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Abstra
t

In this paper, we explore the 
onne
tions between graphs and Turing ma
hines.

A method to 
onstru
t Turing ma
hines from a general undire
ted graph is provided.

Determining whether a Hamiltonian 
y
le does exist is now shown to be equivalent

to solving the halting problem. A modi�ed version of the 
lassi
al Turing ma
hine

is now developed to solve 
ertain 
lasses of 
omputational problems.

1 Introdu
tion

Currently there are no known polynomial-time algorithms whi
h allow us to determine

whether a Hamiltonian 
y
le in a graph exists. Current methods often redu
e to variants

of brute for
e 
omputation or developing a solution limited to a subset of the general

problem. Both these approa
hes do not yield desired results in real life situations. In

this paper we stray from representing a graph G as just an obje
t (V,E). We transform

graphs into Turing ma
hines and investigate the 
onsequen
es of su
h a transformation.

Outline The remainder of this paper is organized as follows. Se
tion 2 illustrates our

approa
h of viewing graphs as Turing ma
hines. Some of the results dire
tly obtained

from this new viewpoint are listed in Se
tion 3. Se
tion 4 shows ways of 
onstru
ting a

newer 
lass of 
omputing ma
hines. Se
tion 5 indi
ates lines of future resear
h.

2 Graph Transformation

We need to formalize the pro
ess of 
onverting a graph G = (V,E) to its equivalent

Turing ma
hine 
ounterpart M =< Q,Γ, b,Σ, δ, q0, F >1

. The following is just one of

several ways to do it.

• Q is the �nite, non-empty set of states and is same as set V .

• Γ is a �nite, non-empty set of tape alphabet symbols. Every element in |E| is
represented by a unique (non-zero) symbol.
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We use the Hop
roft/Ullmann representation of a Turing ma
hine here
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• b ∈ Γ is the blank symbol. We denote that by 0.

• Σ ⊆ Γ\b is the set of input symobols.

• q0 ∈ Q is the initial state. Without any loss of generality we denote the �rst element

in V , v0 as our initial state.

• F ⊆ Q is the set of �nal or stopping state. This is same as v0.

• δ :: Q× Γ → Q× Γ× {L,R} is our transition fun
tion. This 
an be derived easily

from the set E. Without any loss of generality we denote an element in E say (vi, vj)
and the edge 
orresponds to the input 
hara
ter α. This will 
ontribute to building

our δ with 2 rows: vi × α → vj × α× R and vj × α → vi × α× L.

A sample Turing ma
hine T is illustrated (Figure 1) alongside its graph 
ounterpart.

The node in blue represents v0. This denotes the start/stop state by whi
h we know that

the 
omputation is over at least on
e.

Figure 1: A Turing Ma
hine modelling the bridges of Königsberg

An illustration of some Turing ma
hines fashioned from arbitrary graphs is given

below(Figure 2). The numbers on the edges represent the input. Every edge in the

graph(s) below is bi-dire
tional (as per our earlier 
onstru
tion). We just show it as a

single line without the dire
tional arrows solely for simpli
ity.

Figure 2: Turing ma
hines 
onstru
ted from various graphs

The idea behind our 
onstru
tion is that every path in a graph 
an now be linked to the

pro
essing of some input m by Turing ma
hine T . There is no Hamiltonian path in the

undire
ted graph 
ounterpart of our �rst Turing ma
hine. So there 
annot be any input of

size |V | where there are no repeating alphabets for whi
h the �rst Turing ma
hine stops.

The remaining two do indeed stop for input 1345 and 237651 respe
tively. If Tg is the
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Turing representation of a graph G and it halts on a input of size |V | with no repeating

alphabets, then it is obvious that the graph G has a Hamiltonian Path.

3 Results

There exist an in�nite number of graphs and 
onsequently an in�nite number of Turing

ma
hines whi
h 
an be 
onstru
ted out of them. A solution to the hamiltonian path

problem will qualify as a partial halting solver.

Lemma 3.1 A brute for
e approa
h to solving the Hamiltonian path problem does not

qualify as a partial halting solver.

Proof Consider the graph G = (V,E) and its equivalent Turing 
ounterpart Tg. Note

that we 
annot determine a priori if an arbitrary Turing ma
hine halts on a parti
ular

input. This would mean solving the halting problem. So the brute for
e approa
h to

solve the problem is to run V ! 
opies of Tg ea
h with one input from the alphabet set

V !2. If at least one 
opy of Tg halts in V steps, then we've a solution to the hamiltonian

problem for graph G. But this impli
itly assumes that a operator is present and the rate

of 
omputation is known prior to the start of the 
omputation pro
ess. If we assume that

a ma
hine 
an 
onsume a single alphabet of the input in one time interval, then the job

of the operator is as follows:

1. At time t = N if even one ma
hine has 
ompleted 
omputation, then report su

ess.

Optionally shut down all the ma
hines.

2. After N time units have elapsed and none of the ma
hines have 
ompleted, then

report failure and shut down all the ma
hines.

The requirement of an operator ensures that this does not qualify as a partial solution

to the halting problem. We 
an only get rid of the operator and our dependen
e on

a prede�ned rate of 
omputation if we renormalize the input provided to the Turing

ma
hine. This is also a manual pro
ess. Stri
tly speaking if (vi, vj) /∈ E, then E(vi, vj) =
∞ simply be
ause it is unde�ned. Su
h an input 
annot be 
onsumed by a Turing ma
hine

and we need to manually repla
e the in�nities arising with a 
onstant c. So for example

if edge (vi, vj) exists, then E(vi, vj) = 1, else E(vi, vj) = 0. With the input restru
tured,

we 
an make a Turing ma
hine run automati
ally till we �gure out an answer, either 0
or 1 whether an Hamiltonian path does indeed exist in the graph input. The relian
e of

manually renormalizing the input again rules it out as a proper partial halting solver.

The general question remains? Is there a 
omputable fun
tion to determine if a Hamil-

tonian path is present in graph G.

De�nition If G has a hamiltonian path m then H(V,E) returns 1. For all other 
ases

H returns 0. We further assume H is 
omputable
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and that the input has not been

renormalized. An undire
ted graph 
an either have a Hamiltonian path or none exists.

So we are guaranteed that H will always return a value.

2

If we always assume that the �rst vertex is our v0, then it is (V − 1)! ma
hines
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Su
h a fun
tion will in theory allow us to a priori determine whether an arbitrary Turing ma
hines

does stop for some input. But we disregard this issue right now
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Theorem 3.2 The general method H de�ned above 
an be used to 
onstru
t a total fun
-

tion and hen
e 
annot exist.

Proof We 
onstru
t a program HAM based on the fun
tion H . HAM tries to extra
t

the undire
ted graph from a given program p. If it is not able to do that then it returns

0, else it returns the value of H.

The pseudo 
ode for the same is given in Algorithm 1. We use the Hop
roft/Ullmann

representation to extra
t the graph information from p.

Algorithm 1 Total Fun
tion HAM

1: pro
edure HAM(p)

2: if |F | 6= 1 and q0 6= F then

3: return 0

4: for all (vi, α) ∈ δ do
5: if vi × α → vj × α× R ∈ δ and vj × α → vi × α× L /∈ δ then
6: return 0

7: if vi × α → vj × α× L ∈ δ and vj × α → vi × α×R /∈ δ then
8: return 0

9: return H(Q,distin
t(vi, vj ∈ δ))

For every input program p, HAM is guaranteed to produ
e a result. Or in other

words, HAM halts on all inputs. But this is a 
ontradi
tion. If we've a total fun
tion

then 
learly, we've solved the Universal halting problem. So our assumption of H being


omputable is wrong.

4 Hyper Turing Ma
hines

We present an improvement over 
urrent brute for
e approa
hes to solving problems

like Hamiltonian path problem. Consider a general graph G = (V,E). Our task is to

determine if a Hamiltonian path exists in linear time. The total number of verti
es in the

graph is denoted by N .

Assumptions We assume that the pro
essing starts at node v0. Ea
h node in the graph

knows the nodes dire
tly 
onne
ted to it and 
an pass messages to its neighbours. Nodes


an delete messages, 
opy messages and update messages. All nodes also share a 
ommon


lo
k. A message in our system is just a listing of the verti
es in the graph along with a

binary �ag atta
hed to ea
h vertex. The �ag 
an be updated only on
e for ea
h vertex.

In one time interval, nodes 
olle
t messages, pro
ess messages and send out updates to

its neighbors.

When a node v re
eives a message in our s
heme, the a
tions performed are the

following:

• If the �ag(v) in the message is already set to 1, then dis
ard the message.

• if the �ag(v) in the message is set to 0, then set it to 1. Copy and send out the

updated message to all its neighbors.

4



We start our pro
essing at node v0 at time t = 0. It sends a message to its neighbors

with �ag(v0) set to 1 and all other entries set to 0. At time t = N if a node re
eives a

message, then we know that a Hamiltonian path exists.

While our s
heme works in linear time, it is ine�
ient in terms of spa
e 
onsumption.

The number of messages 
an be polynomial but will still be less than N ! in most 
ases

sin
e we only investigate a
tual paths. This is still an improvement over 
urrent brute

for
e approa
hes and also presents a di�erent approa
h in parallel 
omputation.

5 Con
lusions

We proved that a general algorithm to solve problems like Hamiltonian path problem

do not exist. Lines of future resear
h involve investigating non-Turing models (as in

Se
tion 4). It is an open question as to whether su
h s
hemes 
an solve problems like the

Hamiltonian path e�
iently for graphs with low sparsity. Also if we limit pro
essing on

some nodes pi
ked arbitrarily, then are we still guaranteed an answer? If so what is the

spa
e and time 
omplexity involved.
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