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We present generalization of the Bernstein-Vazirani algorithm. Suppose there are many natural
numbers: a1, a2, a3, . . . , aN . Here, we introduce a function: g :N→ {0, 1}. Our goal is to determine
the following values simultaneously: g(a1), g(a2), g(a3), . . . , g(aN ). The speed to determine N values
improves by a factor of N by comparing the classical case. We obtain the Bernstein-Vazirani
algorithm when g : ai → ai.

PACS numbers: 03.67.-a(Quantum information theory), 03.67.Lx(Quantum computer), 03.65.Ca(Formalism)

I. INTRODUCTION

The quantum theory (cf. [1—6]) gives approximate but
frequently remarkably accurate numerical predictions.
Much experimental data approximately have fit to the
quantum predictions for the past some 100 years. We do
not doubt the correctness of the quantum theory. The
quantum theory also says new science with respect to
information theory. The science is called the quantum
information theory [6]. Therefore, the quantum theory
gives us very useful another theory in order to create
new information science and to explain the handling of
raw experimental data in our physical world.

As for the foundations of the quantum theory, Leggett-
type non-local variables theory [7] is experimentally in-
vestigated [8—10]. The experiments report that the quan-
tum theory does not accept Leggett-type non-local vari-
ables interpretation. However there are debates for the
conclusions of the experiments. See Refs. [11—13].

As for the applications of the quantum theory, the im-
plementation of a quantum algorithm to solve Deutsch’s
problem [14] on a nuclear magnetic resonance quantum
computer is reported first [15]. The implementation of
the Deutsch-Jozsa algorithm on an ion-trap quantum
computer is also reported [16]. There are several at-
tempts to use single-photon two-qubit states for quan-
tum computing. Oliveira et al. implement Deutsch’s al-
gorithm with polarization and transverse spatial modes
of the electromagnetic field as qubits [17]. Single-photon
Bell states are prepared and measured [18]. In addition,
the decoherence-free implementation of Deutsch’s algo-
rithm is reported using such single photon and using two
logical qubits [19]. More recently, a one-way-based ex-
perimental implementation of Deutsch’s algorithm is re-
ported [20]. In 1993, the Bernstein-Vazirani algorithm
was reported [21, 22]. It can be considered as an ex-
tended Deutsch-Jozsa algorithm. In 1994, Simon’s algo-
rithm was reported [23]. Implementation of a quantum
algorithm to solve the Bernstein-Vazirani parity prob-
lem without entanglement on an ensemble quantum com-

puter is reported [24]. Fiber-optics implementation of
the Deutsch-Jozsa and Bernstein-Vazirani quantum al-
gorithms with three qubits is discussed [25]. A quantum
algorithm for approximating the influences of Boolean
functions and its applications is recently reported [26]
The earliest quantum algorithm, the Deutsch-Jozsa al-

gorithm, is representative to show that quantum compu-
tation is faster than classical counterpart with a magni-
tude that grows exponentially with the number of qubits.
In 2015, it is discussed that the Deutsch-Jozsa algorithm
can be used for quantum key distribution [27]. As we
have said, the Bernstein-Vazirani algorithm can be con-
sidered as an extended Deutsch-Jozsa algorithm. Here,
we extend the Bernstein-Vazirani algorithm more.
In this paper, we present generalization of the

Bernstein-Vazirani algorithm. Suppose there are many
natural numbers: a1, a2, a3, . . . , aN . Here, we in-
troduce a function: g : N → {0, 1}. Our goal
is to determine the following values simultaneously:
g(a1), g(a2), g(a3), . . . , g(aN ). The speed to determine N
values improves by a factor of N by comparing the clas-
sical case. We obtain the Bernstein-Vazirani algorithm
when g : ai → ai.

II. GENERALIZATION OF THE

BERNSTEIN-VAZIRANI ALGORITHM

In this section, we present generalization of the
Bernstein-Vazirani algorithm. Suppose a sequence of
natural numbers as follows:

a1, a2, a3, . . . , aN . (1)

We introduce a function:

g : N→ {0, 1}. (2)

Our goal is to determine the following values:

g(a1), g(a2), g(a3), . . . , g(aN ). (3)
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In classical case, we need N queries. In quantum algo-
rithm, we need a query. Our algorithm is indeed faster
than classical counterpart.
We introduce another function: Suppose

f : {0, 1}N → {0, 1} (4)

is a function with a N -bit domain and a 1-bit range. We
construct the following function:

f(x)= g(a) · x =
N�

i=1

g(ai)xi(mod2)

= g(a1)x1 ⊕ g(a2)x2 ⊕ g(a3)x3 ⊕ · · · ⊕ g(aN )xN ,
xi ∈ {0, 1}N , g(ai) ∈ {0, 1}, ai ∈ N (5)

where ai is a natural number. Here g(a) means

g(a1)g(a2) · · · g(aN ). (6)

In what follows, we show that we can know the following
values only by a query

g(a1), g(a2), g(a3), . . . , g(aN ). (7)

In classical case, we need N queries. Let us follow the
quantum states through the algorithm. The input state
is

|ψ0� = |0�⊗N |1�. (8)

After the Hadamard transformation on the state we have

|ψ1� =
�

x∈{0,1}N

|x�√
2N

� |0� − |1�√
2

�
. (9)

Next, the function f is evaluated using

Uf : |x, y� → |x, y ⊕ f(x)�, (10)

giving

|ψ2� = ±
�

x

(−1)f(x)|x�√
2N

� |0� − |1�√
2

�
. (11)

Here

y ⊕ f(x) (12)

is the bitwise XOR (exclusive OR) of y and f(x). To
determine the result of the Hadamard transformation it
helps to first calculate the effect of the Hadamard trans-
formation on a state

|x�. (13)

By checking the cases x = 0 and x = 1 separately we see
that for a single qubit

H |x� =
�

z

(−1)xz |z�/
√
2. (14)

Thus

H⊗N |x1, . . . , xN �

=

�
z1,... ,zN

(−1)x1z1+···+xNzN |z1, . . . , zN �√
2N

. (15)

This can be summarized more succinctly in the very use-
ful equation

H⊗N |x� =
�

z(−1)x·z|z�√
2N

, (16)

where

x · z (17)

is the bitwise inner product of x and z, modulo 2. Using
this equation and (11) we can now evaluate |ψ3�,

|ψ3� = ±
�

z

�

x

(−1)x·z+f(x)|z�
2N

� |0� − |1�√
2

�
. (18)

Thus,

|ψ3� = ±
�

z

�

x

(−1)x·z+g(a)·x|z�
2N

� |0� − |1�√
2

�
. (19)

We notice
�

x

(−1)x·z+g(a)·x = 2Nδg(a),z. (20)

Thus,

|ψ3� = ±
�

z

�

x

(−1)x·z+g(a)·x|z�
2N

� |0� − |1�√
2

�

= ±
�

z

2Nδg(a),z |z�
2N

� |0� − |1�√
2

�

= ±|g(a)�
� |0� − |1�√

2

�

= ±|g(a1)g(a2) · · · g(aN )�
� |0� − |1�√

2

�
. (21)

We now observe

|g(a1)g(a2) · · · g(aN )�. (22)

Summarizing, if we measures |g(a1)g(a2) · · · g(aN )� then
we can know the following values only by a query

g(a1), g(a2), g(a3), . . . , g(aN ). (23)

All we have to do is to perform one quantum measure-
ment.
The speed to determine N values improves by a factor

of N by comparing the classical case. This shows quan-
tum computer overcomes classical computer by a factor
of N in this case. We obtain the Bernstein-Vazirani al-
gorithm when g : ai → ai.

III. CONCLUSIONS

In conclusion, we have presented generalization of the
Bernstein-Vazirani algorithm. We have supposed there
are many natural numbers: a1, a2, a3, . . . , aN . Here, we
have introduced a function: g : N→ {0, 1}. Our goal has
been to determine the following values simultaneously:
g(a1), g(a2), g(a3), . . . , g(aN ). The speed to determine N
values has improved by a factor of N by comparing the
classical case. We have obtained the Bernstein-Vazirani
algorithm when g : ai → ai.
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