According to assumption a, space-time and therefore the
gravitation field is the macroscopic manifestation of many
”atoms of gravity” living in the 3d-boundary ∂M . But how
many such atoms can we put into a given element of space?
To find an answer, we propose a method of layer-statistics
in 2+1 dimensions which is compatible with the structure of
the action I in (1).

Consider a 3-volume ∆V small enough to resolve the varia-
tions of the gravitational field and yet much larger than the
Planck scale. To define a standard length scale within ∆V ,
we choose local Minkowski coordinates for which eK

i = δ K
i ,

i.e. we can use coordinates xK instead of xi. We now par-
tition ∆V across the Kth coordinate into NK 2d-layers in
such a way that, microscopically, each layer can have pK dif-
ferent microscopic states |qK〉. In a thermodynamic context,
all microscopic states shall occur with the same probability
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p(|qK〉). Disregarding later restrictions by the constraining
function µ , the number of states is then given by

ΩK(∆V ) = pNK
K = expsK , (19)

where sK = NK ln pK is the entropy per volume ∆V , i.e. the
3-density of the entropy S of ∂M at the location of ∆V .
The typical thickness of each layer can be chosen near the
limit of the smallest possible length scale, of the order of
the Planck length LP. NK can be estimated using the relation
NK ≈ kK∆xK , where ∆xK is the size of ∆V along the Kth
coordinate and the ”narrowness parameter” kK is a propor-
tionality constant which we can hold fixed. In the same way,
we partition ∆V along the other two coordinates. The 3 par-
titions (across 3 different coordinates) are performed inde-
pendently from each other. This means that the total number
of states is the product Ω = Ω1Ω2Ω3:

Ω(∆V ) =
3

∏
K=1

expsK = exp
3

∑
K=1

sK . (20)

This formulation of the total resulting entropy density s(∆V )

as a sum over sK with fixed coordinates is rather unpleasant
in view of a relativistic treatment of gravity. We thus rewrite
the sum in a form which makes the entropy S of the 3d-
space invariant under coordinate transformations xK → x′ j

with ∂xK/∂x′ j = eK
j :

s(∆V ) =
3

∑
K=1

sK =
3

∑
K=1

kK∆xK ln pK =
3

∑
K=1

kK∆x′ jeK
j ln pK

=
√

γκ
j

KeK
j , (21)

with
√

γκ
j

K = kK∆x′ j ln pK . The factor
√

γ has been inserted
in order to separate κ

j
KeK

j from the invariant 3-volume ele-
ment

√
γ∆V . Indeed, the integral of (21) over ∂M coincides

with (1) up to a constant factor if we impose

κ
j

K ∼ τ
j

K (22)

i.e. if
√

γ(Lnek
K− ek

KeJ
jLne j

J)∼ ∆x′k ln pK . (23)

If we also fix the size ∆x′k, this condition determines the
number of states pk per layer.

We can test this condition for the special case of a non-
extremal Schwarzschild black hole, for which the (only) ”bound-
ary” can be taken to be the 3d-surface just outside but very
close to the event horizon. The normal vector is radial. The
expression (Lret

T )e
T
t is much larger than the corresponding

expression for the other components, so that we only need
to partition across the time-coordinate (T ). We fix ∆x′t =√

2MLp, where 2M is the Schwarzschild radius. When the

radial distance of our 3d-surface from the horizon approaches
≈ Lp (the smallest distance), we have

∆xT = ∆x′teT
t ≈ Lp (24)

with eT
t =

√
1−2M/r. Therefore, we have at most about

one layer across the time. Then, pt equals the number of
states Ωt in the layer of the horizon and S ∼ ln pt is pro-
portional to the horizon area (∼M2), which is the expected
black hole entropy up to a constant factor.

To summarise, under the restriction (23), the Euclidean 3d-
action I is proportional to the total entropy S of the gravita-
tional degrees of freedom on ∂M . The action I can be in-
terpreted as an entropy of layers of external curvature states,
up to a constant factor. At this point, we skip and postpone
the contribution from the constraining function µ . In order
to obtain the macroscopic state with the highest probability,
we must maximise S, i.e. we set the variation of S to zero.
It is thus not surprising that we apply Hamilton’s variation
principle to the action to obtain the classical dynamics, as
the action is related to an entropy. This is true because we
have been using the method of layer-statistics where ∆V is
partitioned only across one coordinate at the time. Had we
partitioned each layer into bars and each bar into pieces as
well, the expression for the entropy would have been pro-
portional to the product ∏K ∆xK and this would have been
incompatible with (1). Notice that some kind of correspon-
dence between the gravitational action and the entropy has
been proposed earlier [9, 10]. For quantum mechanics, the
correspondence has been conjectured earlier [11].

We can now introduce the constraining function µ as in sec-
tion 2, by equating:

St = S+
∫

M
d4x
√

g µ (25)

This lowers the entropy of macrostates (despite the plus sign)
by reducing the number of their microstates. In general, the
point of maximum entropy (or the saddle point of the ac-
tion) is shifted. Besides the (not quite specific) partitioning
procedure, there is absolutely no microscopic properties re-
quired in order to describe the microscopic degrees of free-
dom and obtain a complete theory with a GR-compatible
macroscopic limit.

From (21) and (22), we immediatly recognize two univer-
sal constants of the quantum theory as one should expect.
Firstly, if the layers of sK are so small that their number of
possible states pK is of the order of e, we find that ∆xK/NK =

k−1
k must be of the order of the smallest length, i.e. of the or-

der of the Planck length LP. This gives an estimate of the
smallest length (the first constant). Secondly, by restoring
the Planck constant h̄ in (1),

I =
∮

∂M
d3x

√
|γ| τk

K eK
k /h̄, (26)
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we immediately recognize that each unit of action h̄ is just
one quantum degree of freedom in the thermodynamic in-
terpretation of layer statistics. This confirms that our mi-
crostates can be interpreted as quantum states and the parti-
tions of 3d-volumes reveal the quantum degrees of freedom
in every layer.

4 To what extent is this interpretation related to a
model of quantum gravity?

Using the thermodynamic interpretation of Section 3, we
can rewrite (1) as

I =
∫

∂M
d3x
√

γ τ̃k
K eK

k (27)

with

τ̃k
K ∼ NKe j

K ln pK/
√

γ, (28)

where we do not sum over double indices K. The notation τ̃k
K

is used to emphasize that its values are discrete (in contrast
to τk

K). The classical limit is NK , pk → ∞ and the classical
dynamics are obtained by varying the total action including
the constraining function µ , i.e. by maximising the entropy
after having removed the states which are incompatible with
µ ,

δ It = δ (I +
∫

d4x
√
|g|µ) = 0. (29)

In the classical limit, (29) determines a sharp maximum of
the entropy.

Unlike the classical case, the quantum treatment deals with
small numbers of quanta or states (i.e. not much greater than
1). For such small numbers, the entropy does not have a
sharp maximum at one point of the parameter space. Neigh-
bouring points have similar magnitudes of S. Each point is
given by a set of (discretised) parameter functions

G = (eK
k (x

µ),NK(xµ), pK(xµ)) (30)

To include torsion, we would add the connection to the list
(30). At a point G for which a parameter function π differs
at some location xµ by a small difference Dπ from the max-
imum point Gmax, we have

It(G )− It(Gmax)∼−D2
π +O(D3

π). (31)

We can thus approximate the distribution Ω(G ) around the
maximum by a Gaussian distribution, and the standard devi-
ation of π determines the uncertainty of π . Because of (23),
eK

k itself and thus space-time distances are affected by an un-
certainty. In this way, the statistical interpretation of gravity
leads to a quantum uncertainty of the geometry.

Similarly to the n-point function computations of quantum
field theory, we can evaluate the transition probability be-
tween n local quantum geometries Gm at (mean) locations
Pm, m = 1 . . .n. For example, let every number pm

k of states
per layer of Gm at Pm be restricted by the quantum channel

pm (mod n) +1
k = pm

k +∆ pm (mod n) +1
k (32)

with ∆ pm
k being integers not far from 0 (given for this chan-

nel) and ∑m ∆ pm
k = 0. Then, considering all possible config-

urations Gk, we can compute the transition probability as

p(Pm,∆ pm
k ) =

∑k Ω(Gk)
∣∣

pm
k

∑k Ω(Gk)
, (33)

where the terms in the numerator are restricted by (32), and

Ω(G ) = expIt
∣∣
G

(34)

in terms of Euclidian coordinates. Remember that, in the
thermodynamic interpretation, all integrals over space-time
are replaced by sums over volumes ∆V :

It = ∑
∆Vl⊂∂M

∆Vl
√

γ τ̃k
K eK

k + ∑
∆Vl⊂M

∆Vl
√
|g|µ. (35)

Because the size of ∆V cannot be arbitrarily small (Planck
scale limit) and M is assumed to have a (closed) bound-
ary, the sum over volumes is finite. Moreover, the parameter
functions eK

k , NK , pK are discrete-valued and bouned from
above (black hole limit). Therefore, the sum over geometries
(∑k) is always finite, too. Therefore, (33) never diverges for
non-singular manifolds.

With (33), we can, in principle, make predictions on out-
come rates of arbitrary quantum processes. However, the µ-
term is non-trivial. Imagine i.e. that, near the location Pn, we
have a macroscopic cloud of matter which remains stable
in its future for some value of pn

k but collapses to a much
more compact body if we change pn

k by 1 unit. This causes
µ to depend dramatically on the selected channels of quan-
tum processes, and this in turn has a dramatic impact on the
probability distribution of (33).

Moreover, µ is partly determined by e.g. data from mea-
surements and these may be strongly affected by rapid spa-
tial changes of the macroscopic mass density, as for exam-
ple when considering the transition across a sharp spatial
boundary of a condensed matter phase, if this transition oc-
curs within a few Planck lengths, as could happen during the
collapse of a star. The entropy density will thus also change
rapidly. Therefore, the volumes ∆V cannot be in equilib-
rium, and the denominator of (33) cannot be interpreted as
a ”partition function”. Notice that GR does not, in general,
provide us with a conserved quantity like ”energy”. Such
a quantity would be available if space-time was forced to
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have a time-translation symmetry. In order for the notion of
a canonical ensemble (or partition function) to make sense,
we would expect to have a conserved quantity like ”energy”
E at our disposal,

∑
∆Vl

El = Et = constant, (36)

so that a given volume could exchange E with a thermal
bath (the other volumes) and the constraint (36) would lead
to the usual ”partition function” for the canonical ensemble
and to the notion of temperature, via the Lagrange multiplier
method.

5 Conclusions

By using a thermodynamic interpretation of gravity on the
boundary of a 4d-manifold, a connection between the clas-
sical and a quantum formulation of gravity has been iden-
tified. Due to the thermodynamic treatment and the con-
cept of macroscopic space-time, the number of assumptions
is kept to a minimum while the number of quantum de-
grees of freedom per volume is technically under control. In
this frame-work, neither the specific analytic or topological
properties of space-time nor the specific properties of the
microscopic degrees of freedom are relevant to determine
the quantum behaviour of gravity. This is in contrast to theo-
ries with canonical quantisation. In the quantum regime, the
geometric parameters acquire an uncertainty, and the transi-
tion probabilities of quantum states can be computed using

a well-behaved, non-divergent formula. The normalisation
factor of the transition probability is a finite sum over all
possible states which, in the classical limit, looks somehow
similar to a path integral. However, the meaning of this sum
is very different from a partition function which is used for
canonical ensembles. Because of the matter term and be-
cause of the lack of symmetries, gravity is a theory of non-
equilibrium.
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