
Why do we live in a quantum world?

Craig Alan Feinstein

2712 Willow Glen Drive, Baltimore, MD 21209. E-mail: cafeinst@msn.com

Anybody who has ever studied quantum mechanics knows that it is a very counterintu-
itive theory, even though it has been an incredibly successful theory. This paper aims to
remove this counterintuitiveness by showing that the laws of quantum mechanics are a
natural consequence of classical Newtonian mechanics combined with the digital uni-
verse hypothesis of Konrad Zuse and Edward Fredkin. We also present a possible way
to test the digital universe hypothesis.

1 Introduction

The late and great physicist Richard Feynman once said, “I
think I can safely say that nobody understands quantum me-
chanics.” [5] He said this not because he thought scientists
were incapable of understanding how to apply the laws of
quantum mechanics to make predictions about experiments,
but because quantum mechanics is a very counterintuitive the-
ory; there are many paradoxes associated with quantum me-
chanics [3] and many ways to interpret quantum mechanics as
well [4]. The aim of this paper is to completely remove coun-
terintuitiveness from quantum mechanics by showing that the
laws of quantum mechanics are a natural consequence of clas-
sical Newtonian mechanics combined with the digital uni-
verse hypothesis of Konrad Zuse and Edward Fredkin. We
also present a possible way to test the digital universe hy-
pothesis.

2 Digital Universe

The digital universe hypothesis of Zuse and Fredkin is that
our universe is in essence a giant (but finite) digital com-
puter and that everything which happens in our universe is
the result of a computer program [6, 11]. This is a radical
departure from contemporary physics, which is based on the
assumption that space-time is continuous, not discrete. As
Edward Fredkin said, “From a Digital perspective, contem-
porary models of fundamental physics are a bit like looking
at an animated cartoon while assuming that it is reality; that
the images are moving continuously” [6]. So if everything
which happens in our universe is the result of a computer pro-
gram, then Who is the programmer? Digital physics does not
address this question.

If the digital universe hypothesis is correct, does this im-
ply that all of contemporary physics is wrong? The answer
to this question depends on one’s definition of “wrong”: If
“wrong” means that the equations of contemporary physics
do not completely describe our universe, then yes, contempo-
rary physics would be wrong if the digital universe hypothesis
is correct. But if “wrong” means that the equations of con-
temporary physics do not predict the results of experiments

done in the real world, then no, contemporary physics would
not be wrong, since contemporary physics does a great job of
predicting the results of many experiments done in the real
world.

3 Classical physics on a computer
The position and momentum of particles play a central role
in classical Newtonian mechanics, as we can see from Hamil-
ton’s equations,
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for i = 1, 2, 3, where H is energy, t is time, (x1, x2, x3) is po-
sition, and (p1, p2, p3) is momentum. Suppose that our uni-
verse is a digital universe which attempts to simulate the laws
of Newtonian mechanics as well as it can, given the limitation
that it would only have a finite number of bits, n, available to
specify both the position and the momentum of each particle.
Let A be the number of bits that the computer which generates
such a universe allocates to specify the position of a particle,
and let B be the number of bits that the computer which gen-
erates such a universe allocates to specify the momentum of
the same particle. Then the error in position, ∆x, would be of
the order of magnitude 2−A, and the error in momentum, ∆p,
would be of the order of magnitude 2−B. So since

A + B = n, (3)

the product of both errors would yield the constant 2−n. Thus,
if we let ~ = 2−n+1, we obtain

∆x · ∆p = ~/2. (4)

If the reader hasn’t noticed already, this equality is an exact
version of Heisenberg’s Uncertainty Principle [11].

Now consider the fact that in 2002, Michael Hall and Mar-
cel Reginatto derived Schrödinger’s equation,
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m
∇2ψ + Vψ, (5)

from equation (4) combined with the assumptions of classi-
cal Newtonian mechanics, where m is mass, V is potential
energy, and ψ =

√
p exp(is/~), where p is the probability

density function of position and s is the average momentum
potential [8]. Then since Schrödinger’s equation is the fun-
damental equation of quantum mechanics, we have shown
that the laws of quantum mechanics are a natural consequence
of classical Newtonian mechanics combined with the digital
universe hypothesis.

Caveat: Note that equation (5) is only an approximation,
since it was derived from the assumption that our universe
is digital; nevertheless, it is still a better approximation than
Hamilton’s equations (1) and (2), since Hamilton’s equations
do not take into account equation (4), which applies in a dig-
ital universe. Hence, for the remainder of this paper, we shall
call the combination of classical Newtonian mechanics and
the digital universe hypothesis digital mechanics.

4 “Shut up and calculate!”

The so-called measurement problem, which asks “What is
the nature of the mechanism which causes the wave func-
tion to collapse?”, is the single feature of quantum mechan-
ics that makes it a counterintuitive theory. This problem has
inspired many interpretations of quantum mechanics [4]. N.
David Mermin summed up its most popular interpretation, the
Copenhagen interpretation, as “Shut up and calculate!” [10]
This interpretation supposedly solves the measurement prob-
lem by ignoring it and pretending that it does not exist. Never-
theless, the measurement problem still does exist in quantum
mechanics, since Schrödinger’s equation does not appear to
explain how and why the wave function collapses.

However, in digital mechanics, the phrase “Shut up and
calculate!” is the answer to the measurement problem: Since
everything that happens in digital mechanics is the result of
calculations, the calculations themselves are the mechanism
which causes the wave function to collapse; therefore, it is ap-
propriate (although not polite) to respond “Shut up and cal-
culate!” to anyone who asks questions about the nature of
the wave function collapse in digital mechanics. So we see
that digital mechanics effectively removes counterintuitive-
ness from quantum mechanics by providing a clear and con-
cise answer to the measurement problem. Can the digital me-
chanics hypothesis be tested? The answer to this question is
“possibly, yes”. To understand how, we must understand the
concept of quantum computing.

5 Quantum computing
A quantum computer is any device which makes direct use
of distinctively quantum mechanical phenomena, such as su-
perposition and entanglement, to perform computations on
data. As of today, nobody has ever built a large-scale quan-
tum computer; however, much is known about the theoreti-
cal properties of quantum computers. For example, quantum
computers have been shown to be able to efficiently solve cer-
tain types of problems, like factoring large integers, which are
believed to be very difficult to solve on a digital computer [7].

The Extended Church-Turing Thesis is the assertion that
any mathematical function that is efficiently computable in
the natural world is efficiently computable by a digital com-
puter [2]. Therefore, if a large-scale quantum computer ever
gets built and it is impossible to efficiently factor integers on a
digital computer, the Extended Church-Turing Thesis would
be false. And if large-scale quantum computers are impossi-
ble in principle to build, this would mean that quantum me-
chanics needs to be modified. The quantum computer ex-
pert Scott Aaronson summed it up as follows: “Either the Ex-
tended Church-Turing Thesis is false, or quantum mechanics
must be modified, or the factoring problem is solvable in clas-
sical polynomial time. All three possibilities seem like wild,
crackpot speculations - but at least one of them is true!” [1]

Some scientists are of the opinion that building a large-
scale quantum computer is impossible; in fact, the complex-
ity theorist, Leonid Levin, wrote: “QC of the sort that factors
long numbers seems firmly rooted in science fiction. It is
a pity that popular accounts do not distinguish it from much
more believable ideas, like Quantum Cryptography, Quantum
Communications, and the sort of Quantum Computing that
deals primarily with locality restrictions, such as fast search
of long arrays. It is worth noting that the reasons why QC
must fail are by no means clear; they merit thorough inves-
tigation. The answer may bring much greater benefits to the
understanding of basic physical concepts than any factoring
device could ever promise. The present attitude is analogous
to, say, Maxwell selling the Daemon of his famous thought
experiment as a path to cheaper electricity from heat. If he
did, much of insights of today’s thermodynamics might be
lost or delayed” [9].

Can a large-scale quantum computer that can efficiently
factor integers ever be built? According to quantum mechan-
ics, the answer is “yes, in principle”. But according to digital
mechanics, the answer is “no”, assuming that it is impossi-
ble to efficiently factor integers on a digital computer. So in
principle, there is a way to test digital mechanics, assuming
that it is impossible to efficiently factor integers on a digital
computer: If one successfully builds a large-scale quantum
computer, then the digital mechanics hypothesis is false. And
if one does everything possible to build a large-scale quan-
tum computer but is still unsuccessful in building one, then
the digital mechanics hypothesis is confirmed, and the laws
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of quantum mechanics are not fundamental but only an ap-
proximation.

6 Conclusion
Digital mechanics, the combination of classical Newtonian
mechanics and the digital universe hypothesis, predicts all of
the observed phenomena that quantum mechanics predicts.
And one can use Occam’s Razor to argue that digital mechan-
ics is a much better theory than quantum mechanics, since
digital mechanics is much simpler than quantum mechan-
ics. Digital mechanics is also intuitive, since its measurement
problem has a clear and concise answer. Furthermore, digi-
tal mechanics is falsifiable: If one could successfully build a
large-scale quantum computer, then digital mechanics would
be false, assuming that it is impossible to efficiently factor
large integers on a digital computer (which is generally be-
lieved to be true). But so far, nobody has ever built such a
computer, although not for lack of trying. Because of this, the
author predicts that as more computer engineers attempt to
build large-scale quantum computers and fail, scientists will
eventually accept digital mechanics as a better theory than
quantum mechanics.
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