The differences between new elementary particle physics and the Standard Model of particle physics

Yibing Qiu

yibing.qiu@hotmail.com

Abstract: giving the main difference between new particle physics with the Standard Model of particle physics

Main viewpoints and conclusions:

The main difference between new elementary particle physics with the Standard Model of particle physics is:

In new elementary particle physics that beyond the Standard Model, there are no exist quark definition and quark particles system; but, in the Standard Model of particle physics, there are exist quark definition and quark particles system.^{[1][2]}

Besides, the bump which at an energy of 750 gigaelectronvolts (GeV), if it exist, it is just only a *X*-lepton or called *X*-meson that different from π , μ , τ , k, ρ , ω , φ and the others that have been known; another situation, it is a *X*-baryon.^{[3][4]}

References

[1] Quarks take wrong turns
http://phys.org/news/2004-04-quarks-wrong.html#nRlv
[2] A. O. Barut, Stable Particles as Building Blocks of Matter,
ICTP Preprint IC/79/40 (April, 1979)
[3] Scientists say hoped-for physics particle was just a blip (Update 2)
http://phys.org/news/2016-08-burp-intriguing-hints-physics-particle.html
[4] Redefining Leptons (or called Mesons) and Baryons
http://rxiv.org/abs/1503.0151

YuQuan Road, Zhao Feng Yuan Section, Feng Tai District, Beijing, CHINA