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ABSTRACT
The Monster group, the biggest of the sporadic groups, is equipped with the highest known number of dimensions and
symmetries. Taking into account variants of the Borsuk-Ulam theorem and a novel topological approach cast in a physical
fashion that has the potential to be operationalized, the Universe can be conceived as a lower-dimensional manifold
encompassed in the Monster group.  Our Universe might arise from spontaneous dimension decrease and symmetry
breaking that occur inside the very structure of the Monster Module.  We elucidate how the energetic loss caused by
projection from higher to lower dimensions and by the Monster group’s non-abelian features is correlated with the present-
day asymmetry in thermodynamic arrow.  By linking the Monster Module to theoretical physical counterparts, we are
allowed to calculate its enthalpy and Lie group trajectories.  Our approach also reveals how a symmetry break might lead
to a Universe based on multi-dimensional string theories and CFT/AdS correspondence.

The Mode is an enclosed, detectable manifestation of the Substance…  The Substance is equipped with infinite
attributes (Spinoza, Ethica, pars I)

INTRODUCTION

The Fischer-Griess Monster group, the largest among the twenty-six sporadic groups, is equipped with 196,883 dimension
and an order of about 1054 elements (Conway et al., 1986).  It is noteworthy that the Monster Module displays the highest
known number of symmetries (du Sautoy).  It has been recently proposed that the symmetries, widespread invariances
occurring at every level of organization in our Universe, may be regarded as the most general feature of physical systems,
perhaps also more general than thermodynamic constraints (Tozzi and Peters, 2016a, Roldán 2014).  Therefore, giving
insights into the Monster symmetries would provide a very general approach to systems function, Universe evolution and
energetic dynamics.  Here we show how a novel symmetry-based, topological approach sheds new light on Monster’s
features.  We provide a foundation for the Monster’s physical counterparts, cast in a fashion that has the potential to be
operationalized, which can be used for the assessment of our Universe’s evolution and, in particular, pre-big bang
scenarios.
This paper comprises four sections.  In the first section, we describe a generalized version of the Borsuk-Ulam theorem,
in order to provide the topological machinery for further evaluations of the Monster in the context of theoretical physics.
Section two explains how the Universe might originate from the Monster Module, due to a dimension loss, linking the
Monster group to theoretical physics counterparts.  Furthermore, taking into account energetic arguments dictated by
topological dimension decrease, the section explains why and how our Universe is equipped with the symmetry breaks
which give rise to the thermodynamic arrow. Section three elucidates various physical features of the Monster.  In the
final section, we raise a number of still open questions.
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1) TOPOLOGICAL TOOLS

The standard version of the Borsuk-Ulam theorem (BUT).
The Borsuk-Ulam Theorem (Borsuk 1933) states that:
Every continuous map : n nf S R®  must identify a pair of antipodal points (on nS ).

This means that the sphere nS maps to the Euclidean space ,nR which stands for an n-dimensional Euclidean space
(Beyer; Matoušek).  See Tozzi and Peters (2016b) for further details.  The original formulation of BUT displays four
versatile ingredients which can be modified, resulting in different guises: a continuous function, two antipodal (or non-
antipodal) points with matching description, an n-sphere equipped with different n values and, last but not the least, a
mapping from a higher to a lower dimension that is invertible.

BUT variants.  We resume some BUT variants described by Peters (2016) and Tozzi and Peters (2016a).  The concept
of antipodal points can be generalized to countless types of signals.  Two opposite points encompass not just the
description of simple topological points, but also of spatial and temporal patterns, vectors and tensors, functions, signals,
thermodynamical parameters, trajectories, symmetries (Peters and Tozzi, 2016a).  The two antipodal points standing for
different systems features are assessed at one level of observation, while the single point is assessed at a lower level.  The
antipodal points restriction from the classical BUT is no longer needed, because the applications on an n-sphere can be
generalized not just for the evaluation of diametrally opposite points, but also of non-antipodal ones.  We are allowed to
take into account homotopic regions on an n-sphere that are either adjacent or far apart.   This means that the points (or
regions) with the same feature value do not need necessarily to be antipodal, in order to be described together (Peters
2016).  The original formulation of BUT describes the presence of antipodal points on spatial manifolds in every
dimension, provided the n-sphere is a convex, positive-curvature structure.  However, many physical functions occur on
manifolds endowed with other types of geometry: for example, the hyperbolic one (Watanabe; Sengupta et al., 2016).
Whether the manifold displays a concave, convex or flat activity, it does not count: we may always find the points with
matching description predicted by BUT. Although BUT has been originally described just in case of n being a natural
number which expresses a spatial dimension, its value in Sn can also stand for other types of numbers.  The n value can
be also cast as an integer, a rational or an irrational number.  It allows us to use the n parameter as a versatile tool for the
description of systems symmetries (Tozzi and Peters, 2016a).  A BUT variant tells us that we can find a pair of opposite
points an n-dimensional sphere, that display the same encoding not just on a Rn manifold, but also on an n-1 sphere.  A
symmetry break occurs when the symmetry is present at one level of observation, but hidden at another level (Roldàn).
This means that symmetries can be found when evaluating the system in a proper dimension, while they disappear (are
hidden or broken) when the same system is embedded in just one dimension lower.
Here we introduce recently developed, unpublished BUT variants.  The first is a BUT corollary, which states that a Sn

manifold does not map just to a Rn-1 Euclidean space, but straight to a Sn-1 manifold.  In other words, the Euclidean space
is not mentioned in this formulation.  Indeed, in many applications, e.g., in fractal systems, we do not need a Euclidean
manifold at all.  A manifold, in this case Sn, may exist in - and on – itself, by an intrinsic, internal point of view, and does
not need to be embedded in any dimensional space (Weeks).  Therefore, we do not need a Sn manifold curving into a
dimensional space Rn: we may think that the manifold just does exist by itself.  An important consequence of this BUT
version is that a n-sphere may map on itself.   The mapping of two antipodal points to a single point in a dimension lower
can be a projection internal to the same n-sphere.
The second and foremost variant is termed Energy-BUT. There exists a physical link between the abstract concept of
BUT and the real energetic features of systems formed by two spheres Sn and Sn-1.  An n-sphere Sn is equipped with two
antipodal points, standing for symmetries according to BUT.  When these opposite points map to a n-Euclidean manifold
where Sn-1 lies, a symmetry break/dimensionality reduction occurs, and a single point is achieved (Peters and Tozzi,
2016b).  It is widely recognized that a decrease in symmetry goes together with a reduction in entropy and free-energy
(in a closed system).  It means that the single mapping function on Sn-1displays energy parameters lower than the sum of
the two corresponding antipodal functions on Sn.  Therefore, a decrease in dimensions gives rise to a decrease of energy
and energy requirements.  BUT and its variants become physical quantities, because we achieve a system in which the
energetic changes do not depend anymore on thermodynamic parameters, rather on topological features such as affine
connections and homotopies.   The energy-BUT concerns not just energy, but also information.  Indeed, two antipodal
points contain more information than their single projection in a lower dimension.  Dropping down a dimension means
each point in the lower dimensional space is simpler, because each point has one less coordinate.  In sum, energy-BUT
provides a way to evaluate the decrease of energy in topological, other than thermodynamical, terms.
Another novel variant of BUT is the string-based BUT (briefly, strBUT). The usual continuous function required by
reBUT (region-based BUT in Peters and Tozzi, 2016a) is replaced by a proximally continous function, which guarantees
that, whenever a pair of strings (regions that are world lines) are close (near enough to have common elements), then we
always know that their mappings will be also be close.  A string is a region of space with zero width and either bounded
or unbounded length.     As a particle moves through space following a world line (Olive and Landsberg, 1989).
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Interactions occur at the junctions of world lines.  Let t the proper time of a particle, measured by clock travelling with
a particle and integration along the world line of the particle.  The particleaction  of a freely moving particle is defined by

2 .particleaction mc dt= - ò
As time evolves, a particle leaves a trace of its movements along a surface that are “remembered”.   A string is then a
remembered parts of a hypersphere surface over which a particle travels.  In terms of quantum theory, a string is a path
defined by a moving particle.   Put another way, a string is path-connected and its path is defined by a sequence of adjacent
fat surface points.   The points are fat because they are physical as opposed to abstract geometric points.   In other words,
a string A (briefly, strA) is a thin region of space that has describable features such as connectedness, length, open-ended
or closed-ended, and shape.   Strings str , strAA Ø are antipodal, provided strA  and strAØ are disjoint and yet have
the same description.   Strings str , strAA Ø are examples of antipodal sets (Petty, 1971). The description of strA  (briefly,

( )strAF ) is a feature vector in Rn, where that each component of ( )strAF  is a feature value of str .A

Quantum String Axioms

1. Every string has an action.
2. If str , strAA Ø are antipodal, then str straction action .A AØ=
3. Separate strings with k features with the same description are antipodal.
4. There is a set { }strAØ  of antipodal strings for every string str .A

Let X be a topological space equipped with descriptive proximity .dF str  strAA dF Ø  reads strA  and strAØ  have

the same description.   Let 2
nS denote the family of sets on the surface of a hypersphere nS and str , strA 2

nSA Ø Î are

antidodal strings on .nS    A function : 2
nS nf R®  is proximally continuous, provided str  strAA dF Ø  implies

( ) ( )f str   f strA .A dF Ø With these observations about strings, we obtain the following results.

Lemma  [strBUT].   If : 2
nS nf R® is proximally continuous, ( ) ( )f str f strAA = Ø  for some strA  in 2 .

nS

Proof.  Case n = 1.  Let each strAhave 1 feature, namely, action.  Assume antipodal strings str , strAA Ø  with n features

are descriptively close, i.e., str  strA.A dF Ø Since f is proximally continuous, we have ( ) ( )f str   f strA .A dF Ø

From Axiom 2, str straction action .A AØ= Hence, from the definition of the descriptive proximity dF ,

( ) ( )f str  f strA .A = Ø
Case n > 1.  The proof is symmetric with case n = 1 and Axiom 3. �

Theorem 1.  If : 2 ,  0
nS kf R k® > is proximally continuous, str straction actionA AØ=  for some strA  in 2 .

nS

Proof.  We consider only the case for k = 1, for strings whose only feature is action.  The desired result is immediate from
the strBUT Lemma and Axiom 2.   This result is easily extend to the case where k > 1 for strings with k features. �

Theorem 2.   If : 2 2 ,  0
n kS Rf k® > is proximally continuous, ( ) ( )f A f A= Ø  for  each strAØ  in  the  set  of

antipodes { }strA 2 .
nSØ Î

Proof.  Immediate from the Theorem 1 and Axiom 4. �

In order to map Sn to S{n-1}, we need to work with lower dimensional spaces containing regions where each point in S{n-

1} has one less coordinate that a point in Sn.

Let X be a topological space equipped with Lodato proximity d (Peters, 2016). str  strAA d Ø  reads strA  and strAØ
are close.   Dochviri and Peters (2016) introduce a natural approach in the evaluation of the nearness of sets in topological
spaces. The objective is to classify levels of nearness of sets relative to each given set. The main result is a proximity
measure of nearness for disjoint sets in an extremely disconnected topological space.  Let int(str )A  be the set of points
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in the interior of str .A  Another result is that if stringsstr , strAA Ø  are nonempty semi-open sets such that
str  strAA d Ø , then  int(str )  int( strA).A d Ø

An important feature is that the manifolds Md and Md-1 are topological spaces equipped with a strong descriptive proximity
relation.  Recall that in a topological space M, every subset in M and M itself are open sets.  A set E in M is open, provided
all points sufficiently near E belong to E (Bourbaki, 1966).  The description-based functions in genBUT are strongly
proximally continuous and their domain can be mathematical, physical or biological features of world line shapes.  Let
A,B be subsets in the family of sets in M (denoted by 2M ) and let : 2 , 2 , ( )M n Mf R A f A® Î = a feature vector that
describes A.  That is, ( ), ( )f A f B are descriptions of A and B.  Nonempty sets are strongly near, provided the sets of
have elements in common. The function f is strongly proximally continuous, provided A strongly near B implies ( )f A
is strongly near ( )f B .  This means that strongly near sets have nonempty intersection.   From a genBUT perspective,

multiple sets of objects in Md are mapped to ( ) ,f A BÇ  which is a description of those objects common to A and B.  In
other words, the functions in genBUT are set-based embedded in a strong proximity space.   In particular, each set is set
of contiguous points in a path traced by a moving particle.  The path is called a world line. Pairs of world lines have
squiggly, twisted shapes opposite each other on the surface of a manifold.   Unlike the antipodes in a conventional
hypersphere assumed by the BUT, the antipodes are now sets of world lines that are discrete and extremely
disconnected.   Sets are extremely disconnected, provided the closure of every set is an open set (Dochviri and Peters,
2016),  is  in  the  discrete  space  and  the  intersection  of  the  closure  of  the  intersection  of  every  pair  of  antipodes  is
empty.   The shapes of the antipodes are separated and belong to a computational geometry.   That is, the shapes of the
antipodal world lines approximate the shapes in conventional homotopy theory (Borsuk, 1969).   The focus here is on the
descriptions (sets of features) of world line shapes.  Mappings onsets with matching description, or, in other words,
mappings on descriptively strongly proximal sets, here means that such mappings preserve the nearness of pairs of sets.
The assumption made here is that antipodal sets live in a descriptive Lodato proximity (DLP) space.   Therefore, antipodal
sets satisfy the requirements for a DLP (Peters, 2016).   Letd  be  a  DLP  and  write A Bd to denote the descriptive
nearness of antipodes A and B.    And  let  f  be  a  DLP  continuous  function.    This  means

   implies f( )  f( ) f( ) f( ) .A B A B A Bd d = Ç ¹ Æ
Example: Assume that antipodes A and B have symmetries (shape, bipolar, colour, overlap, path-connectedness), and f
is DLP strongly continuous function, then     f( )   f( )A B A Bd dÞ
This means that, whenever A and B are descriptively close, then A is mapped to ( )f A  and B is mapped to ( )f B and
f( )  f( ).A Bd   If we include in the description of A and B the location of the discrete points in A and B, then the DLP
mapping is invertible.   That is, ( )f A  maps to A, ( )f B  maps to Band ( )   ( )  implies    .f A f B A Bd d
Figure 1 provides an example of antipodal sets in case of a pair of closed regions, e.g., strings.
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Figure 1.  Torus Antipodal Strings.  World lines with matching description preserve the nearness of pairs of sets.  See
text for further details.

Generalized BUT (genBUT). We conclude this section by introducing a novel, generalized version of BUT, which
encompasses all the previously described variants.  This version allows the study of the Monster in the context of
theoretical physics.  Gen-BUT states that:
Multiple sets of objects with matching descriptions in a d-dimensional manifold Md are mapped to a single set of objects
in Md-1 and vice versa.   The sets of objects, which can be mathematical, physical or biological features, do not need to
be antipodal and their mappings need not to be continuous.   The term matching description means the sets of objects
display common feature values or symmetries.
M stands for a manifold with any kind of curvature, either concave, convex or flat.    Md-1 may also be a part of Md.  The
projection from S to R in not anymore required, just M is required.  The notation d stands for a natural,  or rational, or
irrational number.  This means that the need for spatial dimensions of the classical BUT is no longer required.  The process
is reversible, depending on energetic constraints.  Note that a force, or a group, an operator, an energetic source, is
required, in order to project from one dimension to another.

2) EMBEDDING THE MONSTER GROUP IN Md-1

The Monstrous Moonshine conjecture suggests a puzzling relationship between the Fourier coefficients of the normalized
elliptic modular invariant, e.g., the hauptmodul J, which value is 19884, and the simple sums of dimensions of irreducible
representation of the Monster group M, which is 196883 (Frenkel et al, 1984).  It would seem that a relationship between
the symmetries in the plot (range) of the j-function and symmetries in the Monster group products occurs.  We might
speculate that, in physical terms, the j-function could stand for an activity occurring into to the Monster Module during
the movements of the Lie Monster Group.  In an infinite-dimensional space, the action of the J function is correlated with
the the Monster vertex operator Virasoro algebra, e.g., the Monster Module (Duncan et al., 2015).
A topological approach helps to elucidate such an unusual relationship.   In the BUT framework, the J function and the
Monster Module are sets of objects with matching description embedded in a Md manifold, where d stands for their abstract
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dimension 196,884.  Encompassing the two parameters in a Md manifold allows us to provide a topological
commensurability between the Monster Module and the J function. When we reduce the dimensions to S196,883, we achieve
a single function, e.g., the Monster Lie group.  It easy to see that, if we map the two functions to a dimension lower, in
this case M196,883,  we achieve  a  single  function  which  retains  the  features  of  both.   This  single  function  stands  for  the
Monster Group, which is the automorphic Lie group acting on the Monster Module (Figure 2, upper part). In topological
terms, as always, two functions on a Sn sphere lead to a single function on a Sn-1 sphere.

3) OF MONSTERS AND UNIVERSES

Dimensions reduction.  Here we propose a BUT model of our Universe located inside the Monster Module.  We argue,
based on topological and energetic claims, that our Universe might arise from a spontaneous loss of dimensions, e.g., an
automorphism, occurring into the very structure of the supersymmetric, multidimensional Monster Module. According to
energy-BUT, the more the symmetries, the more the energy, so that every increase of symmetric level doubles the energy
of the previous, less symmetric one.  If the Monster stood before the Big-Bang, we are in front of a manifold with the
highest possible energy, because it displays the highest number of symmetries.
The group Monster encompasses several subgroups, also classified into the sporadic groups (e.g., Mathieu groups, Leech
lattice groups, and so on) (Gannon., 2006).  It is worth of mention that the symmetries in a hypothetical Md encompassing
our Universe do not need to be necessarily of the huge order of 1054.  In such a vein, one might think two possible physical
scenarios:

a) The Monster group is progressively formed starting from its subgroups, with a gradual building from blocks.
b) The Monster group is the initial structure.  It then might split into its subgroups.

Because the entropy is increasing in the Universe, the second hypothesis is more reasonable.  It would be better to take a
starting point before the Big Bang with a higher energetic manifold, and not vice versa.  Our Universe goes towards
gradually lower energetic levels.  At the Big- Bang, a loss of dimensions and thermodynamic free-energy occurred.  There
was, going from a dimension to a lower one, a sort of quantum jump towards lesser levels, of which one is the half of the
other.  It is a testable hypothesis. Like an electron orbit, a jump towards more internal levels occurred.  This explains the
arrow of entropy.  A loss of dimensions came together with a loss of symmetries.  Indeed, at the low-dimensional level
of our Universe, just the symmetries embedded in the preserved dimensions are kept, while the other are apparently
lost.  The original lost symmetries could in theory be restored, inverting the process from lower dimensions to the higher
ones of the Monster Module, but it would require a source of energy able to perform the inverse projection, and this is
not the case of our Universe.

Topological relationships between the Monster and string theories. Moonshine can be regarded as a collection of
related examples where algebraic structures have been associated with automorphic functions or forms, because it is also
displays relationships with the Lie group E8(C) and a lattice vertex operator algebra equipped with a rank 24 Leech lattice
(Borcherds, 1992; Frenkel, 1988).  Several features of the Monster, either the Module, or the group and the subgroups,
have been associated with different physical scenarios.  Some examples are depicted in figure 2 (lower part).  Links
between Monstrous Moonshine and string theories have been described.  The Monster might stand for the symmetry of a
string theory for a Z2-orbifold of free bosons on a Leech lattice torus, in the context of a conformal field theory equipped
with partition function j.   Recent papers link other sporadic groups with modular forms, suggestive of a more central role
for the Umbral Moonshine (Eguchi et al., 2011).  Witten proposed that pure gravity in AdS3 (anti deSitter) space with
maximally negative cosmological constant is AdS/CFT dual to a holomorphic CFT (conformal field theory), with the
numbers of the Moonshine coming into play (Witten, 2007).  CFT/AdS is dual to string theories, and is involved in the
many models: CFT, Chern-Simon-Matter, Super Jang-Mills, Superconformal algebras.  The AdS\CFT correspondence
means that conformal field theory is like a hologram, which captures information about the higher-dimensional quantum
gravity theory.  It  is exactly a picture which could be described in the BUT framework.  The Witten’s conjecture of a
duality between pure quantum gravity and external holomorphic CFT predicts the existence of a hyperbolic anti-DeSitter
Universe equipped with a strongly negative cosmologic constant. The relationships between Universe’s negative
curvature and Monster Moonshine have been recently explored in the above mentioned, unpublished paper (Tozzi and
Peters, unpublished data; under review for Eur Phys J C).

The problem of singularity. A problem which arises is how to explain the event, commonly called singularity (Chow,
2008), which caused an apparent loss of dimensions in parts of the Monster, giving rise to our Universe.  It must be taken
into account that the trajectory on a hypersphere, or in general on a manifold, does not need necessarily to be closed,
because a particle could just travel along a shortest path, and not along the entire surface (Collins, 2004).  We might think
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of world lines traced by a moving particle: this line evolves, whereas the line in the chart is static.  A hypothetical particle
embedded into the Monster Module follows the movements dictated by the Monster Lie group.  However, the particle
cannot travel everywhere, due to the huge amount of dimensions. The complete ergodicity of particle pathways on the
Monster Module cannot be guaranteed, due to the countless possible trajectories.   When a particle travels on the ergodic
Monster manifold’s huge phase space, it might simply take a random direction towards any dimensions and not others.
In other words, the particle follows (probably random) paths equipped with dimension decrease.   We provide an example
which takes into account the well-studied model of a 26D bosonic string theory.  Such a model, although partially
dismissed,  provides  a  good  example  of  our  model.   Bosons’  trajectories  in  a  24D  Leech  lattice  may  follow  paths  of
196,884 dimensions.  Notice that the Leech lattice is almost ubiquitous in the description of sporadic groups, thus offers
an interesting example. When particles go towards preferential trajectories, they follow paths involving just some of the
total Monster’s dimensions.  They fall into trajectories lying into the lower dimensions of our Universe. When bosons’
paths  fall  into  some  of  the  Monster’s  dimensions,  they  lose  energy  for  energy-BUT.   It  might  explain  the  Big  Bang,
equipped with high energetic levels that decrease with time passing.  Therefore, the singularity might be explained simply
by random particles’ movements.  Note that, because random paths might occur everywhere on the Monster Module, it
means that countless Universe are allowed, every one equipped with just some of the primeval symmetries.  Our (and
others) Big Bang might just have been occurred naturally, when a particle fell into a dimension instead of another. It also
means that the path chosen by a particle is equipped with just some of the Monster symmetries, while the others are lost
(or, better, hidden, because they might reappear at the level higher than the ones where they are embedded).  If a particle
travels along a path embedded just in a few dimensions (our Universe), the loss of the other primeval dimensions gives
rise in our Universe to symmetry breakings, including the thermodynamical arrow.  In order to elucidate why a decrease
in symmetries and dimensions leads to our Universe equipped with symmetry breakings, another important argument
must be taken into account.  Indeed, almost all the finite groups are non-abelian: it explains how the multisymmetric
Monster loses dimensions and leads to our Universe, in which the rules are dictated by asymmetric laws.  The intrinsic
non-abelian structure of the Monster itself ensures that the patterns are not reversible.  Once taken a path, for the non-
abelian and energetic arguments, it is not possible to reverse the process in our Universe, unless other energy is supplied.
The presence of an ergodic, homogeneous Monster Module before the big bang also solves the so called horizon
problem.  A few Planck times after the Big Bang, the Universe consisted of 1090 Planckian size, disconnected regions
(Veneziano, 1998).  Currently, those regions make up our observable Universe and resemble one another.  The presence
of the homogeneous Monster Module before the Big Bang explains why the initial disconnected regions had all the same
conditions.

The Monster and the spacetime. The Monster is a manifold which, for the BUT variants, can be also described as a
hypersphere, and thus equipped with closed trajectories.  Therefore, our Universe is internal to the Monster.  The loss of
dimensions occurs into the Monster, giving rise to the Big Bang.  That’s why the fossil background cosmic radiation
comes from everywhere, when we look at it (Fixsen, 2009).  A problem arises: how can a string-like manifold give rise
and contain the whole Universe? A possible solution is that the Monster is not in the space, and the space occurs together
with the Universe.  Concerning the time, the things are more complicated.  Indeed, in touch with Veneziano’s pre big
bang scenarios (Veneziano, 1998), the time could exist before the Big Bang, and not arise together with the Universe.
The Monster group needs to be embedded into the time, because it, acting as a Lie group, needs to perform symmetric
movements which may just occur in a given time. It might however be speculated that the time is not required at the
Monster Module level, and the Wheeler-DeWitt equation might be valid at such level.  By a physical point of view, you
start from two algebraic structures and reach a Lie group, which needs to perform an action. It means that the level S196883

requires that the introduction of the parameter time, while the Monster Module in S196884 lies in infinite dimensions, and
is atemporal.
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Figure 2.  Progressive loss of dimensions in sporadic groups can be encompassed in a BUT framework. Note also the
loss of symmetries from the highest dimension levels to the lowest ones.  The Figure also illustrates how every sporadic
group might display a theoretical physical counterpart.
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3) QUANTIFYING PHYSICAL MONSTER’S PARAMETERS

Towards the Monster’s enthalpy. We are allowed to use the energy BUT in order to calculate the energetic requirements
of Monster Modules in a physical context.  Thermodynamics says that:
H = F + T x E
Where H is the Enthalpy, F the free-energy, T the temperature (trascurable) e E the entropy.  We assume that our Universe
is closed.
The current level E0 of entropy in the Universe is estimated in 2.6 ± 0.3 x 10122 k (Egan and Lineweaver, 2010; Frampton
et al, 2008).
If the Universe displays four dimension as currently believed, every dimension contains approximately an average entropy
of:
E0/4.
As shown in Figure 10 of Egan and Lineweaver (2010), the current Universe displays almost the highest possible of
entropy.   Also  in  the  future,  the  entropy will  be  just  slightly  larger  than  the  current  value  E0, because a monotonical
increase already occurred.    It means that E0 is more or less the maximum value of entropy achievable in the whole life
of the Universe, and also means that the free-energy F is currently very low.  At the Big Bang, on the contrary, E was
close to zero and F very high.
If we want to calculate the enthalpy, we notice that the current E0 almost equals the total enthalpy H of the Universe,
because currently F is very low.  Vice versa, at the Big Bang, F was very high and E the lowest possible.  It means that,
at the Big Bang, more or less:
F = H.
It also means that:
E0 = H.
If the Monster occurred before the Big-Bang, we are in front of a manifold with the highest possible energy, because it
displays the higher number of symmetries.  If the Monster gave rise to our Universe, and the Monster displays 196,883
dimensions, the Entropy of the Monster EM is:
E0/4 x 196,883
Thus, the enthalpy of the Monster stands roughly for the same value:
E0/4 x 196,883

The loss of dimensions into the Monster Module, due to the non-abelian movements of the Monster Lie group and the
energy-BUT, give rise to different Universes with dimensions lower than the Monster, and equipped with less energy and
information.
Through the Conway atlas of finite groups, we know the dimensions and the order of every group, including the sporadic
ones.  It is not difficult to calculate how many dimensions have been lost.  We know this number, e.g., 196,883 - 4, the
dimensions of our Universe, we know how many symmetries are preserved, and we know, for energy-BUT, that every
decrease  of  a  single  symmetric  level  denotes  the  loss  of  half  of  the  energy.    If  the  pre-Big  Bang  manifold,  e.g.,  the
Monster Module, is equipped with 196,884 dimensions and 1054 elements, and if our Universe has 4 dimensions (the
spacetime), we have 1050 elements in our Universe.
Summarizing, once hypothesized a high-energy Monster Module before the rise of our Universe, the next step is to reduce
the symmetries from the Monster vertex operator to the Monster group, which is the Lie group acting on it.  A further
step gives rise to a dimensions and symmetries reduction until our Universe, equipped with the Standard Model.

Information.  The energy-BUT states that it is not possible to achieve higher information, starting from a lower
dimensional level.  It means that we need to start from the Monster Module, and not vice versa.  The process must be top-
down, e.g., from the Monster to the Universe, and not bottom-up.  According to the energy-BUT, a loss of information
occurs together with a decrease in dimensions.  It means that, from the Monster to our Universe, it occurs a loss if
information.  You cannot move a particle in our Universe from lower to higher dimensions, unless you, for energy BUT,
do not inject novel free-energy or enthalpy.  You can do it just locally in the Universe, for example when biological
entities are formed in limited niches, but not everywhere, because the total entropy increases together with a decrease in
free-energy.  It also means that from the highest to the lower levels there is a reduction,  and  not  an emergence of
information.
Watching the Monster: vertex algebra. In order to incorporate the j-function into a general context and to visualize the
movements of the Monster Group on the Monster Module, we built a simplified 3D model equipped with a hypersphere
and a vertex algebra operator.  We achieved a low-dimensional model of j-function and its group, embedded into a vertex
algebra’s manifold. Briefly, a vertex algebra provides a mathematical formulation of the chiral part of 2-dimensional
conformal field theory. The axioms of a vertex algebra are obtained from the properties of quantum field theories and
operator product expansions (OPEs).   The main tactic flowing from OPEs is that a product of local operators defined at
nearby locations can be expanded in a series of local operations (Ekstrand, 2011).   A graphical representation of an OPE
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is represented in Figure 3A.   Let 1 2,w w  be periods of a doubly periodic function with 1

2

.w
t

w
º Then Klein’s absolute

invariant is defined by

( ) ( )
( )

3
2 1 2

1 2
1 2

,
J , ,

,
g w w

w w
w w

=
�

where 2g is the invariant of the Weierstrass elliptic function.   If H  is the upper half plane and H, thent Î

( ) ( ) ( )1 2J 1, J , .Jt t w wº =

The function ( )J t is the j-function modulo a constant multiplicative factor (Weisstein, 2016). A dynamical system
with a strange attractor and invariant tori (Sprott, 2014) initialized with the j-function is illustrated in Figure 3B.
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Figure 3. Defining a vertex algebra on a torus helps us to visualize otherwise abstract structures.  Starting from a vertex
operator algebra (a very small portion is described in Figure 3A) we made use of the attractors and the corresponding
ODEs described by Sprott (2014).  In Figure 3B, the j-function on the attractor torus displays one coordinate initialized
with a j-function value.
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4) QUESTIONS AND CONCLUSIONS

Starting from a Spinozian global system, shaped in guise of a multidimensional and multisymmetric manifold equipped
with a structural order of relationships, we were able to analyse, through a loss of dimensions dictated by the intrinsic
features of the Monster Module and its Lie group, the individual history of the Universe.  The Universe can be thus
conceived as a manifold at lower dimensions encompassed in higher ones.  The Monster Module is a manifold equipped
with absolutely the highest dimensions - that is, a manifold consisting in the highest number of symmetries.  The Monster
Moonshine manifold is prior to its modifications.  We may mean the nature and the flow of events in the Universe as a
Monster’s self-projection towards less dimensions.  The Universe stands for a local symmetry, e.g., modifications of the
Monster manifold.  The Monster Module cannot exist in, and cannot be conceived through, an higher manifold other than
itself.  Every manifold in the Universe exists either in itself or in some higher manifold else, e.g., the Monster Module.
The knowledge of a lower dimension manifold in the Universe depends on and involves the knowledge of higher
dimensions mapping the lower manifold.  In the meantime, the Monster Module, which n-dimensions are untouched, is
still there.  If different trajectories on the Monster Module give rise to different local losses of dimensions, it means that
countless Universes are possible, each one equipped with different or overlapping symmetries.
We would like to bring to an end with a few unsolved problems.

a) Where does the Monster take such a huge amount of enthalpy? It takes us in pre, pre- Big Bang scenarios.  This
is the same problem of inflaton models, that do not explain where does the energy of the required false vacuum
come from.  A link between the Monster group and the fales vacuum might be speculated.

b) Which is the role of the J function in the pre Big Bang period? Does it provide energy?
c) How does the Monstruos Moonshine look like? We might either imagine a timeless, immutable manifold where

just the Monster Group movements take place, or as we did, a dynamical, time-dependent structure.
d) Does the curvature of the Monster Module change with time passing?  It could be a very useful information, in

order to elucidate the predicted passage from an ancient anti DeSitter hyperbolic Universe to the current, flat
one.

e) Our Universe might not arise directly from the Monster, but by one of its subgroups, e.g., Th, which is correlated
with the successful superstring 10D theory.  Is it possible to split the Leech lattice in which the Monster group
is embedded, in order to achieve the lower dimensional E8 lattice where the Th group’s movements take place?
Remind that the step from E8 lattice to the Leech requires x3 multiplication and peculiar rotations.

f) The topological step from the vertex operator algebra to the Lie Monster Group requires a continuous function.
Are we in front of a super gauge field? In other words, is there a gauge field which causes the first projection
depicted  at  the  top  of  the Figure 2? In a topological framework, the feature which links the symmetries at a
higher level with the single point at a lower level is the continuous function.  If we assess two antipodal points
as symmetries, and the single point as symmetry breaks and local transformations, a gauge field could be
required, in order to restore the (apparently hidden) symmetry.
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