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Abstract: This chapter presents new important links between the most important

theories developed in literature for managing uncertainties (i.e. probability, fuzzy

sets and evidence theories). The Information fusion introduces special operators ◦
in the probability theory, in the fuzzy set theory and in the theory of evidence. The

mathematical theory of evidence and the fuzzy set theory often replace probabilities

in medicine, economy and automatics. The choice between these three quite distinct

theories depends on the intrinsic nature of the data to combine. This chapter shows

that same four postulates support actually these apparently distinct theories. We

unify these three theories from the four following postulates: non-contradiction, con-

tinuity, universality, context dependence and prove that a same functional equation

is supported by probability theory, evidence theory and fuzzy set theories. In other

words, the same postulates applied on confidences, under different conditions, either

in the dependence or independence situation, imply the same foundation for the var-

ious modern theories of information fusion in the framework of uncertainty by using

deductions that we have unified. The independence between elementary confidences

have not to be understood in the sense of probabilistic meaning.
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244 CHAPTER 11. GENERAL FUSION OPERATORS FROM COX’S POSTULATES

11.1 About uncertainty

I
n medical fields as in economics and control, one notes the limitation of the additive probabilities due

to the too strong constraints imposed. The modification of basic axioms to overcome these limitations

leads to different numerical theories and one finds approaches such as fuzzy set theory. By considering

the notion of lower probabilities and upper probabilities, one obtains the credibility and the plausibiliy

functions of Dempster-Shafer’s theory of evidence [6]. The 60’s has seen the development of theories that

are not directly linked to probabilities. For instance, Zadeh invented fuzzy set theory in 1965 [15]; he

then created the possibility theory in 1978 [16].

With the four postulates, which are the basis of the machines on confidences without adding the

additivity postulate that leads to probabilities and by considering the independence of the achievement

of these confidences, we obtain the fuzzy set theory.

In fact, we have observed that both basic equalities of information fusion are two continuous, com-

mutative and associative operations on confidences. Let Θ be a discrete body of evidence called frame of

discernment. Thus, both combinations can be written in terms of probabilities:

∀A,B ⊂ Θ, P (A ∩B) , P (A) P (B/A) , P (B) P (A/B)

and in term of membership functions:

∀A,B ⊂ Θ −→ µA∩B(x)
∆
= µA(x) ∧ µB(x)

These two operations had to verify the same basic postulates required to model data fusion.

When analyzing imprecise and uncertain data, all the usual techniques must be changed. It is a fact

that logic is only an abstract construction for reasoning and physical laws are only models of material

system evolutions. Nothing proves that logic can describe correctly all fusions. Moreover, imprecise and

uncertain analyses as in this chapter show that an infinity of fusions are possible. From the principles of

this chapter, it is possible to introduce a fusion denoted by the operator ◦ with any increasing function

from [0, 1] onto [0, 1]. More precisely, with two beliefs x, y instead of the product x ∗ y to describe the

fusion we write x ◦ y. For example instead of the probability P (A ∩ B) = P (A)P (B) of the intersection

A ∩B of two independent sets A, B, we write the belief [A and B/e] = [A/e] ◦ [B/e], the fusion ◦ of the

two beliefs [A/e] and [B/e]. Any equation of this book may be changed with this transformation.

Moreover, the hypothesis that the sum of masses of disjoint sets is equal to 1 is a global hypothesis

and seems to be hazardous.
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We demonstrate that the fusion operation ◦ is mainly described by a simple product after transfor-

mation. This previous transformation of confidence c(A) = [A/e] on A in the environment e is made by

using a continuous and strictly monotone function w. This result is easily understood by comparing the

transformation w with the Fourier transformation. The latter transforms the composition product of two

functions into the product of their Fourier transform. We observe that convolution is commutative and

associative. Similarly, Demspster-Shafer fusion is also commutative and associative. Communality of a

fusion is the simple product of the communalities of the sources. Without commutativity or associativity

other developments are necesary.

11.1.1 Probabilistic modelling

The probability theory has taken a leap during the 17th century with the study of games for luck calculus.

The ultimate objective of probability theory is the study of laws governing the random phenomena, that

is the presence of uncertainty. For many years, probabilistic methods have generated many debates, in

particular among defenders of the frequentist approach, the objective approach and the subjective ap-

proaches. Historically, the formulation of the axiomatic basis and the mathematical foundation of the

theory are due to Andrëı Kolmogorov in 1933.

Let an uncertain experiment be described by the sample space Ω whose elements, denoted ω are the

possible results of that experiment. Let A ∈ P (Ω) be subset of Ω. The subset A is a random event for

this theory and the event is said to occur when the result ω of the experiment belongs to A. The collection

of all the subsets of Ω, P (Ω), cannot always be associated to the set A of possible random events in Ω.

For logical coherence purposes, one restricts A to a σ-algebra, a subset of P (Ω) which is closed under

countable union and under complement. Thus, the pair (Ω,A) is a measurable space and a probability

measure P over (Ω,A) is then a positive real-valued function of sets with values in [0, 1] and defined over

A.

Definition 1. A probability measure P over (Ω,A) is an application of A with values in [0, 1] satisfying

the following axioms (Kolmogorov’s axioms): i) For all A ∈ A

0 ≤ P (A) ≤ 1 and P (Ω) = 1 (11.1)

ii) (additivity) For any finite family {Ai, i ∈ I} of mutually exclusive events, we have:

P

(
⋃

i

Ai

)

=
∑

i

P (Ai) (11.2)

iii) sequential monotonic continuity in ∅ For any sequence {An, n ≥ 1} of events decreasing to the empty

set ∅ that is A1 ⊃ A2 ⊃ A3 ⊃ ... and ∩An = ∅ , we have

lim
n
P (An) = 0 (11.3)
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P (A) characterizes the probability that the event A occurs. If P is a probability measure on (Ω,A),

the triple (Ω,A, P ) is a probability space. From the previous axioms, one easily deduces the following

properties:

A1 ⊆ A2 =⇒ P (A1) ≤ P (A2) , (11.4)

P (∅) = 0, (11.5)

P (A) = 1− P
(
A
)
, (11.6)

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) . (11.7)

The conditional probability is one of the most useful notions in probability theory. In practice, it is

introduced to allow reasoning on events of a referential. For instance, in the case of an exhaustive draw,

it is concerned with the probability of an event A, under the condition that an event E occurs. The

random event E represents the environment that is usually expressed as E = e. There is no reason for

having symmetry between event A and the environment e.

Definition 2. Let (Ω,A, P ) be a probability space, the conditional probability P (A/E) of an event A

given E such that P (E) > 0 is defined as:

P (A/E) =
P (A ∩ E)

P (E)
. (11.8)

If P (E) = 0, this definition has no sense. If A ⊂ E then P (A/E) = P (A)
P (E) , and one has P (E/E) = 1.

Obviously, the conditional probability P (A/E) will be seen as the probability of A when E becomes

the certain event following additional information asserting that E satisfies to (P (E) = 1).

The equation (11.8) is generalized by using the well known Bayes’ theorem. If one considers an event

E of which we can estimate, a priori, the probability (P (E) 6= 0) and a finite partition {H1, ..., Hn} of Ω

(set of mutually exclusive hypotheses describing n modalities of the realization of E). The Bayes’ formula

then yields:

P (Hi/E) =
P (E/Hi)P (Hi)
n∑

j=1

P (E/Hj)P (Hj)
. (11.9)

The conditional probabilities (11.9) allow the modification of the a priori probability of event Hi, ac-

cording to the new knowledge on the realization E = e.

Definition 3. Let (Ω,A, P ) be a probability space and let A and E be two events of A. The events A

and E are two independent events if and only if

P (A ∩E) = P (A)P (E) . (11.10)
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Property 1. Let (Ω,A, P ) be a probability space and let A and E, two events of A.

If P (E) > 0, then A and E are two independent events if and only if

P (A/E) = P (A) . (11.11)

Thus, if A and E are two independent events and if E is not impossible then the probability of A is

not modified if one receives information on E being realized.

11.1.2 The mathematical theory of evidence

The evidence theory or Dempster-Shafer’s theory (DST) of belief functions was born during a lecture

on inference statistics given by Arthur Dempster at Harvard University during the 60’s. Dempster’s

main idea has been reinterpreted by Glenn Shafer in his book entitled “A Mathematical Theory of Evi-

dence” [12].

Let us consider two spaces Ω and Θ, and a multivalued relation Γ associating the subset Γ (ω) ⊂ Θ to

each element ω ∈ Ω. Let assume that P is a probability measure defined on (Ω,A) made of the σ-algebra

A of the subsets of Ω. Considering that P represents the probability of occurrence of an uncertain event

ω ∈ Ω, and if it is established that this event ω is in correspondence with the events θ ∈ Γ (ω), what

probability judgment can we make about the occurrence of uncertain events θ ∈ Θ?

Dempster’s view is that the above consideration leads to the concept of compatible probability mea-

sures. He then refers to the envelope delimited by the lower probability and upper probability of this

probability family.

The probability space (Ω,A,P ) is the information source which allows the quantification of the (im-

perfect) state of knowledge over the new referential Θ by means of Γ.

In this study, (Ω, P,Γ,Θ) is called belief structure. By using these mathematical tools, Shafer has

proposed another interpretation to Dempster’s work. This new interpretation identifies the lower and

upper probabilities of the family of compatible measures of probability as authentic confidence measures.

Definition 4. Let Θ be a finite space and 2Θ (= P (Θ)) the power set of Θ. A credibility function1 Cr

is an application of 2Θ with values in [0, 1] which satisfies the following conditions :

(i) Cr (∅) = 0,

(ii) Cr (Θ) = 1,

1The belief function Cr is denoted Bel in [12]
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(iii) For all integer n and all family of subsets A1, ..., An of Θ

Cr (A1 ∪ . . . ∪An) ≥
∑

I⊂{1,...,n}
I 6=∅

(−1)|I|+1Cr(∩i∈IAi) (11.12)

The condition (iii) is called the general suradditivity condition. When n = 2, (12) becomes,

Cr (A1 ∪A2) ≥ Cr (A1) + Cr (A2)− Cr (A1 ∩A2) . (11.13)

The credibility function allows to quantify the partial information in Θ. In theory, other functions are

associated to Cr, which are equivalent to it:

• The plausibility function, dual to the credibilities.

• The elementary probability mass function (also called basic belief assignment or mass function)

which is obtained from the credibility function by means of the Möbius transform.

Definition 5. The basic belief assignment is the function m : 2Θ −→ [0, 1], that satisfies the following

property
∑

A∈2Θ

m (A) = 1 (11.14)

with

m (∅) = 0. (11.15)

The evidence theory is often described as a generalization of probabilistic methods to the treatment

of uncertainty as it can handle events which are not necessarily exclusive.

Hence the advantage of being able to represent explicitly the uncertainty from imprecise knowledge.

The human being easily handled imprecise knowledge. For example, it does not indicate his age to the

day near, or his height to the inch near, even if it has access to sufficient information. A mathematical

formulation of the imprecisions has come from Lofti Zadeh through the fuzzy set theory [15]. The

modelling of uncertainties due to the imprecisions of knowledge gives rise to possibility theory that

constitutes with the fuzzy set theory the general framework of the fuzzy logic.

11.1.3 Fuzzy logic

The fuzzy logic appeared in 1965 with Lofti Zadeh’s work. The development of the fuzzy logic was

mainly motivated by the need for a conceptual framework that can address the issue of uncertainty and

lexical imprecision. From this work, it is necessary to keep the need of formalizing the representation and

the processing of imprecise or approximate knowledge with the intention to treat systems with a strong

complexity, in which human factors are often present. Thus, fuzzy logic intervenes to deal with imperfect
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knowledge.

The fuzzy logic is based on two main subject matters [9]: fuzzy set theory and modelling of approxi-

mate reasoning in the framework of possibility theory.

The definition of a fuzzy subset answers the need to represent imprecise knowledge. The concept

was introduced to avoid abrupt changes of a class to another(black to the white, for example) and to

authorize elements so that they cannot belong completely either to one of the classes or to another (to be

gray in the example). In a reference set Θ, a fuzzy subset of Θ is characterized by a membership function

µ w.r.t. A, defined as:

µA : Θ −→ [0, 1]

which is the extension of the classical membership function χ, indicator function of the set A that is:

χA : Θ −→ {0, 1} .

To emphasize the difference with the ordinary sets of Θ, we use lower case letters for the fuzzy sets

of Θ.

Definition 6. Let a be a fuzzy set of Θ and let α be a real value in [0, 1]. The α− cut aα is the subset

of Θ defined by:

aα
4
= {θ ∈ Θ; µa (θ) ≥ α} . (11.16)

Then ∀α, β ∈ [0, 1] ,

α ≤ β =⇒ aβ ⊆ aα

and ∀θ ∈ Θ,

µa (θ) = sup {α ∈ [0, 1] ; θ ∈ aα} . (11.17)

This allows the passage from the fuzzy sets to ordinary sets and gives immediately the fuzzy versions

of the usual operations used for ordinary sets.

Property 2. Let a and b be two fuzzy sets of Θ defined by their membership functions µa and µb, one

has:

• equality: a = b⇐⇒ ∀θ ∈ Θ, µa (θ) = µb (θ)

• inclusion: A ⊆ b⇐⇒ ∀θ ∈ Θ, µa (θ) ≤ µb (θ)

• union: a ∪ b←→ ∀θ ∈ Θ, µa∪b (θ) = max (µa (θ) , µb (θ))

• intersection: a ∩ b←→ ∀θ ∈ Θ, µa∩b (θ) = min (µa (θ) , µb (θ))

• complement: a←→ ∀θ ∈ Θ, µa (θ) = (1− µa (θ))
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The uncertainties about the truth of a statement are not verified in the case of the fuzzy set theory.

The possibility theory was introduced in 1978 by Lofti Zadeh in order to manipulate non-probabilistic

uncertainties for which the probability theory does not give any satisfactory solution. The possibility

theory provides a framework in which imprecise knowledge and uncertain knowledge can coexist and can

be treated jointly.

Possibility theory provides a method to formalize subjective uncertainties on events. It informs us in

which measure the realization of an event is possible and in which measure we are sure without having

any evaluation of probabilities at our disposal. One presents the possibility theory in a general form that

introduces the concepts of possibility measure and necessity measure.

Consider either the frame Ω (experiment space) or Θ (space of hypotheses). Set A, a family of subsets

of Ω or subsets of Θ. When Ω or Θ are finite then A is the set of all subsets.

Definition 7. A possibility measure Pos is an application of A ⊂ P(Θ) in [0, 1] such that:

i) Pos (∅) = 0, Pos (Θ) = 1.

ii) for any finite family {Ai, i ∈ I} of events, one has:

Pos

(
⋃

i

Ai

)

= sup
i
{Pos (Ai)} . (11.18)

According to Zadeh, this is the most pessimistic notion or the most prudent notion for a belief. One

has in particular:

max
(
Pos (A) , Pos

(
A
))

= 1 (11.19)

and then:

Pos (A) + Pos
(
A
)
≥ 1. (11.20)

11.1.4 Confidence measures

Definition : A confidence measure c is an application of P (Θ), parts of Θ, in [0, 1] which verifies the

following properties:

i) c (∅) = 0 and c (Θ) = 1

ii) (monotony) ∀A,B ∈ P (Θ) , A ⊂ B =⇒ c (A) ≤ c (B)

iii) (continuity) For all increasing or decreasing sequences (An)N of elements of P (Θ), one has :

lim c (An) = c (limAn) .
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Consequently, one has: ∀ A,B ∈ P (Θ) ,

c (A ∩B) ≤ min (c (A) , c (B)) and max (c (A) , c (B)) ≤ c (A ∪B).

The probabilities, the fuzzy sets, the possibility measures are special cases of the general notion of

confidence measures.

11.2 Fusions

As with Physics, the information fusion modelling aims at giving the best possible description of the

experimental reality. Let us give the postulates [14] that information fusions need to satisfy.

11.2.1 Postulates

1. Coherence or noncontradiction

2. Continuity of the method

3. Universality or completeness

4. No information refusal

A first consequence is that postulates 2 and 3 leads to use real numbers to represent and compare

degrees of confidence. However postulate 4 leads to hypothetical conditioning: the confidence degree is

only known conditionally upon the environment, the context.

The confidence granted to event A ∈ P (Θ) in the environment e is noted [A/e].

From Edwin Thompson Jaynes [10]: Obviously, the operation of real human brains is so complicated

that we can make no pretense of explaining its mysteries; and in any event we are not trying to explain,

much less reproduce, all the aberrations and inconsistencies of human brains. To emphasize this, instead

of asking, ”How can we build a mathematical model of human common sense?” let us ask, ”How could

we build a machine which would carry out useful plausible reasoning, following clearly defined principles

expressing an idealized common sense?”

11.2.2 Machine on confidence

We develop the approach essentially based on Cox’s work [5] later detailed by Tribus [14] while criticized.

i = impossible = 0 ≤ [A/e] ≤ c = certain = 1
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The various possible relations are listed by setting u , [A ∧B/e] that expresses the confidence pro-

vided by the fusion of A and B within the environment e. Let’s define:

x , [A/e] v , [A/Be] y , [B/e] w , [B/Ae]

Eleven functional relations are possible: u = F1 (x, v), u = F2 (x, y), u = F3 (x,w), u = F4 (v, y),

u = F5 (v, w), u = F6 (y, w), u = F7 (x, v, y), u = F8 (x, v, w), u = F9 (x, y, w), u = F10 (v, y, w) and

u = F11 (x, v, y, w)

Because of the postulates, the functions F5, F8, F10 and F11 have to be discarded. The symmetries

induce simplifications. The functional relations capable to meet the aspirations, are:

u = F2 (x, y) = F2 (y, x)

u = F3 (x,w) = F4 (v, y)

u = F7 (x, v, y) = F9 (x, y, w)

The associativity condition on the fusion confidence

[A ∧B ∧ C/e] = [A ∧ (B ∧ C) /e] = [(A ∧B) ∧ C/e]

discards F7.

On the other hand, F3 et F2 verify the same associativity equation. By calling ◦ the common operation

describing all the possible fusions between the confidences, this unique equation processes two different

situations :

• First case: u = F2 (x, y) = F2 (y, x)

[A ∧B/e] = [A/e] ◦ [B/Ae] = [B/e] ◦ [A/Be]

• Second case: u = F3 (x,w) = F4 (v, y)

[A ∧B/e] = [A/e] ◦ [B/e].

This second case was not considered by Cox, the consequences of which constitutes the first results

of this paper.

11.2.3 Operator

• First case:

[B/Ae] < [B′/Ae] =⇒ [A ∧B/e] < [A ∧B′/e] .
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The first case implies strict inequalities on the second variable. The mathematician Aczél [1] has

given the proof based on the strict monotony of one of both variables. The general solution for the

functional equation being such that:

w ([A ∧B/e]) = w ([A/e]) w ([B/Ae]) = w ([B/e]) w ([A/Be]) (11.21)

where w is a continuous strictly-monotone function of [0, 1] onto [0, 1]. Thus,

[A ∧B/e] = w−1(w ([A/e])w ([A/Be])) = [A/e] ◦ [B/Ae]

The fusion operation ◦ is described by a simple product of real numbers after transformation. This

previous transformation of confidence c(A) = [A/e] on A in the environment e is made by using

a continuous and strictly monotone function w. This result is easily understood by comparing the

transformation w with the Fourier transformation. The latter transforms the composition product

of two functions into the product of their Fourier transform.

The first case with additional properties gives the probability theory. The problem is to know if

there is a similar property in the second case.

• Second case: The strict monotony is not obvious.

If [A/e] ≤ [A/e] and [B/e] ≤ [B′/e] then [A ∧B/e] ≤ [A′ ∧B′/e]. On the other hand, one has the

commutativity property and ◦ has all the characteristics of a triangular norm, common notion in

data processing [9]. In this second case, the confidence fusions are associated to the t-norms. The

second case implies the fuzzy theory.

11.3 T-norm

Definition: A triangular norm - called t-norm - is a function ◦ : [0, 1]× [0, 1] −→ [0, 1] that verifies the

following conditions for all x, y, z, t in [0, 1]

i) (commutativity) x ◦ y = y ◦ x

ii) (associativity) (x ◦ y) ◦ z = x ◦ (y ◦ z)

iii) (isotony) if x ≤ z and y ≤ t, (x ◦ y) ≤ (z ◦ t)

iv) (neutral element 1) (x ◦ 1) = x

Example 1. The operator ◦ = min is a t-norm; this is the upper t-norm. For all x, y in [0, 1]

(x ◦ y) ≤ min (x, y)
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Lemma 1. If the associated t-norm is strictly increasing, the operator on the confidences is written as

follows: w [A ∧B/e] = w ([A/e]) w [B/e] where w is a continuous and strictly increasing bijection of

[0, 1] onto [0, 1].

According to the additional hypothesis, we retrieve: [A ∧B/e] = w−1(w ([A/e])w ([B/e])).

Theorem 1. The fuzzy operator [A ∧B/e] = [A/e]∧ [B/e] = inf {[A/e] , [B/e]} is the limit of a sequence

of strictly monotone operators ◦n.

Proof : Let (Tn)n>0 be the family of strictly monotone t-norms such that:

∀n ≥ 1, Tn(x, y) =
1

1 + n

√
(

1−x
x

)n
+
(

1−y
y

)n
= w−1

n (wn(x)wn(y)) with wn = exp−
(

1− x
x

)n

.

For all n ≥ 1, wn is a continuous and strictly increasing bijection of [0, 1] onto [0, 1]. We have for all

x, y :

lim
n→∞

T (x, y) =
1

1 + max
((

1−x
x

)
,
(

1−y
y

)).

In fact, if 0 ≤ a ≤ b
lim
n→∞

n
√
an + bn = lim

n→∞
b
(

1 +
(a

b

)n) 1
n

= b

therefore

lim
n→∞

T (x, y) = f−1 (max (f (x) , f (y)))

where f(x) = 1−x
x

max (f (x) , f (y)) = f (min(x, y))

Since f is strictly decreasing on [0, 1], it follows that

lim
n→∞

T (x, y) = min(x, y) �.

Here are the results obtained for several fusion operators. On x-axis, x increases by 0.1 jumps and equally

on y-axis, y increases by 0.1 jumps.
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• Result obtained with the product operator: x ◦ y ∆
= x ∗ y

0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900 0.1000

0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000

0.0300 0.0600 0.0900 0.1200 0.1500 0.1800 0.2100 0.2400 0.2700 0.3000

0.0400 0.0800 0.1200 0.1600 0.2000 0.2400 0.2800 0.3200 0.3600 0.4000

0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

0.0600 0.1200 0.1800 0.2400 0.3000 0.3600 0.4200 0.4800 0.5400 0.6000

0.0700 0.1400 0.2100 0.2800 0.3500 0.4200 0.4900 0.5600 0.6300 0.7000

0.0800 0.1600 0.2400 0.3200 0.4000 0.4800 0.5600 0.6400 0.7200 0.8000

0.0900 0.1800 0.2700 0.3600 0.4500 0.5400 0.6300 0.7200 0.8100 0.9000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

• Result obtained with the operator: x ◦n y = 1

1+ n
q

( 1−x
x )

n
+( 1−y

y )
n

for n = 3.

0.0810 0.0975 0.0995 0.0999 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

0.0975 0.1656 0.1905 0.1973 0.1992 0.1998 0.1999 0.2000 0.2000 0.2000

0.0995 0.1905 0.2538 0.2838 0.2947 0.2984 0.2996 0.2999 0.3000 0.3000

0.0999 0.1973 0.2838 0.3460 0.3794 0.3933 0.3982 0.3996 0.4000 0.4000

0.1000 0.1992 0.2947 0.3794 0.4425 0.4784 0.4937 0.4987 0.4999 0.5000

0.1000 0.1998 0.2984 0.3933 0.4784 0.5435 0.5810 0.5959 0.5996 0.6000

0.1000 0.1999 0.2996 0.3982 0.4937 0.5810 0.6494 0.6872 0.6988 0.7000

0.1000 0.2000 0.2999 0.3996 0.4987 0.5959 0.6872 0.7605 0.7955 0.8000

0.1000 0.2000 0.3000 0.4000 0.4999 0.5996 0.6988 0.7955 0.8772 0.9000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

As soon as n = 3 we observe how near this operator approximates x ◦ y ∆
= min(x, y).

• Result obtained with the fusion operator: x ◦ y ∆
= min(x, y)

0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

0.1000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000

0.1000 0.2000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000

0.1000 0.2000 0.3000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000

0.1000 0.2000 0.3000 0.4000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.6000 0.6000 0.6000 0.6000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.7000 0.7000 0.7000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.8000 0.8000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 0.9000

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000
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It was not obvious to obtain the functions wn. The fuzzy operator ◦ = min comes from a limit of

fusions ◦n, each admitting after confidence transformation wn [A/e] and wn [B/e], a decomposition in a

conventional product of real numbers.

11.3.1 Independence-interdependence

The second functional relation

w ([A ∧B/e]) = w ([A/e]) w ([B/e])

is discarded if we consider there is a link between the knowledge of two facts in a given environment.

This constraint, admitted by Cox then by Tribus, is however not valid for all uncertainty models. Let

us give two examples for which the argument given by Tribus is insufficient. In the probability theory,

randomly taking of balls with or without replacement leads to two different models. The testimony of

different persons is another example. The testimonies can be obtained separately or in a meeting.

Thus, because of the acquisition conditions of the knowledge, the postulates lead to two distinct the-

ories: the probability theory and the fuzzy logic.

In addition, from the four basic postulates explained above and valid for the three theories (proba-

bility theory, evidence theory and fuzzy logic), and while adding the hypothesis of interdependence and

admitting a postulate of precision leading to the additive rule, one would obtain the probabilities as well

as the transition probabilities and therefore the credibilities.

11.3.2 T-norm description

We have also obtained a result characterizing the t-norms by correcting and extending a previous demon-

stration [11]. This is our third result.

Theorem 2. Let ◦ be a continuous t-norm of [0, 1]× [0, 1]→ [0, 1]. Then, the interval [0, 1] is the union

1. of closed intervals [b, c] over which the equality s ◦ s = s is satisfied and

2. of open intervals (a, b) for which a ◦ a = a and b ◦ b = b and for which the inequality s ◦ s 6= s is

satisfied.

For the intervals [b, c] of first kind : ∀x ∈ [b, c] , ∀y ∈ [x, 1] , x ◦ y = x ∧ y.

For each second kind interval (a, b) there exists a function w strictly increasing from [a, b] into [0, 1]

such that w(b) = 1

If ∀s ∈ (a, b) s ◦ s 6= a then w(a) = 0 and ∀x, y ∈ [a, b] x ◦ y = w−1 (w (x)w (y))

If ∃s ∈ (a, b) s ◦ s = a then w(a) > 0 and ∀x, y ∈ [a, b] x ◦ y = w−1 (w (x)w (y)) ∨ a
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On each like-interval (a, b), the operation ◦ can be constant when x varies from a. However, the

interval within the function is really constant depending upon the value of the second variable y. The

separation curve {(x, y) ∈ [a, b]× [a, b] ;x ◦ y = a} in the space [a, b]× [a, b] is given by the equality

w(x ◦ y) = w(a) = w(x)w(y).

This theorem results from the lemmas hereafter.

Lemma 2. The set {x ∈ [0, 1] ;T (x, x) = x} is a union of closed intervals of the interval [0, 1].

Any adherence point s of a sequence (sn;n ∈ N, T (sn, sn) = sn) satisfies T (s, s) = s with respect

to the continuity of T , and therefore s belongs to the closed interval. Thus, for example, the set
{

[0] ,
[

1
3n ,

2
3n

]
;n ∈ N

}
constitutes an infinite family of closed intervals. On each of the open intervals

of the countable infinity of the complementary set, it is sufficient to define a t-norm by means of a

continuous and increasing function w. Each of these functions w depends on the open interval under

consideration.

Lemma 3. If α exists in the open interval (0, 1) such that T (α, α) 6= α then there are two real values

a, b satisfying the inequalities 0 ≤ a < α < b ≤ 1 as well as the equalities T (a, a) = a and T (b, b) = b.

Furthermore, for all real values in the open interval (a, b), the inequality T (s, s) 6= s is satisfied.

Lemma 4. Let T be a continuous t-norm. For all pair (x, y) of [0, 1] such that there exists a, x ≤ a ≤ y
with T (a, a) = a, we have:

T (x, y) = x = min(x, y).

Any continuous t-norm T coincides over [0, 1] × [0, 1] with the min function, except for the points

(x, y), x ≤ y for which one cannot find a real α such that:

x ≤ α ≤ y et T (α, α) = α.

One has to study the behavior of T in the regions [a, b]× [a, b] of the intervals [a, b] of the second kind.

Lemma 5. Consider the associative and commutative operation ◦ of [a, b] × [a, b] → [a, b] which is

continuous and decreasing with respect to both variables and such that a◦a = a and b◦b = b but such that

for all s in the open interval (a, b), one has the inequality s ◦ s 6= s. Let u be in the closed interval [a, b],

upper bound of v such that v ◦ v = a, that is such that u
4
= sup {v ∈ [a, b] ; v ◦ v = a}. The operation ◦ is

strictly increasing for each of both variables wherever x ◦ y 6= a, and if u = a then ◦ is strictly increasing

over [a, b]× [a, b].

Lemma 6. Under valid conditions of application of lemma 5, if u = a, then for all α in (a, b) and for

all nonzero positive rational number q, the real power α◦q is defined and is a real number in the (a, b).
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Remark 1. It can easily be verified that:

α◦ n
m = α◦ rn

rm

and thus:

α◦ n
m ◦ α◦ r

s = α◦ sn
sm ◦ α◦ rm

sm = α◦ rm+sn
sm = α◦( n

m
+ r

s
)

Lemma 7. Under valid conditions of application of lemma 5, if u = a the application q ∈ Q?
+ → α◦q ∈

(a, b) is strictly decreasing and satisfies to limq→0 α
◦q = b and limq→∞ α◦q = a.

Lemma 8. The application r ∈ [0,∞) → α◦r 4
= sup {α◦q; r < q} is continuous and decreasing and

α◦r 4
= inf {α◦q; q < r}.

Lemma 9. Under valid conditions of application of lemma 5, if u > a, one defines the application

r ∈ [0,∞) → u◦r in [a, b] as previously. With u◦r strictly decreasing over [0, 2] such that u◦0 = b,

u◦2 = a, and for all r ≥ 2 u◦r = a.

Lemma 10. Under valid conditions of application of lemma 5, if u > a, one defines for all α ∈ (a, b),

the application r ∈ [0,∞[→ α◦r in [a, b]. In this case, there is a positive real number r0 such that α◦r is

strictly decreasing over [0, r0], and α◦0 = b, α◦r0 = a, and for all r ≥ r0 α◦r = a .

Lemma 11. Consider the associative and commutative operation ◦ of [a, b] × [a, b] → [a, b] continuous

and strictly increasing with respect to both variables such that a ◦ a = a and b ◦ b = b but one has the

inequality s ◦ s 6= s for all s in the open interval (a, b). Therefore, there is a continuous and strictly

increasing function w such that:

x ◦ y = w−1(w(x)w(y)) ∨ a = max(a,w−1(w(x)w(y))) (11.22)

The results of the lemmas finish the justification of the theorem 2.

11.4 Conclusions

Finally, the same postulates applied on confidences, in different environments (either in dependence

or independence situation), imply the same foundation for the various modern theories of information

fusion in the framework of uncertainty by using deductions that we have unified. The independence

between elementary confidences does not need to be understood in the probabilistic sense. The formula

P (A/e) = P (A) of the probability of A in the environment e has no sense. One has to find another

conceptualization of the notion of independence moving away from the probabilistic concept.

We must make new models when fusion analysis is to be applied in all situations. We take the simple

example of logical implication

P and Q⇒ R
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Every logical proposition P,Q,R takes only one of the two numerical values 0, 1. Yet with Probability

these propositions are able to take any numerical value in the interval [0, 1] to represent the statistical

limit of existence when the experiment is repeated as often as possible. Nowadays, the numbers [P/e],

[Q/e] and [R/e] only give the intuitive beliefs when the conditions e on the surroundings are well defined.

To be more explicit, let take a plausible medical situation. Many patients present chaotic neurologic

disorders. Does the deterministic chaos P with the drug Q result in the end of illness R?

We have no reason in such a medical situation to introduce the limitation of logical implication. More-

over, we have the fusion ”and” about the two beliefs [P/e] on the disorder P and [Q/e] on the efficiency

of drug Q and we expect this fusion to give precisely the belief [R/e] of the recovery R from the two

beliefs [P/e] and [Q/e].

In addition, let us take the discussion of Zadeh’s example, discussed in Chapter 5, in order to make

a new analysis with our fusion principles. One has the values

m(M) = 0 m(C) = 0 m(T ) = 1

(M standing for Meningitis, C for contusion and T for tumor) for the masses from Dempster-Shafer

renormalization where the normalization coefficient is

1−m(∅) = 0.0001

From our principles, it is possible to give a belief for the global model. Without renormalization the

two doctors give the beliefs

[T/e]1 = 0.01 [T/e]2 = 0.01

With the principles of this chapter, the numerical value for any fusion arising from these two beliefs

is equal to or less than 0.01 = min([T/e]1, [T/e]2). So the Dempster-Shafer normalization is not a fusion!

The normalization is in contradiction with the arguments of this chapter. Note that the hybrid DSm rule

of combination proposed in Chapter 1 provides in this example explained in details in Chapter 5 (Section

5.3.1) Cr(T ) = m(T ) = 0.0001 ≤ min([T/e]1, [T/e]2) which is coherent with a confidence measure.

The probable explanation is that the Dempster-Shafer normalization is the only mistake of the model.

One supposes global cohesion between initial mass values coming from Demspster-Shafer rules. In math-

ematics, we know it is often impossible to adjust analytical functions in the whole complex plan C; global

cohesion is impossible! For example the logarithmic function is defined in any neighbourhood but it is not
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defined in the whole complex plan. The global cohesion is probably the mistake. The DSmT framework

seems to provide a better model to satisfy confidence measures and fusion postulates. Some theoretical

investigations are currently done to fully analyze DSmT in the context of this work.

Another way to explain losses of mass in Dempster-Shafer theory is to introduce new sets. In any

probability diffusion, we observe occasionally probability masses loading infinity with an evolution. Let

us take the mass 1 in position {n} and increase n to infinity we have no more mass on the real line

R. Similarly, let us take the masses 0.5 on {−n} and 0.5 on {n}; this time we load {−∞} and {∞},
n increasing to infinity. In Dempster-Shafer model, one sometimes loads the empty set {∅} and (or) an

extra set, only to explain vanishing masses.

Probably Dempster-Shafer renormalization is the only mistake of the model because false global prop-

erty of masses is supposed. It is important to know the necessary axioms given renormalization truth.

Surroundings are so different that fusion described only by product is certainly a construction that is

too restrictive.

The processing in concrete application of the results presented here suppose additional hypotheses,

since any information fusion introduces monotone functions strictly increasing whose existence is proven

in this paper. These functions (not only one!) remain to be identified for each application. Theoretical

considerations should allow to keep certain typical families of functions. Experimental results would next

identify some unknown parameters if some parameterized family of such functions.

Applications of such a methodology on the information fusion such as air pollution measures given

by sensors will be processed.

Moreover, during its time evolution, the information data fusion can thus be described by successive

t-norms amongst which probability should be introduced.
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informatique, Masson, Paris, 2nd édition, 1988.
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