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Abstract: This paper will present a new theory for what we call “Dark Energy” by explaining it 

as a form of kinetic energy. It will be presented within General Relativity where we will use new 

terms and explain them in detail. Some of the new terms that will be presented also fall under 

Quantum Mechanics. It will be explained in detail how and why dark energy comes to be and 

why it is now dominant in the Universe which will explain the observational evidence that has 

been attained on this subject and has so far been rather puzzling to scientists when it comes to the 

very nature of “Dark Energy”. 
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Introduction 

1. Expanding near-flat spacetime 

The Universe will be represented as homogenous and isotropic. Isotropy means that the metric 

must be diagonal since it will be show that space is allowed to be curved. Therefore we will use 

spherical coordinates to describe the metric.  

The metric is given by the following line element: 

(1) 𝑑𝑠2 = 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) 

where we measure (𝜃) from the north pole and at the south pole it will equal (𝜋). 

In order to simplify the calculations, we abbreviate the term between the brackets as: 

(2) 𝑑𝜔2 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜑2 

because it is a measure of angle, which can be thought of as “on the sky” from the observers 

point of view. It is important to mention that the observers are at the center of the spherical 

coordinate system. 

Due to the isotropy of the Universe the angle between two galaxies, for the observers, is the true 

angle from the observers’ vantage point and the expansion of the Universe does not change this 

angle. 

Finally, we represent flat space as: 

(3) 𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜔2 

Robertson and Walker proved that the only alternative metric that obeys both isotropy and 

homogeneity is: 

(4) 𝑑𝑠2 = 𝑑𝑟2 + 𝑓𝐾(𝑟)2𝑑𝜔2 

where (𝑓𝐾(𝑟)) is the curvature function given by: 

(4) 𝑓𝐾(𝑟) = {

𝐾−1 2⁄  𝑓𝑜𝑟 𝐾 > 0
𝑟 𝑓𝑜𝑟 𝐾 = 0

𝐾−1 2⁄ sin ℎ (𝐾1 2⁄ 𝑟) 𝑓𝑜𝑟 𝐾 < 0

 

which means that the circumference of a sphere around the observers with a radius (𝑟) is, for 

(𝐾 ≠ 0), not anymore equal to (𝐶 = 2𝜋𝑟) but smaller for (𝐾 > 0) and larger for (𝐾 < 0). 



The surface area of that sphere would no longer be (𝑆 = (4𝜋
3⁄ )𝑟3) but smaller for (𝐾 > 0) and 

larger for (𝐾 < 0). If (𝑟) is (𝑟 ≪ |𝐾|−1 2⁄ ) the deviation from (𝐶 = 2𝜋𝑟) and (𝑆 = (4𝜋
3⁄ )𝑟3) is 

very small, but as (𝑟) approaches (|𝐾|−1 2⁄ ) the deviation can become rather large. 

The metric in the equation (1) can also be written as: 

(5) 𝑑𝑠2 =
𝑑𝑟2

1 − 𝐾𝑟2
+ 𝑟2𝑑𝜔2 

If we determine an alternative radius (𝑟) as: 

(6) 𝑟 ≡ 𝑓𝐾(𝑟) 

This metric is different only in the way we chose our coordinate (𝑟); other than that there is no 

physical difference with the equation (47). 

1.1. Friedmann equations 

We can now build our model by taking for each point in time a RW space. We allow the scale 

factor and the curvature of the RW space to vary with time. This gives the generic metric: 

(7) 𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2[𝑑𝑥2 + 𝑓𝐾(𝑥)2𝑥2𝑑𝜔2] 

the function (𝑎(𝑡)) is the scale factor that depends on time and it will describe the expansion of 

it, that influences spatial expansion, hence the expansion of the whole Universe. We use (𝑥) 

instead of (𝑟) because the radial coordinate, in this form, no longer has meaning as a true 

distance. 

We now insert equation (7) into the Einstein equations and after calculus, we obtain two 

equations: 

(8) (
�̇�

𝑎
)

2

=
8𝜋𝐺

3
𝜌 −

𝐾𝑐2

𝑎2
+

𝜆

3
 

(9) (
�̈�

𝑎
)

2

= −
4𝜋𝐺

3
(𝜌 +

3𝑝

𝑐2
) +

𝜆

3
 

These equations are known as Friedmann equations and the first equation is from the “00 

component” and the second from the “ii component” of the Einstein equations. 

The two equations can be combined to make the adiabatic equation: 

(10) 
𝑑

𝑑𝑡
(𝜌𝑎3𝑐2) + 𝑝

𝑑

𝑑𝑡
(𝑎3) = 0 

We will define a new term here named “spatial kinetic factor” (Д) as: 



(11) Д = 𝐾𝑐2 +
1

𝜌𝑐𝑟𝑖𝑡
  

This factor is important to define some other terms that will be presented and it represents the 

spatial factor of the kinetic energy that will be defined in the conclusion of this paper. There will 

also be a “temporal kinetic factor” (〈Д̂↠〉). 

1.2. Scaling of relativistic and non-relativistic matter 

Cold matter is matter for which the pressure (𝑝 ≪ 𝜌𝑐2) leads us to reduce the equation (10) to: 

(12) 
𝑑

𝑑𝑡
(𝜌𝑎3) = 0 

meaning that the equation of state for such cold matter is: 

(13) 𝜌 ∝
1

𝑎2
 

If we look at the other limiting case, of ultra-relativistic matter, we have the maximum possible 

relativistic isotropic pressure: 

(14) 𝑝 =
𝜌𝑐2

3
 

for radiation (ultra-hot matter). 

Equation (10) now reduces to: 

(15) 
𝑑

𝑑𝑡
(𝜌𝑎3𝑐2) +

𝜌𝑐2

3
 

𝑑

𝑑𝑡
(𝑎3) = 0 

hence: 

(16) 𝜌 ∝
1

𝑎4
 

for radiation. 

1.3. Critical density 

Critical velocity turns into a critical density; the best way to define this is to start from the first 

Friedmann equation and rewrite it as: 

(17) 𝐻2 =
8𝜋𝐺

3
(𝜌 + 𝜌𝜆) −

𝐾𝑐2

𝑎2
 

with the Hubble constant (𝐻 = �̇� 𝑎⁄ ), and we have (𝜆) as (𝜌𝜆) according to: 



(18) 𝜌𝜆 =
𝜆

8𝜋𝐺
 

The density (𝜌) can be written as contributions from matter, meaning baryons, cold dark matter 

and radiation: 

(19) 𝜌 = 𝜌𝑚 + 𝜌𝑟 

where baryonic and cold dark matter are: 

(20) 𝜌𝑚 = 𝜌𝑏 + 𝜌𝑐𝑑𝑚 

for matter density (𝜌𝑚). 

We write that radiation consists of photons and neutrinos: 

(21) 𝜌𝑟 = 𝜌𝛾 + 𝜌𝑣 

The first Friedmann equation becomes: 

(22) 𝐻2 =
8𝜋𝐺

3
(𝜌𝑚 + 𝜌𝑟 + 𝜌𝜆) −

𝐾𝑐2

𝑎2
 

If we define (𝜌𝑐𝑟𝑖𝑡) as: 

(23) 𝜌𝑐𝑟𝑖𝑡 =
3𝐻2

8𝜋𝐺
 

then we see that if the  total density (𝜌𝑚 + 𝜌𝑟 + 𝜌𝜆) equals the critical density, then (𝐾 = 0), 

which means that the Universe is flat. By the equivalence of curvature and expansion rate, it 

would also mean that the Universe expands critically. Therefore the critical density is the density 

at which the Universe expands critically, given the value for (𝐻). 

1.4. Dimensionless Friedmann equation 

We define (𝐻0) as the Hubble constant at the present time and (𝜌𝑐𝑟𝑖𝑡;0) as the critical density at 

the present time, forming the first Friedmann equation as: 

(24) 𝐻2 = 𝐻0
2 (

𝜌𝑚

𝜌𝑐𝑟𝑖𝑡;0
+

𝜌𝑟

𝜌𝑐𝑟𝑖𝑡;0
+

𝜌𝜆

𝜌𝑐𝑟𝑖𝑡;0
) −

𝐾𝑐2

𝑎2
 

Allowing us to introduce the following dimensionless densities: 

(25) 𝛺𝑚(𝑎) =
𝜌𝑚(𝑎)

𝜌𝑐𝑟𝑖𝑡(𝑎)
 



(26) 𝛺𝑟(𝑎) =
𝜌𝑟(𝑎)

𝜌𝑐𝑟𝑖𝑡(𝑎)
  

(27) 𝛺𝜆(𝑎) =
𝜌𝜆(𝑎)

𝜌𝑐𝑟𝑖𝑡(𝑎)
  

The values of these quantities are denoted as (𝛺𝑚;0), (𝛺𝑟;0) and (𝛺𝜆;0). 

At this point we introduce (𝛺𝐾(𝑎)), respectively (𝛺𝐾;0). 

If we consider the first Friedmann equation at the present time: 

(28) 𝐻2 = 𝐻0
2(𝛺𝑚;0 + 𝛺𝑟;0 + 𝛺𝜆;0) − 𝐾𝑐2 

We can evaluate the curvature: 

(29) 𝐾𝑐2 = 𝐻0
2(𝛺𝑚;0 + 𝛺𝑟;0 + 𝛺𝜆;0 − 1) 

We define the curvature density (𝛺𝐾;0) as: 

(30) 𝛺𝐾;0 ≡ −
𝐾𝑐2

𝐻0
2 = 1 − 𝛺𝑚;0 − 𝛺𝑟;0 − 𝛺𝜆;0 

concluding that all (𝛺𝑠) add up to (1). We can define (𝛺𝐾(𝑎)) in terms of a “curvature density”: 

(31) 𝛺𝐾(𝑎) =
𝜌𝐾(𝑎)

𝜌𝑐𝑟𝑖𝑡(𝑎)
 

The (𝛺) symbol can be used to rewrite the Friedmann equations. The matter density goes as 

(1 𝑎3⁄ ), the radiation as (1 𝑎4⁄ ) and the (𝛺𝜆) stays constant. The (𝛺𝐾) is, according to equation 

(77), (1 𝑎2⁄ ). Now we can write: 

(32) 𝐻2 = 𝐻0
2 (

𝛺𝑚;0

𝑎3
+

𝛺𝑟;0

𝑎4
+ 𝛺𝜆;0 +

𝛺𝐾;0

𝑎2
) = 𝐻0

2𝐸2(𝑎) 

at present time (𝑎 = 1). 

2. The Standard Model 

The current understanding of the Universe tells us that it is flat (𝛺𝐾;0 ≃ 0), but that it contains 

matter, radiation and that it has a non-zero cosmological constant. We are currently dominated 

by (𝜆) by a factor of three, which means a phase of exponential growth. 

But before that, around (𝑧 ≳ 0.5), the Universe was dominated by cold matter and before that, 

around (𝑧 ≳ 3200), the Universe was dominated by radiation. 



The late Universe, (𝑧 = 𝑓𝑒𝑤) until (𝑧 = 0), in which both matter and (𝜆) are important, but 

radiation is not important, can also be integrated analytically. During this period, most of the 

structure formation in the Universe occurred. 

We take (0 < 𝛺𝑚;0 < 1) and (𝛺𝜆;0 = 1 − 𝛺𝑚;0) and set (𝛺𝑟 = 0) and (𝛺𝐾 = 0). Then we have: 

(33) 
1

𝑎
 
𝑑𝑎

𝑑𝑡
= 𝐻0√

𝛺𝑚;0

𝑎3
+ 𝛺𝜆;0 

which can be integrated as: 

(34) 𝑡 =
1

𝐻0
∫

𝑑𝑎′

𝑎′√
𝛺𝑚;0

𝑎′3 + 𝛺𝜆;0

𝑎

0

=
1

𝐻0
∫

√𝑎′𝑑𝑎′

√𝛺𝑚;0 + 𝛺𝜆;0 ∙ 𝑎′3

𝑎

0

 

by submitting (𝑥 = 𝑎3 2⁄ ) we integrate to: 

(35) 𝑡 =
2

3𝐻0√1 − 𝛺𝑚;0

arcsin ℎ (√
1 − 𝛺𝑚;0

𝛺𝑚;0
𝑎3 2⁄ ) 

if (𝑎) has a small value, the formula above approaches the equation for the matter dominated era, 

which is: 

(36) 𝑎(𝑡) ≃ (
3

2
𝐻0√𝛺𝑚;0𝑡)

2 3⁄

 

and that for (𝑎 ≫ 1) this formula describes an exponentially expanding Universe. 

The equation (35) is accurate for all redshifts up to around (𝑧 ≃ 1000), meaning that it can be 

used for the estimation of age of the Universe by inserting (𝑎 = 1) into the equation (82) hence 

we obtain (𝛺𝑚;0 = 0.273) an age of (1376𝐺𝑦𝑟). 

Temporal Motion 

Unlike spatial motion, temporal motion requires no specific direction. Instead of a trajectory it 

needs expansion and it needs a velocity. Time expands in all direction and it influences spatial 

expansion, hence it “inflates space”, which forms the space-time continuum. Temporal motion 

(↠) produces kinetic energy which is why it is observable. 

We define that temporal motion of a natural vacuum on quantum level equals: 

(37) 𝛿 ↠ = 𝛿 ∫ 𝑑Д 𝐿(𝑎(𝑡), �̇�(𝑡))  



where the (𝑑Д) is the spatial kinetic factor, the function (𝑎(𝑡)) is the scale factor that depends on 

time and it will describe expansion and (�̇�(𝑡)) is the velocity. We also define that: 

(38) �̇�(𝑡) = 𝑐 

Where (𝑐) is “the speed of light”. This is the reason that time dilatation is caused by velocity and 

why (𝑐) is the speed necessary to achieve maximal time dilatation. What (𝑐) actually is, is the 

speed of temporal motion. Any velocity will cause time dilatation to some extent as every mass 

of a celestial body will cause gravitational time dilatation to some extent. Since both mass and 

velocity cause time dilatation they will mutually dilate, causing the law that nothing with a mass 

can reach the speed of light. It is difficult to observe time dilatation for small velocities. 

We also define that 

(39) 𝑑Д =
𝑑

𝑑𝑡
Д 

which allows us to form the final equation for natural vacuum: 

(40) 𝛿 ↠= 𝛿 ∫ 𝑑Д 𝐿(𝑎(𝑡), 𝑐) 

This allows us to form an equation for the temporal kinetic factor. 

Since temporal motion is more difficult to explain than any spatial motion, the simplest way 

would be to use frames. We would split the Universe in trillions of frames, however we would 

only use very few where there is a significant difference compared to the previous one. 

These frames mark different eras in the Universe. The first frame represents Cosmological 

inflation, where (↠= 1), initiating the birth of the Universe known as the Big Bang. 

 

Figure 1: Some significant frames 



The frame above the first, the ith frame (↠= 𝑖), could represent the Universe in the period 

known as the “radiation dominated era”, a period when the Universe was dominated by radiation, 

around (𝑧 ≳ 3200). 

For the early, radiation dominated era we can approximate a solution: 

(41) 𝑎(𝑡) ≃ (2𝐻0√𝛺𝑟;0𝑡)
1 2⁄

 

The early, radiation dominated Universe expanded as: 

(42) 𝑎 ∝ √𝑡  

Every frame has slightly more temporal-kinetic energy, or “dark energy”, than the previous one 

but since the difference in the trillions of frames is complicated to determine it is therefore 

simpler and more productive to use only some frames.  

Once the presence of temporal-kinetic energy grew enough in the Universe it became dominant. 

Temporal-kinetic energy strides to accelerate the expansion of the Universe essentially “driving 

everything away from each other”, on the other hand what is known as “dark matter” has a 

reversed effect of “keeping bodies together” by increasing gravitational influence within 

galaxies, for example. 

This event, where (↠= 𝑗) thus the jth frame, was extremely important since the Universe started 

expanding more exponentially than it did before. This was the event of the lambda dominance, 

when the lambda factor became dominant. 

We could add other frames (↠= ℎ) and (↠= 𝑘) for different periods, however the final frame 

that represents the current period is the nth one (↠= 𝑛). 



 

Figure 2: Frames marking different periods 

Conclusion 

This allows us to form the equation: 

 

(43) 〈Д̂↠〉 = 〈𝛹 | ∑
−ћ2

2𝜌𝜆

𝑛

↠=1

∇↠
2 | 𝛹〉 = −

ћ2

2𝜌𝜆
 ∑ 〈𝛹|∇↠

2 |𝛹〉

𝑛

↠=1

  

where (∇↠
2 ) is the Laplacian of the system and (𝜌𝜆) is the density of temporal-kinetic energy, or 

“dark energy”. 

When the Universe was younger the (𝜆) factor was significantly lesser than it is now, therefore 

the rate of acceleration of the expansion was much lesser than it is at the present period. 

Temporal-kinetic energy is uniform and smooth across space, its density is very low and it 

doesn’t interact with other energy or matter on any observable scale, which is in accordance with 

the current observational evidence attained on this subject. 

Time does not move forward nor can it move backward, time simply moves on. 
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