Hamiltonian Paths in Graphs

Atul Mehta
India

December 3, 2016

Abstract

In this paper, we explore the connections between graphs and Turing machines.
A method to construct Turing machines from a general undirected graph is provided.
Determining whether a Hamiltonian cycle does exist is now shown to be equivalent
to solving the halting problem. A modified version of the classical Turing machine
is now developed to solve certain classes of computational problems.

1 Introduction

Currently there are no known polynomial-time algorithms which allow us to determine
whether a Hamiltonian cycle in a graph exists. Current methods often reduce to variants
of brute force computation or developing a solution limited to a subset of the general
problem. Both these approaches do not yield desired results in real life situations. In
this paper we stray from representing a graph G as just an object (V, E). We transform
graphs into Turing machines and investigate the consequences of such a transformation.

Outline The remainder of this paper is organized as follows. Section [illustrates our
approach of viewing graphs as Turing machines. Some of the results directly obtained
from this new viewpoint are listed in Section B Section (] shows ways of constructing a
newer class of computing machines. Section [indicates lines of future research.

2 Graph Transformation

We need to formalize the process of converting a graph G = (V, E) to its equivalent
Turing machine counterpart M =< Q,I',b,X, 06, qo, F’ S|, The following is just one of
several ways to do it.

e () is the finite, non-empty set of states and is same as set V.

e [' is a finite, non-empty set of tape alphabet symbols. Every element in |E| is
represented by a unique (non-zero) symbol.

'We use the Hopcroft /Ullmann representation of a Turing machine here

b € I' is the blank symbol. We denote that by 0.

Y, C I'\b is the set of input symobols.

Qo € @ is the initial state. Without any loss of generality we denote the first element
in V', vy as our initial state.

F C Q is the set of final or stopping state. This is same as .

0:QxI = QxT x{L, R} is our transition function. This can be derived easily
from the set E. Without any loss of generality we denote an element in E say (v;, v;)
and the edge corresponds to the input character a. This will contribute to building
our § with 2 rows: v; X« = v; X a x Rand v; X @ = v; X a X L.

A sample Turing machine T is illustrated (Figure [I) alongside its graph counterpart.
The node in blue represents vy. This denotes the start/stop state by which we know that

the computation is over at least once.

Figure 1: A Turing Machine modelling the bridges of Kénigsberg

An illustration of some Turing machines fashioned from arbitrary graphs is given
below(Figure). The numbers on the edges represent the input. Every edge in the
graph(s) below is bi-directional (as per our earlier construction). We just show it as a
single line without the directional arrows solely for simplicity.

Figure 2: Turing machines constructed from various graphs

The idea behind our construction is that every path in a graph can now be linked to the
processing of some input m by Turing machine T'. There is no Hamiltonian path in the
undirected graph counterpart of our first Turing machine. So there cannot be any input of
size |V'| where there are no repeating alphabets for which the first Turing machine stops.
The remaining two do indeed stop for input 1345 and 237651 respectively. If T is the

2

Turing representation of a graph G and it halts on a input of size |V| with no repeating
alphabets, then it is obvious that the graph G has a Hamiltonian Path.

3 Results

There exist an infinite number of graphs and consequently an infinite number of Turing
machines which can be constructed out of them. A solution to the hamiltonian path
problem will qualify as a partial halting solver.

Lemma 3.1 A brute force approach to solving the Hamiltonian path problem does not
qualify as a partial halting solver.

Proof Consider the graph G = (V, E) and its equivalent Turing counterpart 7,. Note
that we cannot determine a prior: if an arbitrary Turing machine halts on a particular
input. This would mean solving the halting problem. So the brute force approach to
solve the problem is to run V! copies of T, each with one input from the alphabet set
V!E. If at least one copy of T, halts in V' steps, then we’ve a solution to the hamiltonian
problem for graph G. But this implicitly assumes that a operator is present and the rate
of computation is known prior to the start of the computation process. If we assume that
a machine can consume a single alphabet of the input in one time interval, then the job
of the operator is as follows:

1. At time t = N if even one machine has completed computation, then report success.
Optionally shut down all the machines.

2. After N time units have elapsed and none of the machines have completed, then
report failure and shut down all the machines.

The requirement of an operator ensures that this does not qualify as a partial solution
to the halting problem. We can only get rid of the operator and our dependence on
a predefined rate of computation if we remormalize the input provided to the Turing
machine. This is also a manual process. Strictly speaking if (v;,v;) ¢ E, then E(v;,v;) =
oo simply because it is undefined. Such an input cannot be consumed by a Turing machine
and we need to manually replace the infinities arising with a constant c. So for example
if edge (v;,v;) exists, then E(v;,v;) = 1, else E(v;,v;) = 0. With the input restructured,
we can make a Turing machine run automatically till we figure out an answer, either 0
or 1 whether an Hamiltonian path does indeed exist in the graph input. The reliance of
manually renormalizing the input again rules it out as a proper partial halting solver.

The general question remains? Is there a computable function to determine if a Hamil-
tonian path is present in graph G.

Definition If G has a hamiltonian path m then H(V, E') returns 1. For all other cases
H returns 0. We further assume H is computablad and that the input has not been
renormalized. An undirected graph can either have a Hamiltonian path or none exists.
So we are guaranteed that H will always return a value.

2If we always assume that the first vertex is our vp, then it is (V — 1)! machines
3Such a function will in theory allow us to a priori determine whether an arbitrary Turing machines
does stop for some input. But we disregard this issue right now

Theorem 3.2 The general method H defined above can be used to construct a total func-
tion and hence cannot exist.

Proof We construct a program HAM based on the function H. HAM tries to extract
the undirected graph from a given program p. If it is not able to do that then it returns
0, else it returns the value of H.

The pseudo code for the same is given in Algorithm [Il We use the Hopcroft /Ullmann
representation to extract the graph information from p.

Algorithm 1 Total Function HAM
1: procedure HAM(P)
2 if |F| # 1 and ¢y # F then
3 return 0
4 for all (v;, @) € § do
5: if v, xa—=vjxaxRedandv; X a—v; xax L ¢4 then
6
7
8
9

return 0
if v, xa—vjxaxLedandv, xa—v; xax R ¢ then
return 0
return H(Q.distinct(v;, v; € 9))

For every input program p, HAM is guaranteed to produce a result. Or in other
words, HAM halts on all inputs. But this is a contradiction. If we've a total function
then clearly, we’ve solved the Universal halting problem. So our assumption of H being
computable is wrong.

4 Hyper Turing Machines

We present an improvement over current brute force approaches to solving problems
like Hamiltonian path problem. Consider a general graph G = (V, E). Our task is to
determine if a Hamiltonian path exists in linear time. The total number of vertices in the
graph is denoted by N.

Assumptions We assume that the processing starts at node vy. Each node in the graph
knows the nodes directly connected to it and can pass messages to its neighbours. Nodes
can delete messages, copy messages and update messages. All nodes also share a common
clock. A message in our system is just a listing of the vertices in the graph along with a
binary flag attached to each vertex. The flag can be updated only once for each vertex.
In one time interval, nodes collect messages, process messages and send out updates to
its neighbors.

When a node v receives a message in our scheme, the actions performed are the
following:

e If the flag(v) in the message is already set to 1, then discard the message.

e if the flag(v) in the message is set to 0, then set it to 1. Copy and send out the
updated message to all its neighbors.

We start our processing at node vy at time ¢ = 0. It sends a message to its neighbors
with flag(vg) set to 1 and all other entries set to 0. At time ¢ = N if a node receives a
message, then we know that a Hamiltonian path exists.

While our scheme works in linear time, it is inefficient in terms of space consumption.
The number of messages can be polynomial but will still be less than N! in most cases
since we only investigate actual paths. This is still an improvement over current brute
force approaches and also presents a different approach in parallel computation.

5 Conclusions

We proved that a general algorithm to solve problems like Hamiltonian path problem
do not exist. Lines of future research involve investigating non-Turing models (as in
Section M]). It is an open question as to whether such schemes can solve problems like the
Hamiltonian path efficiently for graphs with low sparsity. Also if we limit processing on
some nodes picked arbitrarily, then are we still guaranteed an answer? If so what is the
space and time complexity involved.

	Introduction
	Graph Transformation
	Results
	Hyper Turing Machines
	Conclusions

