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Abstract 

In this paper, we introduce the concept of neutrosophic less than or equal to. 

The neutrosophy considers every idea < A >  together with its opposite or 

negation < antiA >  and with their spectrum of neutralities < neutA >  in 

between them (i.e. notions or ideas supporting neither < A > nor < antiA >). 

The < neutA >  and < antiA >  ideas together are referred to as < nonA > . 

Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set 

and respectively fuzzy logic (especially of intuitionistic fuzzy set and 

respectively intuitionistic fuzzy logic) [5]. In neutrosophic logic, a proposition 

has a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity 

(F), where T, I, F are standard or non-standard subsets of  ]-0, 1+[.  Another 

purpose of this article is to explain the mathematical theory of neutrosophic 

geometric programming (the unconstrained posynomial case). It is necessary 

to work in fuzzy neutrosophic space FNs = [0,1] ∪ [0, nI], n ∈ [0,1]. The theory 

stated in this article aims to be a complementary theory of neutrosophic 

geometric programming.      
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 1 Introduction 

The classical Geometric Programming (GP) is an optimization technique 

developed for solving a class of non-linear optimization problems in 

engineering design. GP technique has its origins in Zener’s work (1961). Zener 

tried a new approach to solve a class of unconstrained non-linear optimization 

problems, where the terms of the objective function were posynomials. To 

solve these problems, he used the well-known arithmetic-geometric mean 

inequality (i.e. the arithmetic mean is greater than or equal to the geometric 

mean). Because of this, the approach came to be known as GP technique. Zener 

used this technique to solve only problems where the number of posynomial 

terms of the objective function was one more than the number of variables, 

and the function was not subject to any constraints. Later on (1962), Duffin 

extended the use of this technique to solve problems where the number of 

posynomial terms in the objective function is arbitrary. Peterson (1967), 

together with Zener and Duffin, extended the use of this technique to solve 

problems which also include the inequality constraints in the form of 

posynomials. As well, Passy and Wilde (1967) extended this technique further 

to solve problems in which some of the posynomial terms have negative 

coefficients. Duffin (1970) condensed the posynomial functions to a monomial 

form (by a logarithmic transformation, it became linear), and particularly 

showed that a "duality gap" function could not occur in geometric 

programming. Further, Duffin and Peterson (1972) pointed out that each of 

those posynomial programs GP can be reformulated so that every constraint 

function becomes posy-/bi-nomial, including at most two posynomial terms, 

where posynomial programming - with posy-/mo-nomial objective and 

constraint functions - is synonymous with linear programming.  

As geometric programming became a widely used optimization technique, it 

was desirable that an efficient and highly flexible method of solutions were 

available. As the complexity of prototype geometric programs to be solved 

increased, several considerations became important. Canonically, the degree 

of problem difficulty and the inactive constraints reported an algorithm 

capable of dealing with these considerations. Consequently, McNamara (1976) 

proposed a solution procedure for geometric programming involving the 

formulation of an augmented problem that possessed zero degree of difficulty.  

Accordingly, several algorithms have been proposed for solving GP (1980’s). 

Such algorithms are somewhat more effective and reliable when they are 

applied to a convex problem, and also avoid difficulties with derivative 

singularities, as variables raised to fractional powers approach zero, since logs 

of such variables will approach  −∞ , and large negative lower bounds should 

be placed on those variables.  
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In the 1990’s, a strong interest in interior point (IP) algorithms has spawned 

several (IP) algorithms for GP. Rajgopal and Bricker (2002) produced an 

efficient procedure for solving posynomial geometric programming. The 

procedure, which used the concept of condensation, was embedded within an 

algorithm for a more general (signomial) GP problem. The constraint structure 

of the reformulation provides insight into why this algorithm is successful in 

avoiding all of the computational problems, traditionally associated with dual-

based algorithms.  

Li and Tsai (2005) proposed a technique for treating (positive, zero or negative) 

variables in SGP. Most existing methods of global optimization for SGP actually 

compute an approximate optimal solution of a linear or convex relaxation of 

the original problem. However, these approaches may sometimes provide an 

infeasible solution, or might form the true optimum to overcome these 

limitations.  

A robust solution algorithm is proposed for global algorithm optimization of 

SGP by Shen, Ma and Chen (2008). This algorithm guarantees adequately to 

obtain a robust optimal solution which is feasible and close to the actual 

optimal solution, and is also stable under small perturbations of the 

constraints [6].   

In the past 20 years, FGP has developed extensively. In 2002, B. Y. Cao 

published the first monography of fuzzy geometric programming as applied 

optimization. A large number of FGP applications have been discovered in a 

wide variety of scientific and non-scientific fields, since FGP is superior to 

classical GP in dealing with issues in fields like power system, environmental 

engineering, postal services, economical analysis, transportation, inventory 

theory; and so more to be discovered.  

Arguably, fuzzy geometric programming potentially becomes a ubiquitous 

optimization technology, the same as fuzzy linear programming, fuzzy 

objective programming, and fuzzy quadratic programming [2]. 

This work is the first attempt to formulate the neutrosophic posynomial 

geometric programming (the simplest case, i.e. the unconstrained case). A 

previous work investigated the maximum and the minimum solutions to the 

neutrosophic relational GP [7,8]. 

2 Neutrosophic Less than or Equal To 

In order to understand the concept of neutrosophic less than or equal to in 

optimization, we begin with some preliminaries which serve the subject. 
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 Definition 2.1 

Let 𝑋 be the set of all fuzzy neutrosophic variable vectors 𝑥𝑖 , 𝑖 = 1,2,… ,𝑚 , i.e. 

𝑋 = {(𝑥1, 𝑥2, … , 𝑥𝑚)
T│𝑥𝑖 ∈ FNs}. The function g(𝑥): 𝑋 →  R ∪ I is said to be the 

neutrosophic GP function of 𝑥 , where g(𝑥) = ∑ ck
J
k=1 ∏ xl

γklm
l=1 ,   ck ≥ 0  are 

constants, γkl - are arbitrary real numbers. 

Definition 2.2 

Let g(𝑥) be any linear or non-linear neutrosophic function, and let A0 be the 

neutrosophic set for all functions g(𝑥) that are neutrosophically less than or 

equal to 1. 

A0 = { g(𝑥) < ₦1, 𝑥𝑖 ∈ FNs}

=  { g(𝑥) < 1, anti( g(𝑥)) > 1, neut( g(𝑥)) = 1, 𝑥𝑖 ∈ FNs}. 

Definition 2.3 

Let g(𝑥) be any linear or non-linear neutrosophic function, where 𝑥𝑖 ∈ [0,1] ∪

[0, nI] and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚)
T  a m-dimensional fuzzy neutrosophic variable 

vector. 

We have the inequality 

 g(𝑥) < ₦  1                     (1) 

where " < ₦" denotes the neutrosophied version for  " ≤ " with the linguistic 

interpretation being "less than (the original claimed), greater than (the anti-

claim of the original less than), equal (neither the original claim, nor the anti-

claim)". 

The inequality (1) can be redefined as follows:  

  
g(x) < 1

anti (g(x)) > 1

neut( g(x)) = 1

}                 (2) 

Definition 2.4 

Let A0  be the set of all neutrosophic non-linear functions that are 

neutrosophically less than or equal to 1. 

A0 = { g(𝑥) < ₦  1, 𝑥𝑖 ∈ FNs}

=  { g(𝑥) < 1, anti( g(𝑥)) > 1, neut( g(𝑥)) = 1, 𝑥𝑖 ∈ FNs}. 

It is significant to define the following membership functions: 

μAo( g(x)) = {
1                                                                                            0 ≤ g(x) ≤ 1

(e
−1

do
(g(x)−1)

+ e
−1

do
(anti( g(x))−1)

− 1) ,          1 < g(x) ≤ 1 − do ln 0.5
          (3) 
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μAo(anti( g(x))) = {
0                                                                                            0 ≤ g(x) ≤ 1

(1 − e
−1

do
(anti( g(x))−1)

− e
−1

do
(g(x)−1)

) , 1 − do ln 0.5 ≤ g(x) ≤ 1 + do
       (4) 

It is clear that μAo(neut( g(𝑥))) consists of intersection the following functions: 

  e
−1

do
(g(x)−1)

,    1 − e
−1

do
(anti( g(x))−1)

 

i.e. 

μAo(neut( g(x))) = {
1 − e

−1

do
(anti( g(x))−1)

   1 ≤ g(x) ≤ 1 − do ln 0.5

e
−1

do
(g(x)−1)

                1 − do ln 0.5 < g(x) ≤ 1 + do

            (5) 

Note that do > 0 is a constant expressing a limit of the admissible violation of 

the neutrosophic non-linear function g(𝑥) [3]. 

2.1        The relationship between g(x), anti g(x) in NGP 

1. At    
 1 < g(x) ≤ 1 − do ln 0.5  
μAo( g(x) ) > μAo(anti( g(x) )                                                             (see Figure 1) 

e
−1

do
(g(x)−1)

> 1 − e
−1

do
(anti( g(x) )−1)

  

e
−1

do
(anti( g(x) )−1)

> 1 − e
−1

do
(g(x)−1)

  
−1

do
(anti( g(x) ) − 1) > ln(1 − e

−1

do
(g(x)−1)

)  

anti( g(x) ) < 1 − do  ln(1 − e
−1
do
(g(x)−1)

) 

2. Again at 
  1 − do ln 0.5 < g(x) ≤ 1 + do 

μAo( g(x)) < μAo(anti( g(x)))  

 ∴   anti( g(x) ) > 1 − do  ln(1 − e
−1
do
(g(x)−1)

) 

3 Neutrosophic Geometric Programming (the unconstrained case) 

Geometric programming is a relative method for solving a class of non-linear 

programming problems. It was developed by Duffin, Peterson, and Zener 

(1967) [4]. It is used to minimize functions that are in the form of posynomials, 

subject to constraints of the same type.   

Inspired by Zadeh's fuzzy sets theory, fuzzy geometric programming emerged 

from the combination of fuzzy sets theory with geometric programming.  

Fuzzy geometric programming was originated by B.Y. Cao in the Proceedings 

of the second IFSA conferences (Tokyo, 1987) [1].  

In this work, the neutrosophic geometric programming (the unconstrained 

case) was established where the models were built in the form of posynomials. 
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 Definition 3.1 

Let  

N
(P)

          g(x)min
N  

xi ∈ FNs

} .                                                                                                              (6)     

The neutrosophic unconstrained  posynomial  geometric programming , where 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) 
T  is a m-dimensional fuzzy neutrosophic variable vector, 

"T"  represents a transpose symbol, and g(𝑥) = ∑ ck
J
k=1 ∏ xl

γklm
l=1  is a 

neutrosophic posynomial GP function of 𝑥 , ck ≥ 0 a constant , γkl an arbitrary 

real number,  g(𝑥) < ₦ z → g(𝑥)min
N  ; the objective function g(𝑥) can be written 

as a minimizing goal in order to consider 𝑧  as an upper bound; 𝑧  is an 

expectation value of the objective function g(𝑥) , " < ₦ "  denotes the 

neutrosophied version of " ≤ "  with the linguistic interpretation (see 

Definition 2.3), and do > 0 denotes a flexible index of g(𝑥). 

Note that the above program is undefined and has no solution in the case of  

γkl < 0 with some xl′s taking indeterminacy value, for example, 

          g(𝑥)min
N  = 2𝑥1

−.2x2
.3𝑥4

1.5 + 7𝑥1
3x2

−.5𝑥3,  

where  𝑥𝑖 ∈ FNs, 𝑖 = 1,2,3,4. 

This program is not defined at 𝑥 = (.2I, .3, .25, I)T ,  g(𝑥) = 2(. 2I)−.2(. 3).3I1.5 +

7(. 2I)3(. 3)−.5(.25) is undefined at  𝑥1 = .2I with  γ1 = −0.2. 

Definition 3.2 

Let A0  be the set of all neutrosophic non-linear functions g(𝑥)  that are 

neutrosophically less than or equal to 𝑧, i.e.  

A0 = {  g(x) < ₦ z, xi ∈ FNs}.  

The membership functions of g(𝑥) and  anti(g(𝑥)) are:  

μAo( g(x)) = {
1                                                                                           0 ≤ g(x) ≤ z

(e
−1

do
(g(x)−z)

+ e
−1

do
(anti (g(x))−z)

− 1) ,      z < g(x) ≤ z − do ln 0.5
          (7) 

μAo(anti( g(x))) = {
0                                                                                            0 ≤ g(x) ≤ z

(1 − e
−1

do
(anti (g(x))−z)

− e
−1

do
(g(x)−z)

) , z − do ln 0.5 ≤ g(x) ≤ z + do
        (8) 

Eq. (6) can be changed into  

g(x) < ₦   z,       x = (x1, x2, … , xm), xi ∈ FNs               (9) 

The above program can be redefined as follow: 
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g(x) < z                                      

anti( g(x)) > z                         

neut( g(x)) = z                        

x = (x1, x2, … , xm), xi ∈ FNs}
 
 

 
 

                               (10) 

It is clear that μAo(neut( g(𝑥))) consists from the intersection of the following 

functions: 

e
−1

do
(g(x)−z)

      &  1 − e
−1

do
(anti(g(x))−z)

           

μAo(neut( g(x))) = {
1 − e

−1

do
(anti( g(x))−z)

            z ≤ g(x) ≤ z − do ln 0.5

e
−1

do
(g(x)−z)

                    z − do ln 0.5 < g(x) ≤ z + do

                            (11) 

Definition 3.3 

Let Ñ be a fuzzy neutrosophic set defined on [0,1] ∪ [0, nI], 𝑛 ∈ [0,1]; if there 

exists a fuzzy neutrosophic optimal point set Ao
∗  of g(𝑥) such that  

Ñ(𝑥) =
min{μ(neut g(x))}

x = (x1, x2, … , xm), xi ∈ FNs
            (12) 

Ñ(x) = e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

Ʌ  1 − e
−1

do
(anti( ∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

, 

then maxÑ(𝑥)  is said to be a neutrosophic geometric programming (the 

unconstrained case) with respect to Ñ(𝑥) of g(𝑥)  .  

Definition 3.4 

Let 𝑥∗ be an optimal solution to Ñ(𝑥), i.e.   

Ñ(x∗) = maxÑ(x) , x = (x1, x2, … , xm), xi ∈ FNs ,             (13) 

and the fuzzy neutrosophic set  Ñ  satisfying (12) is a fuzzy neutrosophic 

decision in (9). 

Theorem 3.1 

The maximum of Ñ(x) is equivalent to the program: 

maxα                                                       
g(x) < z − do ln α                              

anti g(x) > z − do ln(1 − α)           

x = (x1, x2, … , xm), xi ∈ FNs , do > 0 

     }               (14) 

Proof 

It is known by definition (3.4) that 𝑥∗  satisfied eq. (12), called an optimal 

solution to (9). Again, 𝑥∗  bears the similar level for g(𝑥) ,

anti(g(𝑥)) &  neut(g(𝑥)).  Particularly, 𝑥∗  is a solution to neutrosophic 
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 posynomial geometric programming (6) at Ñ(𝑥∗) = 1 . However, when g(𝑥) <

𝑧 and anti(g(𝑥)) > 𝑧, there exists  

Ñ(x) = e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

Ʌ  1 − e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

 , 

given α = Ñ(x). Now,  ∀ α ∈ FNs; it is clear that  

e
−1

do
(∑ ck

J
k=1

∏ x
l

γklm
l=1 −z)

≥ α                 (15) 

1 − e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

≥ α                (16) 

From (15), we have 

−1

do
(∑ ck

J
k=1 ∏ xl

γklm
l=1 − z) ≥ ln α  

g(x) = (∑ ck
J
k=1 ∏ xl

γklm
l=1 ) ≤ z − do ln α .             (17) 

From (16), we have  

1 − α ≥ e
−1

do
(anti (∑ ck

J
k=1

∏ x
l

γklm
l=1 )−z)

  

→ anti (∑ ck
J
k=1 ∏ xl

γklm
l=1 ) − z ≥ −do ln(1 − α)             (18) 

anti (g(x)) ≥ z − do ln(1 − α).   

Note that, for the equality in (17) & (18), it is exactly equal to  neut g(𝑥). 

Therefore, the maximization of Ñ(𝑥) is equivalent to (14) for arbitrary α ∈ FNs, 

and the theorem holds. 

 

Figure 1. The orange color means the region covered  by μAo( g(𝑥)), the red color 

means the region covered by  μAo(anti( g(𝑥))), and the yellow color means the region 

covered by  μAo(neut( g(𝑥))). 
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4 Conclusion 

The innovative concept and procedure explained in this article suit to the 

neutrosophic GP. A neutrosophic less than or equal to form can be completely 

turned into classical less than, greater than and equal forms. The feasible 

region for unconstrained neutrosophic GP can be determined by a fuzzy 

neutrosophic optimal point set in the fuzzy neutrosophic decision region 

Ñ(x∗) . 
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