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The concepts of “constraints” and “virtual displacement” from analytical mechanics shed new light on the role of time
and timescales in physical systems such as the Universe.  We propose a covariant version of a gauge theory, in which the
required global symmetry stands for the real constrained trajectories, i.e. the energetic gradient flows dictated by the
second law of thermodynamics.  The virtual displacements, occurring while time is held constant, stand for the local
transformations acting on the system and able to “break” the symmetry.  The time stands for the gauge field able to keep
the Lagrangian invariant.  We also provide a theoretical framework in which a topological approach to gravitational lenses
is able to elucidate aspects of our theory of “time as a gauge field”.  Thus, time is no longer one of the four phase space
coordinates of a 4-D Riemannan Universe: it is just a gauge field superimposed to a 3-D system.
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INTRODUCTION

Many current theories emphasize the foremost role of the “time” and “timescales” in different physical and biological
fields, from cosmology – the 4-D Riemannian Universe –, to cellular function1 and neural activity2,3.  Is such a tenet true?
Although stochastic variables and random fluctuations regulated by the Langevin and the Fokker-Planck equations
frequently occur4, physical and biological activities are only partially Brownian, since they are “constrained”.  For
example, the protein-folding final conformation is dictated by the minimum frustration principle on long evolutionaly
timescales, which states that proteins’ energy decreases more than expected, as they assume conformations progressively
more like the native state5,6.  A strong bias in the protein’s surface energy landscape towards the native basin occurs,
overcoming the asperities of the rugged landscape7,8.  In other words, proteins were enriched by evolution for sequences
with the propensity to fold into the lowest energetic structures.  Constraints also occur in countless other systems, from
the nonlinear chaotic paths governed by strange attractors, to the structure of biological entities, ruled by their specific
genetic pools.  Despite the large number of different scenarios, the processes governing constraints on physical and
biological systems may be generalized, taking into account a universal principle: the second law of thermodynamics,
which states that  “every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies
taking part in the process is increased” (Planck’s formulation). In such a framework, the concepts of “virtual
displacement” - from the far-flung branch of analytical mechanics - come into play9,10,11,12.  In this paper we will indeed
elucidate, via a gauge theory, that close relationships occur among virtual displacements, probabilities and time.
In order to assess our theory, we also use the concept of gravitational lens.  The latter is a distribution of matter (such as
a cluster of galaxies) between a distant source and a terrestrial observer, capable of bending the light from the source, as
it travels towards the observer. The amount of bending is one of the predictions of Einstein's general theory of relativity.
For example, the light from a distant galaxy is deviated due to the gravitational effects of a foreground celestial body,
which acts like a lens and makes the distant source appear either distorted and magnified.  In this paper, we argue that the
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mechanism of gravitational lenses can be explained in the algebraic topological terms of the Borsuk-Ulam theorem.  Such
a finding makes it possible to hypothesize a theory of time as a gauge field.
The manuscript contains four sections.  The first section describes the virtual and real constraints in the framework of a
“frozen” time.  The second section, taking into account probabilistic arguments, shows how is possible to insert virtual
constraints on the Shannon entropy’s plot, in order to correlate informational entropy with the arrow of time.  The third
section illustrates the procedure to sketch gauge theory based on the three above mentioned ingredients: constraints,
probabilities and time.  In the fourth section, a topological approach to gravitational lenses comes into play and shows
how the methodology can be applied in order to clarify a theory of “time as a gauge field”.

VIRTUAL CONSTRAINTS

The key concept of virtual constraints is a dynamically imposed outer feedback control, so that the trajectory of a particle
or an agent in the system’s phase space can be “forced” towards the desired orbits and outputs13.  The virtual constraints
reduce the degrees of freedom, coordinating the evolution of the various links throughout a single variable.  A closed-
loop mechanism is achieved, wherein dynamic behaviour is fully determined by the evolution of simplest lower-
dimension system14.  The resulting system is called a “virtual limit system”.
In mathematical terms, we define a set of n – 1 outputs (or constraints):

( ) ( ) ( ), , , ( ) ,y p q q h p q h p tj q q= = - = -
r r

where y and ( ),p qj  are the outputs or constraints, qr ∈ Rn-1 is a vector describing the actuated coordinates and
velocities, p is the set of the design parameters, θ ∈ R is the unactuated variable, θ(q) is a function of the generalized
coordinates of q.  The latter equation describes the most general condition.
An inner-feedback loop is used to perform output feedback linearization in a local domain, where the matrix is invertible:
( ) ( ); ,q u k q q vy = +&

where v is the outer feedback loop.  Note that the equation includes a term q&  which depends on time, where the upper

dot stands for the partial time derivative, i.e.,
qq
t

¶
=
¶

&  (de Wit et al. 2003)26.

If an outer feedback loop v is designed to zeroing the output y, we get a partially linearized system in the form:
.y v=&&

Then the full system dynamic is captured by the solutions of:
( ) ( ) ( )2 0,a q q b q q g q+ + =&& &

together with the imposed constraint for mean q-value:
( ), ,q h pq=

where θ(q), α(θ), β(θ) and γ(θ) are scalar functions depending on the inner feedback loop.
In conclusion, the virtual constraints are forces external to the system’s phase space, able to modify an internal trajectory
towards the required one.  This process allows one to deal with high-dimensional systems with underactuated degree one,
by only analyzing this second-order nonlinear equation.
In analytical mechanics the researchers cope with under-actuated Lagrangian systems of the form:

( ) ,d L L B q u
dt q q
æ ö¶ ¶

- =ç ÷¶ ¶è ø&
where q and q&  are vectors of generalized coordinates and velocities, L(q; q& ) is a Lagrangian of the system, B(q) is a
matrix function of an appropriate dimension, with rank equal to the number of inputs and u is a vector of independent
control inputs.  The under-actuation means that dim u < dim q, i.e., the number of actuators is less than the number of its
degrees of freedom.
A virtual displacement is an assumed change of system coordinates occurring while time is held constant.  It is called
“virtual” rather than “real”, since no actual displacement takes place without the passage of time.  Computerized
simulations may be performed to see what happens to physical and biological paths when time is kept fixed, e.g, during
the movements of animals in an environment, or during cytoplasmatic enzymatic reactions.  For further details about the
methodology, see Figure 1.



3

Figure 1. A graph plotting time t on the X-axis and the space x on the Y-axis.  We evaluated two trajectories which both
display a starting position at x0 and an ending position at x2.  The black solid curve x(t) is the particle trajectory, while
the dotted black curve xI(t) is the virtual trajectory. At position x1 and time t1, the virtual displacement δx - from x1 to the
point c - is shown (grey arrow).  The regular displacement dx is a vector pointing in the direction of the motion (black
arrow), which arises from differentiating with respect to time parameter along the path of the motion.  In contrast, the
virtual displacement δx is a tangent vector to the constraining manifold at a fixed time, because it arises from the
differentiation with respect to the enumerating paths of the motion, varied in a manner consistent with the constraints.

INFORMATIONAL ENTROPY AND TIME

The real displacements are governed by the second law of thermodynamics.  In every system, either physical or biological,
the thermodynamical entropy relentlessy increases from time T0 to T2 = ∞, until its maximum value.  In our case, it is
however preferable to use the informtional entropy, instead of the thermodynamical one.  Indeed, the two entropies are
linked through the formula:
S = k H
in which S is the thermodynamical entropy, k is the Bolztmann constant and H is the Shannon informational entropy.  The
informational entropy, apart from the invaluable advantage of quantifying the macroscopic states without a perfect
knowledge of the microscopic ones, is not directly linked with time, allowing us to remove such parameter from our
system.  However, we need to introduce the arrow of time on the “classic” Shannon’s curve: we did it by adding a third
dimension to its 2-D plot (Figure 2).  The vector of time ζ lies  in  a  plane  forming an  angle A with  the  2-D plane  of
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Shannon entropy.  Note that the timescales expressed by the vector ζ in the graphic may vary, depending on which system
we are evaluating.  As an example, if we take into account the system Universe, T0 stands for the state of minimum
entropy – the initial Big Bang -, while T2 = ∞ stands for the state of maximum entropy, i.e., the hypothetical final state of
the Universe.  Starting from the probability of a virtual constraint c, we may calculate the corresponding point T1 on the
arrow of time, in order to know how much time is still required to reach T2 = ∞ (which stands for the system’s “real” final
state at the energetic equilibrium).  There is however a still unknown parameter left: the value of the angle Α, which is
not implied to be constant, but could change in different examined systems.  The next section answers the question: how
can we find the value of the angle A?

Figure 2.  The informational entropy is plotted as a function of the random variable p, in the case of two possibilities with
probabilities p and (1-p).  The solid line black stands for the Shannon entropy (under ergodic conditions).  The values
p=0 and p=1 stand for the minimum entropy, p= 0.5 for the maximum entropy.  The arrow of time ζ (grey solid line) lies
on a third coordinate of the phase space and is equipped with the angle A.  Due to the energetic gradient flows dictated
by the second law of thermodynamics, the time, in its route from T0 to  T2 = ∞, is correlated with an increase in
informational entropy.  Given a virtual displacement c on the virtual trajectory (dotted black line), the corresponding
value of T1 on the arrow of time can be calculated, provided the value of A is known.
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TIME IS A GAUGE FIELD: BUILDING A GAUGE THEORY

Here we examine the possibility to sketch a on differential geometry-based theory of the real and virtual trajectories’
phase space.  We need to build a system where the real displacement - the real trajectory of particles or events - stands
for  the  continuous,  global  symmetry.   Such  a  symmetry  consists  in  the  energetic  constraints  that  the  second  law  of
thermodynamics enforces on the system.  However, the energetic gradient flow occurs just in long timescales.  In turn, in
the very instant in which T is “frozen”, fixed and equals to zero, the virtual displacement occurs, standing for a continuous
group of local transformations able to “break” the symmetry.  The local loss of symmetry (a disturbance of the gradient
flow) needs however to be ripristinated, by introducing a continuous field – the time -  able to restore the gradient flow.
The time, in such a framework, stands for a field acting on the system, which is continuous at nonrelativistic timescales.
There are many possible ways to deal with a theory of the virtual displacements in a differential geometric sense, for
example by analyzing them in terms of sections of fibre bundles, jet manifolds and Ehresmann connections15,16,17.  We
went through a system characterized by a global invariant symmetry.  In order to quantitatively assess the required forces,
we followed the procedure shown in the oversimplified Figure 3.  In Figure 3A, as an example, we choose four random
areas in a 3D system and equipped them with transformations belonging to the SO(2) Lie group, isomorphic to the rotation
group of the circle.  The Lie group stands for the measure of probability density in each of the four areas.  The manifold
is unfolded and flattened into a two-dimensional reconstruction18 (Figure 3B), allowing the entire system surface to be
transferred to an atlas M of C∞ (smooth), finite dimensional manifolds, each corresponding to one of the four single areas
at  a  fixed  time=0  (Figure 3B).  The set of virtual displacements describing area-specific probabilities stands for a
continuous group of local transformations acting on sections of M. M is thus equipped with a constant matrix G belonging
to the SO(2) Lie group.
M is a principal G-bundle P characterized by a trivial, smooth and differentiable fibre bundle, by vector bundles E and by
a tangent bundle TE (Figure 3B).  Virtual displacements are described by a field of vectors and angles, representing the
action G on the chosen local section E of P. Figure 3B depicts the four forces G as four vector bundles E arising from
four points p in the tangent space Tp.  They are equipped with four n-dimensional rotation angles φ (φ1,  φ2, …,φn)T

representing the (local) virtual displacement (expressed in terms of probability state) of every area.  Rotations through
tiny angles link nearby transformations of angles φ arising from points p: as a result, the linear approximation of the
function G at p (and its angle φ) in each dimension can be described by introducing a partial derivative.  Changes in
degree of φ in selected areas match with virtual displacements’ different probabilities and hence with different trajectory
configurations.
The geometric “link” between L and φ can be defined in terms of a connection form, the Ehresmann connection19.  If we
identify the horizontal space H, perpendicular to the vertical space VE, we can extrapolate the Ehresmann connection ω,
which  is  a  vector  on TE (Figure 3B).  The Lagrangian density L is indeed a function of TE and H.  It is possible to
formulate all rates of change of ω and φ in terms of a covariant derivative - a linear differential operator in each associated
TE - which allows different points (and their angles) to be compared. By mapping every vector ω of P into the bijective,
diffeomorphic PI space, a curvature form is constructed (Figure 3C).  When the vectors ωI intersect the unique horizontal
lift corresponding to the invariant L, the angles σ are achieved.  The behaviour of the vectors ωI and the angles σ can be
described compactly by point-wise vector addition of the partial derivatives of the function G at each point.  As a result,
we get a single vector: Ωሬሬ⃗ = ωଵሬሬሬሬ⃗ +ωଶሬሬሬሬ⃗ + …+ωሬሬሬሬሬ⃗ .  The angle Σ is introduced (Figure 3D), standing for the interaction
Lagrangian Lint and expressing the values of vector addition.
If the lines L and Ω are parallel, Σ equals zero, Lint equals L and the symmetry of the system is preserved.  Otherwise, if
L and Ω are not parallel (as in nearly all physical and biological systems at T =0), Σ is different from zero, Lint is different
from L and the system displays a “broken” symmetry.  In this case – to ensure the invariance of L and to restore the
symmetry – we need to define a covariant derivative such that the derivative of Σ will again transform identically with Σ.
According to the covariant version of gauge theories20, the correction terms are reinterpreted as couplings to an additional
divergent counter term, the gauge field, by allowing the symmetry parameter to vary from place to place in the local
coordinate system. Figure 3E shows the procedure in a very abridged form.  If we do not take L into account and examine
the sole vector Ω and its angle Σ, we observe nothing else than a single force.  If instead we regard L as a vector that
results from the scalar components of its vector space v, then Ω (and its angle Σ) turns out to be just one of the covariant
components of L. To ensure that L is invariant, we need to add another component: we introduce the vector ζ, equipped
with the angle Π.  The latter stands for the gauge field Lagrangian Lgf  and expresses the global value of the required
gauge field.  We are thus able to make accurate predictions of the forces: we can extrapolate from Π the values of the
gauge field required to render the trajectories invariant under different virtual displacements.
Our scheme resembles a gauge theory21,22, but with some distinctions.  The physical gauge theories are based on three
tenets23,24:

a) The system is equipped with a continuous, preserved “global” symmetry (and a corresponding Lagrangian).
b) The system displays a continuous group of “local” transformations, equipped with a Lie group.
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c) The Lagrangian is kept invariant under such local transformations by a “gauge field”, i.e. a continuous force
acting on the system.

The Lagrangian, through its connections with Noether’s theorem, throws a bridge between symmetries and energetic
requirements.  Note that the concept of the Lagrangian is slightly different in our model: instead of referring to the
principle of least action and the “preservation” of a physical quantity as usual in gauge theories, it refers to the
“dissipation” of a physical quantity through a gradient flow.

Figure 3.  Oversimplified analysis of virtual displacements in a system equipped with a global, invariant symmetry (the
real constraints).  Four virtual displacements - expressed as measures of probability states in four areas of a 3D system,
at time kept fixed at zero - are equipped with a Lie group (Figure 3A) and mapped on a 2-D manifold (Figure 3B).  An
Ehresmann connection is performed (Figure 3C) and the required gauge field (the vector ζ, equipped with the angle Π)
can be calculated (Figures 4D-E).  See the main text for further details.
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TIME AS A GAUGE FIELD: CLUES FROM A TOPOLOGICAL APPROACH TO GRAVITATIONAL
LENSES

In this section we argue that the mechanism of gravitational lenses can be explained in the algebraic topological terms of
the Borsuk-Ulam theorem (BUT).  Indeed, gravitational lensing in the framework of BUT provides us the mathematical
apparatus to build the theory of time as gauge field, which is otherwise too theoretical and untestable.
At  first,  we  need  to  discuss  the  “standard”  version  of  the  Borsuk-Ulam  theorem  (BUT),  which  states  states  that
(Borsuk)29,30:
Every continuous map : n nf S R®  must identify a pair of antipodal points (on Sn).

This means that the n-sphere nS  maps  to  the  space nR ,  which  is  an n-dimensional Euclidean space.  Another less
technical definition is: if a sphere is mapped continuously into a plane set, there is at least one pair of antipodal points
having the same image; that is, they are mapped to the same point of the plane (Dodson)31.   The notation nS  denotes an
n-sphere, which is a generalization of the circle.  A n-sphere is a n-dimensional structure embedded in a n+1 space.  For
example, a 1-sphere (S1) is the one-dimensional circumference surrounding a 2-dimensional disk, while a 2-sphere (S2) is
the 2-dimensional surface of a 3-dimensional ball (a beach ball is a good example).  An n-sphere is formed by points
which are constant distance from the origin in (n+1)-dimensions.  For example, a 3-sphere (also called glome or
hypersphere) of radius r (where r may be any positive real number) is defined as the set of points in 4D Euclidean space
at distance r from some fixed center point c (which may be any point in the 4D space).  A3-sphere is a simply connected
3-dimensional manifold of constant, positive curvature, which is enclosed in a Euclidean 4-dimensional space called a 4-
ball.  A 3-sphere is thus the surface or boundary of a 4-dimensional ball, while a 4-dimensional ball is the interior of a 3-
sphere, in the same way as a bottle of water is made of a glass surface and a liquid content.
Points on Sn are antipodal, provided they are diametrically opposite.  Examples of antipodal points are the endpoints of a
line segment, or the opposite points along the circumference of a circle.  Further, every continuous function from a n-
sphere Sn into Euclidean n-space Rn maps some pair of antipodal points of Sn to the same point of Rn.  For example, if we
use the mapping f: S3→ R3, then f(x) in R3 is just a signal value (a real number associated with x in S3) and f(x) = f(-x) in
R3.  When g: S2 → R2, the continuous function g(x) in R2 is a vector in R2 that describes the x embedded in S2.  In other
words, a point embedded in a Rn manifold is projected to two opposite points on a Sn+1-sphere, and vice versa.
It is noteworthy that the concept of antipodal points can be generalized to countless types of system signals.  The two
opposite points can be used not just for the description of simple topological points, but also for more complicated
structures, such as shapes of space (spatial patterns), shapes of time (temporal patterns), vectors or tensors, functions,
signals, thermodynamical parameters, movements, trajectories, and general symmetries too (Peters)28.  If we simply
evaluate systems activity instead of “signals”, BUT leads naturally to the possibility of a region-based geometry (called
ReBUT), instead of point-based one, with many applications.  Indeed, a region can have features such as area, diameter,
average signal value, and so on.  The concept of reBUT and generalized antipodal points may be also applied to the
mechanism of gravitational lenses (Figure 4).  We are allowed to describe gravitational lenses’ regional features (i.e.,
average gradient direction, average intensity, feature vectors with many components, such as, for example, diameter,
surface area, and gradient direction) as antipodal points on a n-sphere: the antipodal points, even if they are distorted,
display indeed matching descriptions.  A cosmic body emitting a light stands for the single point embedded in Rn-1, which
projects to two antipodal points onto a n-sphere embedded in a dimension higher, i.e., Rn.  In other words, if we map the
two opposite points on an n-1 sphere, we obtain a single point, and vice versa.  The two antipodal points standing for
systems features are assessed at one level of observation, while the single point is assessed at a lower level.  The BUT
scenario provides, in this way, a vehicle for characterizing and modelling gravitational lenses.
It can be argued that the antipodal points on a gravitational lens are not exactly “opposite” each other.  However, the
applications of BUT can be generalized not just for the evaluation of brain symmetries as antipodal points, but also for
non-antipodal points on an n-sphere (Peters)28.  We can also consider homotopic regions on an n-sphere that are either
adjacent or far apart.  And BUT applies, provided there are a pair of regions on an n-sphere with the same feature values.
We are thus allowed to say that the two points (or regions) do not need necessarily to be antipodal, in order to be described
together (Peters)28.  This makes it possible to evaluate matching signals, even if they are not “opposite”, but “near” one
each other: the antipodal points restriction from the “classical” BUT is no longer needed.
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Figure 4.  A simplified scheme of the application of the Borsuk-Ulam theorem to a gravitational lens.  Two antipodal
points in Sn  project to a single point in Rn, and vice versa.  Remind that every Sn is embedded in a n+1-ball, so that every
Sn is one-dimension higher than the corresponding Rn manifold.  See the main text for further details.

A 3D Universe… plus time. By applying the equations of general relativity, the measure of the curvature of gravitational
lens makes it possible to calculate the mass of the hidden cosmic object.  Indeed, according to general relativity, when
light passes around a massive object, it is distorted and bent towards an observer’s eye, because of the curvature of the
4D spacetime.  Since light moves at a constant speed, lensing changes the direction of the velocity of the light, but not
the magnitude.  The angle of deflection is:

2

4 ,GM
rc

q =

Where M is the mass at a distance r from the affected radiation, G is the universal constant of gravitation and c is the
speed of light in a vacuum: the more the mass, the more the light angle deflection.  In such a way, we are able to achieve
the total quantity of matter which causes the gravitational lens effect: by measuring the distortion geometry, the mass of
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the intervening cluster causing the phenomena can be obtained.  In the case of the Universe, according to the Einstein’s
dictates, the 4D dimension (the spacetime) occurs when the mechanism of gravitational lensing takes place.  It means that
the fourth dimension “appears” just when the light is projected, through gravitational lensing, in a dimension higher, while
the hidden galaxy is equipped with just three dimensions.  Therefore, according to BUT and Einstein claims, the
gravitational lensing lies in a Rn space, i.e., a 4D riemannian manifold (the spacetime), while the “hidden” celestial body,
which generates the light producing the gravitational lens, needs to lie in a Rn-1 space, i.e, the three “classical” Euclidean
dimensions.  This means that we achieve a dimensionality reduction: a Universe equipped with just three dimensions,
plus the time.  The latter is the fourth dimension, provided that we consider it as superimposed to a 3D Universe.  Thus,
we are allowed to argue that the angle reflection is caused by a further dimension, displayed by the n-sphere generated by
the gravitational lens.  Without such a higher dimension, the angle reflection does not exist and the mass cannot be
measured.

Gauge fields and time in the framework of BUT. According to BUT, we achieved a system with three dimensions plus
the time.  In such a vein, what is the role of the time? We need to invoke once again BUT, and its close relationships with
the symmetries.  Symmetries are widespread invariances underlining countless physical and biological systems (Weyl)32.
A symmetry break occurs when the symmetry is present at one level of observation, but “hidden” at another level
(Roldàn)33.  BUT tells us that we can find, on an n-dimensional sphere, a pair of opposite points that have same encoding
on an n-1 sphere.  This means that symmetries can be found when evaluating the system in a proper dimension, while
they disappear (are hidden or broken) when we evaluate the same system in just one dimension lower.   We emphasize
that the symmetries are widespread at every level of organization and may be regarded as the most general feature of
systems, perhaps more general than free-energy and entropy constraints too.  Indeed, recent data suggest that
thermodynamic requirements have close relationships with symmetries.  The recent, interesting observation that entropy
production is strictly correlated with symmetry breaking in quasistatic processes paves the way to use system invariances
for the estimation of the free energy of metastable states and the energy requirements of computations and information
processing (Roldán)33.  Thus, giving insights into symmetries provides a very general approach to every kind of systems
function.  In such a vein, BUT provides a topological methodology for the evaluation of the most general features of
systems activity, i.e., the symmetries, cast in a physical fashion that has the potential to be operationalized.
The symmetries, in turn, are closely linked with gauge theories, and in particular with gauge fields.  The n-sphere
displaying the antipodal points (the symmetries) is equipped with a dimension more than the euclidean space where the
the single point (symmetry break) occurs.  This extra-dimension where BUT occurs might stand for a gauge field which,
superimposed to the system, gives rise to the invariance of the symmetry, by “restoring” it with the simple add of a unity
to the n member of BUT (from Rn to Rn+1).  Although BUT was originally limited to the case of n being a natural number
which expresses a structure embedded in a spatial dimension, nevertheless the value of n in the brain Sn can also stand for
other types of numbers (Tozzi)27.  The n exponent does not need necessarily either to be a natural number or embedded
in a spatial dimension.  The n value of Sn can be casted as an integer, a rational or an irrational number.  The BUT can be
used not just for the description of “spatial” dimensions equipped with natural numbers, but also of antipodal points on
spheres equipped with other kinds of n’s dimensions, for example a fractal dimension d.  It allows us to use the n parameter
as a versatile tool for the description of systems symmetries.

CONCLUSION

We showed that the vector of time is able to represent the energetic gradient of the system, locally “broken” by timeless
perturbations.  We also provided a topological approach to gravitational lensing which strengthens our hypothesis.  It
allows us to draw some conclusions.
In analytical mechanics, the concept of virtual displacement - related to virtual work - is meaningful only when discussing
a system subject to constraints on its motion.  As stated above, this is the case of physical and biological activity.  Virtual
displacements occur exclusively in space and the underrated role of the sole “spatial” modifications needs to be
emphasized when bearing in mind physical and biological activities.  While virtual displacements take place, time is fixed
and δt = 0.  Thus, changes in physical/biological functions can be independent of the passage of time.  When time equals
= 0, the real trajectory does not exist: it is the passing of time that gives rise to the real displacement.  It has been recently
suggested that time is an emergent phenomenon arising from the quantistic entanglement and it exists just for observers
inside the universe25: any god-like observer outside sees a static, unchanging universe, just as the Wheeler-DeWitt
equations predict (note that time plays a role neither in such equations, nor in the formulation of the entangled states).  If
time stands for a continuous gauge field acting on the system’s Universe, the theory of a 4D Riemannian Universe needs
to be revised: time is not anymore one of the four coordinates of the phase space of the system Universe, but becomes
just a field, a vector superimposed to an otherwise “simple” 3D Universe.  It may also be hypothesized that the virtual
constraints in the Universe stand for singularities and timeless perturbations, which could be regarded as places in which
life occurs.
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