FLORENTIN SMARANDACHE
Solving Problems by Using a Function
in The Number Theory

In Florentin Smarandache: “Collected Papers”, vol. II. Chisinau
SOME LINEAR EQUATIONS INVOLVING A FUNCTION IN THE NUMBER THEORY

We have constructed a function \(\eta \) which associates to each non-null integer \(m \) the smallest positive \(n \) such that \(n! \) is a multiple of \(m \).

(a) Solve the equation \(\eta(x) = n \), where \(n \in \mathbb{N} \).

(b) Solve the equation \(\eta(mx) = x \), where \(m \in \mathbb{Z} \).

Discussion.

(c) Let \(\eta^{(i)} \) denote \(\eta \circ \eta \circ \ldots \circ \eta \) of \(i \) times. Prove that there is a \(k \) for which
\[\eta^{(k)}(m) = \eta^{(k+1)}(m) = \eta(m) \] for all \(m \in \mathbb{Z}^* \setminus \{1\} \).

"Find \(n_m \) and the smallest \(k \) with this property.

Solution

(a) The cases \(n = 0, 1 \) are trivial.

We note the increasing sequence of primes less or equal than \(n \) by \(p_1, p_2, \ldots, p_k \),

\[\beta_t = \sum_{i=1}^{s} \left[\frac{n}{p_i^k} \right], \quad t = 1, 2, \ldots, k, \]

where \([y] \) is greatest integer less or equal than \(y \).

Let \(n = p_1^{a_1} \cdots p_s^{a_s} \), where all \(p_i \) are distinct primes and all \(a_i \) are from \(\mathbb{N} \).

Of course we have \(n \leq x \leq n! \)

Thus \(x = p_1^{\sigma_1} \cdots p_s^{\sigma_s} \) where \(0 \leq \sigma_t \leq \beta_t \) for all \(t = 1, 2, \ldots, k \) and there exists at least a \(j \in \{1, 2, \ldots, s\} \) for which
\[\sigma_j = \beta_j, \quad \{\beta_1^t, \ldots, \beta_s^t - \alpha_t + 1}\). \[\]

Clearly \(n! \) is a multiple of \(x \), and is the smallest one.

(b) See [1] too. We consider \(m \in \mathbb{N}^* \).

Lemma 1. \(\eta(m) \leq m \), and \(\eta(m) = m \) if and only if \(m = 4 \) or \(m \) is a prime.

Of course \(m! \) is a multiple of \(m \).

If \(m \neq 4 \) and \(m \) is not a prime, the Lemma is equivalent to there are \(m_1, m_2 \) such that \(m = m_1 \cdot m_2 \) with \(1 < m_1 \leq m_2 \) and \((2m_2 < m) \) or \(2m_1 < m \). Whence \(\eta(m) \leq 2m_2 < m \), respectively \(\eta(m) \leq \max\{m_2, 2m_1\} < m \).

Lemma 2. Let \(p \) be a prime \(\leq 5 \). Then \(\eta(pz) = z \) if and only if \(z \) is a prime \(> p \), or \(z = 2p \).
Proof: \(\eta(p) = p \). Hence \(x > p \).

Analogously: \(x \) is not a prime and \(x \neq 2p \iff x = z_1z_2, 1 < z_1 \leq z_2 \) and \(2z_1 < x_1, z_2 \neq p_1 \), and \(2z_1 < x \iff \eta(x) \leq \max\{p, 2x_2\} < x \) respectively \(\eta(px) \leq \max\{p, 2x_1, z_2\} < x \).

Observations

\(\eta(2x) = x \iff x = 4 \) or \(x \) is an odd prime.

\(\eta(3x) = x \iff x = 4, 6, 9 \) or \(x \) is a prime > 3.

Lemma 3. If \((m, x) = 1 \) then \(x \) is a prime > \(\eta(m) \).

Of course, \(\eta(mx) = \max\{\eta(m), \eta(x)\} = \eta(x) = x \). And \(x \neq \eta(m) \), because if \(x = \eta(m) \) then \(m \cdot \eta(m) \) divides \(\eta(m)! \), that is \(m \) divides \(\eta(m) - 1 \)! whence \(\eta(m) \leq \eta(m) - 1 \).

Lemma 4. If \(x \) is not a prime then \(\eta(m) < x \leq 2\eta(m) \) and \(x = 2\eta(m) \) if and only if \(\eta(m) \) is a prime.

Proof: If \(x > 2\eta(m) \) there are \(z_1, z_2 \) with \(1 < z_1 \leq z_2, x = z_1z_2 \). For \(z_1 < \eta(m) \) we have \((z_1 - 1)! \) is a multiple of \(m \). Same proof for other cases.

Let \(x = 2\eta(m) \); if \(\eta(m) \) is not a prime, then \(x = 2ab, 1 < a \leq b \), but the product \(\eta(m) + 1)(\eta(m) + 2)\ldots(2\eta(m) - 1) \) is divided by \(x \).

If \(\eta(m) \) is a prime, \(\eta(m) \) divides \(m \), whence \(m \cdot 2\eta(m) \) is divided by \(\eta(m) \)², it results in \(\eta(m) \cdot 2\eta(m) \geq 2 \cdot \eta(m) \), but \((\eta(m) + 1)(\eta(m) + 2)\ldots(2\eta(m)) \) is a multiple of \(2\eta(m) \), that is \(\eta(m) \cdot 2\eta(m) = 2\eta(m) \).

Conclusion.

All \(x \), prime number > \(\eta(m) \), are solutions.

If \(\eta(m) \) is prime, then \(x = 2\eta(m) \) is a solution.

*If \(x \) is not a prime, \(\eta(m) < x < 2\eta(m) \), and \(x \) does not divide \((x - 1)!/m \) then \(x \) is a solution (semi-open question). If \(m = 3 \) it adds \(x = 9 \) too. (No other solution exists yet.)

(c)

Lemma 5. \(\eta(ab) \leq \eta(a) + \eta(b) \).

Of course, \(\eta(a) = a' \) and \(\eta(b) = b' \) involves \(a' + b' \)! = \(b'!\left(b' + 1\right)\ldots(a' + a') \). Let \(a' \leq b' \).

Then \(\eta(ab) \leq a' + b' \), because the product of \(a' \) consecutive positive integers is a multiple of \(a' \! \).

Clearly, if \(m \) is a prime then \(k = 1 \) and \(n_m = m \).

If \(m \) is not a prime then \(\eta(m) < m \), whence there is a \(k \) for which \(\eta(k)(m) = \eta(k+1)(m) \).

If \(m \neq 1 \) then \(2 \leq n_m \leq m \).
Lemma 6. $n_m = 4$ or n_m is a prime.

If $n_m = n_1 n_2, 1 < n_1 \leq n_2,$ then $n(n_m) < n_m$. Absurd. $n_m \neq 4.$

(**) This question remains open.

References

[Published on "Gamma" Journal, "Stegarul Rosu" College, Brașov, 1987.]