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Introduction

This paper presents a “formula” (more or less) for prime numbers in a specific interval. This 
formula is then used to partially prove the Goldbach conjecture and the twin primes conjecture. The
proofs are incomplete however and have not been reviewed by anyone.

A “formula” for primes

Consider an integer y = 3a2 + 2a3, where a2 is any integer, positive or negative, which is not 

divisible by 2, and likewise, a3 is an integer not divisible by 3. It's pretty straight forward to show 

that y is not divisible by 2 or 3. 

We can continue with this logic to find a formula for an integer which is not divisible by 2, 3
or 5. The formula is y = 3·5a2 + 2·5a3 + 2·3a5, where a2, a3 and a5 are not divisible by 2, 3 or 5, 

respectively.

More generally, we can devise a formula to find all prime numbers in an interval [pn, pn
2], 

where pn is the nth prime number, if we know all the primes p1 to pn-1. The equation in all it's glory 

is:

Where ap is any interger not divisible by p.

Formally, we can prove this formula will never be divisible by any prime p1 to pn-1 by 

dividing through by each prime  p1 to pn-1. Each term in the summation will give an inerger when 

divided by some prime except for when the prime is equal to p, in which case the term will be a 
non-interger, since ap is not divisible by p. This means that y is not divisible by any prime p1 to pn-1.

The reason the equation only gives primes in the interval [pn, pn
2] is because every integer 



below pn
2 is either divisible by one of p1, p2, ... , pn-1 or is prime. So the formula will continue to 

give primes up to infinity, but it will also give composite numbers with prime factors of pn or 

higher. All the primes below the interval are multiples of themselves, which means the equation 
shouldn't give these primes at all, except for 1.

Another thing we can do is take the last term of the summation out of the equation, and 
factor out pn-1 to get a recursive formula for prime numbers:

Where k is a number which is not divisible by p1, p2, ... , pn-2. If we now define:

And:

The prime number formula is now:

Take the last term out of the summation and factor out pn-1 from what's left over to get:

This is the formula used to partially prove the Goldbach conjecture and the twin primes 
conjecture.

It needs to be shown that this formula will give all primes in the interval [pn, pn
2]. This can 

be done by showing that y can be any interger when the ap's no longer need to be integers not 

divisible by p (and hence become bp's.) If this is the case then it follows that the prime number 

formula will give all the primes greater than pn-1. We can do this by using mathematical induction:

Basis step: Show that for the equation y = 3b2 + 2b3, where b2 and b3 can be any integers, there is a

solution for every integer y. Since 2 and 3 are co-prime there exist integers f and g such that 3f + 2g 
= 1. So let b2 = yf and b3 = yg and the equation is satisfied.

Inductive step: Assume that k and bpn-1 are any intergers, so that:



Becasue pn-1 and πn-1 are co-prime, there is a solution for any integer y.

This means that when all the bp's are not divisible by p, y is not divisible by p1, p2, ... , pn-1, but if 

any of the bp's are divisible by p, then y has a prime factor of p.

Example

Take the equation y = 3a2 + 2a3 and set a2 = 1, this gives y = 3 + 2a3 where a3 is any number

not divisible by 3, i.e. 1, 2, 4, 5, 7, 8 etc. This means that y is: 5, 7, 11, 13, 17, 19. Essentially all it's 
doing is skipping every even number, and then skipping every even number which is a multiple of 
3. This will give all the primes between 5 and 25 because every number less than 25 is either a 
multiple of 2 and/or 3, or is prime.

Now take the equation y = 3·5a2 + 2·5a3 + 2·3a5 which is y = 15a2 + 10a3 + 6a5 and set a2 = 

1 and a3 =1 then y 15 + 10 + 6a5, where a5 is any number which is not divisible by 5, i.e. 1, 2, 3, 4, 

6, 7, 8, 9. This gives y as 31, 37, 43, 49, 61, 67, 73, 79. 49 isn't a prime but it's 72, so it's not a 
multiple of 2, 3, or 5, and is outside of the interval. If we set a2 = 1 and a3 = 2 then y = 15 + 20 + 

6a5 so y is: 41, 47, 53, 59, 71, 77, 83, 89. 77 isn't a prime either but it's 7 x 11, so isn't a multiple of 

2, 3 or 5, and is outside the interval as well. 

A partial proof of the Goldbach conjecture

For the Goldbach conjecture all that's needed is to add two prime numbers (y1 and y2) 

together:

Where ap and cp are any two integers which aren't divisible by p. Because ap and cp are any 

two intergers not divisble by p, there are infinite solutions to ap + cp = bp, where bp is any interger. 

This works for all odd p, for the case when p = 2, a2 + c2 must be an even integer, this makes sense 

though because all other πn,p have factors of 2, so π2,p is the only odd πn,p.

All that needs to be shown now is:

For any interger m. This can be done by using the fact that pn-1 and πn-1 are co-prime. This 

would mean that for every even integer there are an infinite number of pairs of numbers which 
aren't divisible by p1, p2, .. , pn-1, and which sum to the integer. We can show that this equation can 

be satisfied for any m by using mathematical induction:

Basis step: Show that there are solutions to the equation 2m = 3b2 + 2b3, where b2 = a2 + c2 and b3 

= a3 + c3. b2 must be an even integer, so let b2 = 2d, for any integer d, and b3 can be any integer at 

all.



Dividing by 2 gives:

m = 3d + b3

Which means that for any even number it's possible to find infinite pairs of numbers which aren't 
divisible by 2 or 3 and add up to the even number.

Inductive step: Assume that for any even number (2e) there exists a pair of numbers k1 and k2 

which aren't divisible by p1, p2, ... , pn-2 and add up to the even number. So that:

Now take the equation:

And take the last term out of the summation and factor out pn-1 from the remaining terms to get:

This gives:

Dividing by 2:

Since pn-1 and πn-1/2 share no common prime factors they are coprime intergers. This means that 

there are integers f and g such that pn-1f + (πn-1/2)g = 1, this is a result called Bézout's identity. So 

just let e = mf and bpn-1 = mg and the equation is satisfied.

This proves that there are infinite pairs of numbers (y1 and y2) which aren't divisible by p1, 

p2, .. , pn-1 and add up to any given even number. All that's left to show in order to prove the 

Goldbach conjecture is that one of these pairs will have both y1 and y2 in the interval [pn, pn
2] thus 

making sure they're prime.

Example

let 2m = 38, and y1 + y2 = 15b2 + 10b3 + 6b5. b2 is an even integer, so let b2 = 2d, putting 

this all together:

38 = 15·2d + 10b3 + 6b5

19 = 15d + 5b3 + 3b5



One solution to this is d = 1, b3 = 2, b5 = -2. Splitting up the b's:

b2 = 2, so let a2 = 1 and c2 = 1 (both odd numbers)

b3 = 2, so let a3 = 1 and c3 = 1 (both not divisible by 3)

b5 = -2, so let a5 = -1 and c5 = -1 (both not divisible by 5)

Both prime numbers are:

15(1) + 10(1) + 6(-1) = 19

We can get two other numbers by letting:

a2 = 1 and c2 = 1

a3 = 4 and c3 = -2

a5 = -3 and c3 = 1

To get:

15(1) + 10(4) + 6(-3) = 37
15(1) + 10(-2) + 6(1) = 1

1 isn't in the interval [7, 49], and it's possible to get negative numbers as well.

A partial proof of the twin primes conjecture

Subtracting y2 from y1 gives:

Where Bp = ap – cp. There will be solutions for ap and cp if Bp is any integer. It's possible to 

show that k1 - k2 can be any even integer using the same logic as with the Goldbach conjecture but 

with a minus sign instead of a plus sign and Bp's instead of bp's. Let k1 - k2 = 2e, and set y1 - y2 = 2,

because they're twin primes. We now have:

And divide by 2:

pn-1 and πn-1/2 are co-prime, so there exists an e and Bpn-1 which satisfies the equation. In 

fact there are infinite solutions to the equation Bp = ap - cp so there are infinite pairs of numbers not 

divisible by p1, p2, ... , pn-1 which are only separated by 2.

There are infinite pairs and infinite intervals, and any negative pair of twin primes 



correspond to a positive pair. However, it still needs to be shown that at least one of these pairs is in 
each interval, for every interval, to be certain they're prime.

Conclusion

Given the first n-1 primes it's possible to develop a “formula” for all the primes in the 
interval between the nth prime and is square. Using this formula it's then possible to partially prove 
the Goldbach conjecture and the twin primes conjecture. The proofs for these conjectures are 
incomplete, however, and so need to be completed.


