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Abstract: This chapter introduces a generalized pignistic transformation (GPT)

developed in the DSmT framework as a tool for decision-making at the pignistic

level. The GPT allows to construct quite easily a subjective probability measure

from any generalized basic belief assignment provided by any corpus of evidence. We

focus our presentation on the 3D case and we provide the full result obtained by the

proposed GPT and its validation drawn from the probability theory.
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7.1 A short introduction to the DSm cardinality

O
ne important notion involved in the definition of the Generalized Pignistic Transformation (GPT)

is the DSm cardinality introduced in chapter 3 (section 3.2.2) and in [1]. The DSm cardinality of

any element A of hyper-power set DΘ, denoted CM(A), corresponds to the number of parts of A in the cor-

responding fuzzy/vague Venn diagram of the problem (modelM) taking into account the set of integrity

constraints (if any), i.e. all the possible intersections due to the nature of the elements θi. This intrinsic

cardinality depends on the model M (free, hybrid or Shafer’s model). M is the model that contains A,

which depends both on the dimension n = |Θ| and on the number of non-empty intersections present in

its associated Venn diagram. The DSm cardinality depends on the cardinal of Θ = {θ1, θ2, . . . , θn} and

on the model of DΘ (i.e., the number of intersections and between what elements of Θ - in a word the

structure) at the same time; it is not necessarily that every singleton, say θi, has the same DSm cardinal,

because each singleton has a different structure; if its structure is the simplest (no intersection of this

elements with other elements) then CM(θi) = 1, if the structure is more complicated (many intersections)

then CM(θi) > 1; let’s consider a singleton θi: if it has 1 intersection only then CM(θi) = 2, for 2 inter-

sections only CM(θi) is 3 or 4 depending on the modelM, for m intersections it is between m+ 1 and 2m

depending on the model; the maximum DSm cardinality is 2n−1 and occurs for θ1∪θ2∪ . . .∪θn in the free

model Mf ; similarly for any set from DΘ: the more complicated structure it has, the bigger is the DSm

cardinal; thus the DSm cardinality measures the complexity of en element from DΘ, which is a nice char-

acterization in our opinion; we may say that for the singleton θi not even |Θ| counts, but only its structure

(= how many other singletons intersect θi). Simple illustrative examples have already been presented in

chapter 3. One has 1 ≤ CM(A) ≤ 2n − 1. CM(A) must not be confused with the classical cardinality

|A| of a given set A (i.e. the number of its distinct elements) - that’s why a new notation is necessary here.

It has been shown in [1], that CM(A), is exactly equal to the sum of the elements of the row of Dn

corresponding to proposition A in the un basis (see chapter 2). Actually CM(A) is very easy to compute

by programming from the algorithm of generation of DΘ given in chapter 2 and in [2].

If one imposes a constraint that a set B from DΘ is empty (i.e. we choose a hybrid DSm model),

then one suppresses the columns corresponding to the parts which compose B in the matrix Dn and the

row of B and the rows of all elements of DΘ which are subsets of B, getting a new matrix D′
n which

represents a new hybrid DSm model M′. In the un basis, one similarly suppresses the parts that form

B, and now this basis has the dimension 2n − 1− CM(B).



7.2. THE CLASSICAL PIGNISTIC TRANSFORMATION (CPT) 145

7.2 The Classical Pignistic Transformation (CPT)

We follow here Smets’ point of view [8] about the assumption that beliefs manifest themselves at two

mental levels: the credal level where beliefs are entertained and the pignistic level where belief functions

are used to make decisions. Pignistic terminology has been coined by Philippe Smets and comes from

pignus, a bet in Latin. The probability functions, usually used to quantify the beliefs at both levels,

are actually used here only to quantify the uncertainty when a decision is really necessary, otherwise we

argue as Philippe Smets does, that beliefs are represented by belief functions. To take a rational decision,

we propose to transform generalized beliefs into pignistic probability functions through the Generalized

Pignistic Transformation (the GPT) which will be presented in the following. We first recall the Classical

Pignistic Transformation (the CPT) based on Dempster-Shafer Theory (DST) and then we generalize it

within the Dezert-Smarandache Theory (DSmT) framework.

When a decision must be taken, we use the expected utility theory which requires to construct a proba-

bility function P{.} from basic belief function m(.) [8]. This is achieved by the so-called classical Pignistic

Transformation. In the Transferable Belief Model (the TBM) context [7] with open-world assumption,

Philippe Smets derives the pignistic probabilities from any non normalized basic belief assignment m(.)

(i.e. for which m(∅) ≥ 0) by the following formula [8]:

P{A} =
∑

X⊆Θ

|X ∩A|
|X |

m(X)

1−m(∅) (7.1)

where |A| denotes the number of worlds in the set A (with convention |∅|/|∅| = 1, to define P{∅}).
P{A} corresponds to BetP (A) in Smets’ notation [8]. Decisions are achieved by computing the expected

utilities of the acts using the subjective/pignistic P{.} as the probability function needed to compute

expectations. Usually, one uses the maximum of the pignistic probability as decision criterion. The max.

of P{.} is often considered as a prudent betting decision criterion between the two other alternatives (max

of plausibility or max. of credibility which appears to be respectively too optimistic or too pessimistic).

It is easy to show that P{.} is indeed a probability function (see [7]).

It is important to note that if the belief mass m(.) results from the combination of two independent

sources of evidence (i.e. m(.) = [m1 ⊕m2](.)) then, at the pignistic level, the classical pignistic probabil-

ity measure P (.) remains the same when using Dempster’s rule or when using Smets’ rule in his TBM

open-world approach working with m(∅) > 0. Thus the problem arising with the combination of highly

conflicting sources when using Dempster’s rule (see chapter 5), and apparently circumvented with the

TBM at the credal level, still fundamentally remains at the pignistic level. The problem is only trans-

ferred from credal level to pignistic level when using TBM. TBM does not help to improve the reliability
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of the decision-making with respect to Dempster’s rule of combination because the pignistic probabilities

are strictly and mathematically equivalent. In other words, if the result of the combination is wrong or

at least very questionable or counter-intuitive when the degree of the conflict m(∅) becomes high, then

the decision based on pignistic probabilities will become inevitably wrong or very questionable too.

Taking into account the previous remark, we rather prefer to adopt from now on the classical

Shafer’s definition for basic belief assignment m(.) : 2Θ → [0, 1] which imposes to take m(∅) = 0 and
∑

X∈2Θ m(X) = 1. We adopt therefore the following definition for the Classical Pignistic Transformation

(CPT):

P{A} =
∑

X∈2Θ

|X ∩A|
|X | m(X) (7.2)

7.3 A Generalized Pignistic Transformation (GPT)

7.3.1 Definition

To take a rational decision within the DSmT framework, it is necessary to generalize the Classical Pignistic

Transformation in order to construct a pignistic probability function from any generalized basic belief

assignment m(.) drawn from the DSm rules of combination (the classic or the hybrid ones - see chapter

1). We propose here the simplest and direct extension of the CPT to define a Generalized Pignistic

Transformation as follows:

∀A ∈ DΘ, P{A} =
∑

X∈DΘ

CM(X ∩A)

CM(X)
m(X) (7.3)

where CM(X) denotes the DSm cardinal of proposition X for the DSm model M of the problem under

consideration.

The decision about the solution of the problem is usually taken by the maximum of pignistic proba-

bility function P{.}. Let’s remark the close ressemblance of the two pignistic transformations (7.2) and

(7.3). It can be shown that (7.3) reduces to (7.2) when the hyper-power set DΘ reduces to classical power

set 2Θ if we adopt Shafer’s model. But (7.3) is a generalization of (7.2) since it can be used for computing

pignistic probabilities for any models (including Shafer’s model).

7.3.2 P{.} is a probability measure

It is important to prove that P{.} built from GPT is indeed a (subjective/pignistic) probability measure

satisfying the following axioms of probability theory [4, 5]:
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• Axiom 1 (nonnegativity): The (generalized pignistic) probability of any event A is bounded by 0

and 1

0 ≤ P{A} ≤ 1

• Axiom 2 (unity): Any sure event (the sample space) has unity (generalized pignistic) probability

P{S} = 1

• Axiom 3 (additivity over mutually exclusive events): If A, B are disjoint (i.e. A ∩ B = ∅) then

P (A ∪B) = P (A) + P (B)

The axiom 1 is satisfied because, by the definition of the generalized basic belief assignment m(.), one

has ∀αi ∈ DΘ, 0 ≤ m(αi) ≤ 1 with
∑

αi∈DΘ m(αi) = 1 and since all coefficients involved within GPT

are bounded by 0 and 1, it follows directly that pignistic probabilities are also bounded by 0 and 1.

The axiom 2 is satisfied because all the coefficients involved in the sure event S , θ1 ∪ θ2 ∪ ... ∪ θn
are equal to one because CM(X∩S)/CM(X) = CM(X)/CM(X) = 1, so that P{S} ≡∑αi∈DΘ m(αi) = 1.

The axiom 3 is satisfied. Indeed, from the definition of GPT, one has

P{A ∪B} =
∑

X∈DΘ

CM(X ∩ (A ∪B))

CM(X)
m(X) (7.4)

But if we consider A and B exclusive (i.e. A ∩B = ∅), then it follows:

CM(X ∩ (A ∪B)) = CM((X ∩A) ∪ (X ∩B)) = CM(X ∩A) + CM(X ∩B)

By substituting CM(X ∩ (A ∪B)) by CM(X ∩A) + CM(X ∩B) into (7.4), it comes:

P{A ∪B} =
∑

X∈DΘ

CM(X ∩A) + CM(X ∩B)

CM(X)
m(X)

=
∑

X∈DΘ

CM(X ∩A)

CM(X)
m(X) +

∑

X∈DΘ

CM(X ∩B)

CM(X)
m(X)

= P{A}+ P{B}

which completes the proof. From the coefficients CM(X∩A)
CM(X) involved in (7.3), it can also be easily checked

that A ⊂ B ⇒ P{A} ≤ P{B}. One can also easily prove the Poincaré’ equality: P{A ∪ B} = P{A} +

P{B} − P{A ∩ B} because CM(X ∩ (A ∪ B) = CM((X ∩ A) ∪ (X ∩ B)) = CM(X ∩A) + CM(X ∩B)−
CM(X ∩ (A ∩B)) (one has substracted CM(X ∩ (A ∩B)), i.e. the number of parts of X ∩ (A∩B) in the

Venn diagram, due to the fact that these parts were added twice: once in CM(X ∩ A) and second time

in CM(X ∩B).
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7.4 Some examples for the GPT

7.4.1 Example for the 2D case

• With the free DSm model:

Let’s consider Θ = {θ1, θ2} and the generalized basic belief function m(.) over the hyper-power set

DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}. It is easy to construct the pignistic probability P{.}. According

to the definition of the GPT given in (7.3), one gets:

P{∅} = 0

P{θ1} = m(θ1) +
1

2
m(θ2) +m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1) +m(θ1 ∩ θ2) +

2

3
m(θ1 ∪ θ2)

P{θ1 ∩ θ2} =
1

2
m(θ2) +

1

2
m(θ1) +m(θ1 ∩ θ2) +

1

3
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = P{Θ} = m(θ1) +m(θ2) +m(θ1 ∩ θ2) +m(θ1 ∪ θ2) = 1

It is easy to prove that 0 ≤ P{.} ≤ 1 and P{θ1 ∪ θ2} = P{θ1}+ P{θ2} − P{θ1 ∩ θ2}

• With Shafer’s model:

If one adopts Shafer’s model (we assume θ1 ∩ θ2
M0

≡ ∅), then after applying the hybrid DSm rule of

combination, one gets a basic belief function with non null masses only on θ1, θ2 and θ1 ∪ θ2. By

applying the GPT, one gets:

P{∅} = 0

P{θ1 ∩ θ2} = 0

P{θ1} = m(θ1) +
1

2
m(θ1 ∪ θ2)

P{θ2} = m(θ2) +
1

2
m(θ1 ∪ θ2)

P{θ1 ∪ θ2} = m(θ1) +m(θ2) +m(θ1 ∪ θ2) = 1

which naturally corresponds in this case to the pignistic probability built with the classical pignistic

transformation (7.2).

7.4.2 Example for the 3D case

• With the free DSm model:
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X CM(X∩α6)
CM(X) ≤ CM(X∩α10)

CM(X)

α1 1 ≤ 1

α2 1 ≤ 1

α3 (1/2) ≤ (1/2)

α4 1 ≤ 1

α5 (2/3) ≤ (2/3)

α6 1 ≤ 1

α7 (2/3) ≤ (2/3)

α8 (3/4) ≤ (3/4)

α9 (2/4) ≤ (2/4)

X CM(X∩α6)
CM(X) ≤ CM(X∩α10)

CM(X)

α10 (3/4) ≤ 1

α11 (2/4) ≤ (2/4)

α12 (3/5) ≤ (3/5)

α13 (3/5) ≤ (4/5)

α14 (3/5) ≤ (3/5)

α15 (3/6) ≤ (4/6)

α16 (3/6) ≤ (3/6)

α17 (3/6) ≤ (4/6)

α18 (3/7) ≤ (4/7)

Table 7.1: Coefficients CM(X∩α6)
CM(X) and CM(X∩α10)

CM(X)

Let’s consider Θ = {θ1, θ2, θ3}, its hyper-power set DΘ = {α0, . . . , α18} (with αi, i = 0, . . . , 18

corresponding to propositions shown in table 3.1 of chapter 3, and the generalized basic belief as-

signment m(.) over the hyper-power set DΘ. The six tables presented in the appendix show the full

derivations of all generalized pignistic probabilities P{αi} for i = 1, . . . , 18 (P{∅} = 0 by definition)

according to the GPT formula (7.3).

Note that P{α18} = 1 because (θ1 ∪ θ2 ∪ θ3) corresponds to the sure event in our subjective prob-

ability space and
∑

αi∈DΘ m(αi) = 1 by the definition of any generalized basic belief assignment

m(.) defined on DΘ.

It can be verified (as expected) on this example, although being a quite tedious task, that Poincaré’

s equality holds:

P{A1 ∪ . . . ∪An} =
∑

I⊂{1,...,n}

I 6=∅

(−1)
|I|+1

P{
⋂

i∈I

Ai} (7.5)

It is also easy to verify that ∀A ⊂ B ⇒ P{A} ≤ P{B} holds. By example, for (α6 , (θ1∪θ3)∩θ2) ⊂
α10 , θ2) and from the expressions of P{α6} and P{α10} given in appendix, we directly conclude

that P{α6} ≤ P{α10} because

∀X ∈ DΘ,
CM(X ∩ α6)

CM(X)
≤ CM(X ∩ α10)

CM(X)
(7.6)

as shown in the table above.
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• Example with a given hybrid DSm model:

Consider now the hybrid DSm model M 6= Mf in which we force all possible conjunctions to be

empty, but θ1 ∩ θ2 according to the second Venn diagram presented in Chapter 3 and shown in

Figure 3.2. In this case the hyper-power set DΘ reduces to 9 elements {α0, . . . , α8} shown in table

3.2 of Chapter 3. The following tables present the full derivations of the pignistic probabilities

P{αi} for i = 1, . . . , 8 from the GPT formula (7.3) applied to this hybrid DSm model.

P{α1} = P{α2} = P{α3} = P{α4} =

(1/1)m(α1) (0/1)m(α1) (1/1)m(α1) (1/1)m(α1)

+(0/1)m(α2) +(1/1)m(α2) +(0/2)m(α2) +(0/1)m(α2)

+(1/2)m(α3) +(0/2)m(α3) +(2/2)m(α3) +(1/2)m(α3)

+(1/2)m(α4) +(0/2)m(α4) +(1/2)m(α4) +(2/2)m(α4)

+(1/3)m(α5) +(0/3)m(α5) +(2/3)m(α5) +(2/3)m(α5)

+(1/3)m(α6) +(1/3)m(α6) +(2/3)m(α6) +(1/3)m(α6)

+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7) +(2/3)m(α7)

+(1/4)m(α8) +(1/4)m(α8) +(2/4)m(α8) +(2/4)m(α8)

Table 7.2: Derivation of P{α1 , θ1 ∩ θ2}, P{α2 , θ3}, P{α3 , θ1} and P{α4 , θ2}

P{α5} = P{α6} = P{α7} = P{α8} =

(1/1)m(α1) (1/1)m(α1) (1/1)m(α1) (1/1)m(α1)

+(0/1)m(α2) +(1/1)m(α2) +(2/2)m(α2) +(2/2)m(α2)

+(2/2)m(α3) +(2/2)m(α3) +(1/2)m(α3) +(2/2)m(α3)

+(2/2)m(α4) +(1/2)m(α4) +(2/2)m(α4) +(2/2)m(α4)

+(3/3)m(α5) +(2/3)m(α5) +(2/3)m(α5) +(3/3)m(α5)

+(2/3)m(α6) +(3/3)m(α6) +(2/3)m(α6) +(3/3)m(α6)

+(2/3)m(α7) +(2/3)m(α7) +(3/3)m(α7) +(3/3)m(α7)

+(3/4)m(α8) +(3/4)m(α8) +(3/4)m(α8) +(4/4)m(α8)

Table 7.3: Derivation of P{α5 , θ1 ∪ θ2}, P{α6 , θ1 ∪ θ3}, P{α7 , θ2 ∪ θ3} and P{α8 , θ1 ∪ θ2 ∪ θ3}

• Example with Shafer’s model:

Consider now Shafer’s model M0 6= Mf in which we force all possible conjunctions to be empty

according to the third Venn diagram presented in Chapter 3. In this case the hyper-power set
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DΘ reduces to the classical power set 2Θ with 8 elements {α0, . . . , α7} explicated in table 3.3 of

Chapter 3. Applying, the GPT formula (7.3), one gets the following pignistic probabilities P{αi}
for i = 1, . . . , 7 which naturally coincide, in this particular case, with the values obtained directly

by the classical pignistic transformation (7.2):

P{α1} = P{α2} = P{α3} =

(1/1)m(α1) (0/1)m(α1) (0/1)m(α1)

+(0/1)m(α2) +(1/1)m(α2) +(0/1)m(α2)

+(0/1)m(α3) +(0/1)m(α3) +(1/1)m(α3)

+(1/2)m(α4) +(1/2)m(α4) +(0/2)m(α4)

+(1/2)m(α5) +(0/2)m(α5) +(1/2)m(α5)

+(0/2)m(α6) +(1/2)m(α6) +(1/2)m(α6)

+(1/3)m(α7) +(1/3)m(α7) +(1/3)m(α7)

Table 7.4: Derivation of P{α1 , θ1}, P{α2 , θ2} and P{α3 , θ3}

P{α4} = P{α5} = P{α6} = P{α7} =

(1/1)m(α1) (1/1)m(α1) (0/1)m(α1) (1/1)m(α1)

+(1/1)m(α2) +(0/1)m(α2) +(1/1)m(α2) +(1/1)m(α2)

+(0/1)m(α3) +(1/1)m(α3) +(1/1)m(α3) +(1/1)m(α3)

+(2/2)m(α4) +(1/2)m(α4) +(1/2)m(α4) +(2/2)m(α4)

+(1/2)m(α5) +(2/2)m(α5) +(1/2)m(α5) +(2/2)m(α5)

+(1/2)m(α6) +(1/2)m(α6) +(2/2)m(α6) +(2/2)m(α6)

+(2/3)m(α7) +(2/3)m(α7) +(2/3)m(α7) +(3/3)m(α7)

Table 7.5: Derivation of P{α4 , θ1∪θ2}, P{α5 , θ1∪θ3}, P{α6 , θ2∪θ3} and P{α7 , θ1∪θ2∪θ3} = 1

7.5 Conclusion

A generalization of the classical pignistic transformation developed originally within the DST framework

has been proposed in this chapter. This generalization is based on the new theory of plausible and

paradoxical reasoning (DSmT) and provides a new mathematical issue to help the decision-making under

uncertainty and paradoxical (i.e. highly conflicting) sources of information. The generalized pignistic

transformation (GPT) proposed here allows to build a subjective/pignistic probability measure over the

hyper-power set of the frame of the problem under consideration for all kinds of models (free, hybrid

or Shafer’s model). The GPT coincides naturally with the classical pignistic transformation whenever

Shafer’s model is adopted. It corresponds with the assumptions of classical pignistic probability general-
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ized to the free DSm model. A relation of GPT on general hybrid DSm models to assumptions of classical

PT is still in the process of investigation. Several examples for the 2D and 3D cases for different kinds

of models have been presented to illustrate the validity of the GPT.
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Appendix: Derivation of the GPT for the 3D free DSm model

P{α1} = P{α2} = P{α3} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +m(α2) +(1/2)m(α2)
+(1/2)m(α3) +(1/2)m(α3) +m(α3)
+(1/2)m(α4) +(1/2)m(α4) +(1/2)m(α4)
+(1/3)m(α5) +(1/3)m(α5) +(2/3)m(α5)
+(1/3)m(α6) +(2/3)m(α6) +(1/3)m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(1/4)m(α8) +(2/4)m(α8) +(2/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(1/4)m(α10) +(2/4)m(α10) +(1/4)m(α10)
+(1/4)m(α11) +(1/4)m(α11) +(2/4)m(α11)
+(1/5)m(α12) +(2/5)m(α12) +(2/5)m(α12)
+(1/5)m(α13) +(2/5)m(α13) +(2/5)m(α13)
+(1/5)m(α14) +(2/5)m(α14) +(2/5)m(α14)
+(1/6)m(α15) +(2/6)m(α15) +(2/6)m(α15)
+(1/6)m(α16) +(2/6)m(α16) +(2/6)m(α16)
+(1/6)m(α17) +(2/6)m(α17) +(2/6)m(α17)
+(1/7)m(α18) +(2/7)m(α18) +(2/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Derivation of P{α1}, P{α2} and P{α3} Derivation of P{α10}, P{α11} and P{α12}

P{α4} = P{α5} = P{α6} =
m(α1) m(α1) m(α1)
+(1/2)m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +(1/2)m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +(2/3)m(α6) +m(α6)
+(1/3)m(α7) +(2/3)m(α7) +(2/3)m(α7)
+(2/4)m(α8) +(3/4)m(α8) +(3/4)m(α8)
+(1/4)m(α9) +(2/4)m(α9) +(2/4)m(α9)
+(2/4)m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(2/5)m(α12) +(3/5)m(α12) +(3/5)m(α12)
+(2/5)m(α13) +(3/5)m(α13) +(3/5)m(α13)
+(2/5)m(α14) +(3/5)m(α14) +(3/5)m(α14)
+(2/6)m(α15) +(3/6)m(α15) +(3/6)m(α15)
+(2/6)m(α16) +(3/6)m(α16) +(3/6)m(α16)
+(2/6)m(α17) +(3/6)m(α17) +(3/6)m(α17)
+(2/7)m(α18) +(3/7)m(α18) +(3/7)m(α18)

P{α10} = P{α11} = P{α12} =
m(α1) m(α1) m(α1)
+m(α2) +(1/2)m(α2) +m(α2)
+(1/2)m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+(2/3)m(α5) +m(α5) +m(α5)
+m(α6) +(2/3)m(α6) +m(α6)
+(2/3)m(α7) +(2/3)m(α7) +m(α7)
+(3/4)m(α8) +(3/4)m(α8) +m(α8)
+(2/4)m(α9) +(2/4)m(α9) +(3/4)m(α9)
+m(α10) +(2/4)m(α10) +(3/4)m(α10)
+(2/4)m(α11) +m(α11) +m(α11)
+(3/5)m(α12) +(4/5)m(α12) +m(α12)
+(4/5)m(α13) +(3/5)m(α13) +(4/5)m(α13)
+(3/5)m(α14) +(3/5)m(α14) +(4/5)m(α14)
+(4/6)m(α15) +(3/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(4/6)m(α17) +(4/6)m(α17) +(5/6)m(α17)
+(4/7)m(α18) +(4/7)m(α18) +(5/7)m(α18)

Derivation of P{α4}, P{α5} and P{α6} Derivation of P{α13}, P{α14} and P{α15}

P{α7} = P{α8} = P{α9} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+(1/2)m(α4) +m(α4) +(1/2)m(α4)
+(2/3)m(α5) +m(α5) +(2/3)m(α5)
+(2/3)m(α6) +m(α6) +(2/3)m(α6)
+m(α7) +m(α7) +m(α7)
+(3/4)m(α8) +m(α8) +(3/4)m(α8)
+(3/4)m(α9) +(3/4)m(α9) +m(α9)
+(2/4)m(α10) +(3/4)m(α10) +(2/4)m(α10)
+(2/4)m(α11) +(3/4)m(α11) +(2/4)m(α11)
+(3/5)m(α12) +(4/5)m(α12) +(3/5)m(α12)
+(3/5)m(α13) +(4/5)m(α13) +(3/5)m(α13)
+(3/5)m(α14) +(4/5)m(α14) +(4/5)m(α14)
+(3/6)m(α15) +(4/6)m(α15) +(4/6)m(α15)
+(3/6)m(α16) +(4/6)m(α16) +(4/6)m(α16)
+(3/6)m(α17) +(4/6)m(α17) +(3/6)m(α17)
+(3/7)m(α18) +(4/7)m(α18) +(4/7)m(α18)

P{α16} = P{α17} = P{α18} =
m(α1) m(α1) m(α1)
+m(α2) +m(α2) +m(α2)
+m(α3) +m(α3) +m(α3)
+m(α4) +m(α4) +m(α4)
+m(α5) +m(α5) +m(α5)
+m(α6) +m(α6) +m(α6)
+m(α7) +m(α7) +m(α7)
+m(α8) +m(α8) +m(α8)
+m(α9) +(3/4)m(α9) +m(α9)
+(3/4)m(α10) +m(α10) +m(α10)
+m(α11) +m(α11) +m(α11)
+m(α12) +m(α12) +m(α12)
+(4/5)m(α13) +m(α13) +m(α13)
+m(α14) +(4/5)m(α14) +m(α14)
+(5/6)m(α15) +(5/6)m(α15) +m(α15)
+m(α16) +(5/6)m(α16) +m(α16)
+(5/6)m(α17) +m(α17) +m(α17)
+(6/7)m(α18) +(6/7)m(α18) +m(α18)

Derivation of P{α7}, P{α8} and P{α9} Derivation of P{α16}, P{α17} and P{α18}
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