FLORENTIN SMARANDACHE

Subjective Questions and Answers for
A Math Instructor of Higher Education

SUBJECTIVE QUESTIONS AND ANSWERS
FOR A MATH INSTRUCTOR OF HIGHER EDUCATION

1) What are the instructor's general responsibilities?
 - participation in committee work and planning
 - research and innovation
 - in-service training
 - meetings
 - to order necessary textbooks, audio-visual, and other instructional equipment for assigned courses
 - to submit requests for supplies, equipment, and budgetary items in good order and on time
 - to keep abreast of developments in subject field content and methods of instruction
 - to assess and evaluate individual student progress; to maintain student records, and refer students to other appropriate college staff as necessary
 - to participate on college-wide registration and advising
 - effective and full use of the designated class meeting time
 - adequate preparation for course instruction, course and curriculum planning
 - teaching, advising students
 - to be able to make decisions
 - knowledge and use of material
 - positive relationship
 - knowledge of content
 - to plan and implement these plans (or abandon them if they don't work) - short and long-term plannings
 - to be a facilitator, motivator, model, assessor and evaluator of learning, counselor, classroom manager (i.e., to manage the behavior of students, the environment, the curriculum)
 - knowledge of teenage growth and development
 - to continuously develop instructional skills.

The most important personal and academic characteristics of a teacher of higher education are: to be very good professionally in his/her field, to improve permanently his/her skills, to be dedicated to his/her work, to understand the students' psychology, to be a good educator.
to do attractive and interesting lessons, to make students learn to think (to solve not only mathematical problems, but also life ones), to try approaching mathematics with what students are good at (telling them, for example, that mathematics are applied anywhere in the nature), to conduct students in their scientific research, to advise them, to be involved in all scholar activities and committee services; to enjoy teaching.

The first day of school can be more mathematically recreative. Ask the students: What do you like in mathematics, and what don’t you like?

Tell them math jokes, games, proofs with mistakes (to be found!), stories about mathematicians’ lives, connections between math and … opposite fields, such as: arts, music, literature, poetry, foreign languages, etc.

2) What is the students evaluation of you as an instructor (negative opinions)?

- don’t be too nice in the classroom (because some students take advantage of that matter and waste their and class time)
- to be more strict and respond firmly
- don’t say: “this is easy, you should know this” because one discourages students to ask questions
- attendance policy to be clear
- grammer skills, and listening skills
- patience with the students
- allow students to help each other when they don’t understand me
- clear English
- sometimes there isn’t enough time to cover all material
- to self-study the material and solve a lot of unassigned problems
- to talk louder to the class; to be more oriented towards the students and not the board/self
- to understand what the students ask me
- to take off points if the home work problems are wrong, instead of just giving points for trying
- to challenge students in learning
- to give examples of harder problems on the board
- to enjoy teaching (smile, joke?)
- your methods should help students learning
3) What is the college's and university's mission and role in the society?
- to assure that all students served by the College learn the skills, knowledge, behaviors, and attitudes necessary for productive living in a changing, democratic, multicultural society.

4) How do you see the future math teaching (new techniques)?
- teaching online
- telecourses (with videotapes and tapes)
- teaching using internet
- teaching by regular mail
- more electronic device tools in teaching (especially computers)
- interdisciplinarity teaching
- self-teaching (helping students to teach themselves)
- more mathematics taught in connections with the social life (mathematical modeling)
- video conference style of teaching
- laboratory experiments

5) What about <Creative Solutions>?
- the focus of the program is on developing student understanding of concepts and skills rather than <apparent understanding>
- students should be actively involved in problem-solving in new situations (creative solvers)
- non-routine problems should occur regularly in the student homework
- textbooks shall facilitate active involvement of students in the discovery of mathematical ideas
- students should make conjectures and guesses, experiment and formulate hypotheses and seek meaning
- the instructor should not let teaching of mathematics degenerate into mechanical manipulation without thought
- to teach students how to think, how to investigate a problem, how to do research in their own, how to solve a problem for which no method of solution has been provided
- homework assignments should draw the students' attention to underlying concepts
- to do a cognitive guided instruction
- to solve non-routine problems, multi-step problems
- to use a step-by-step procedure for problem solving
- to integrate tradition with modern style teaching
- to emphasize the universality of mathematics
- to express mathematical ideas in a variety of ways
- to show students how to write mathematics, and how to read mathematics
- interpretations of solutions
- using MINITAB graphics to teach statistics (on the computer)
- tutorial programs on the computer
- developing manageable assessment procedures
- experiential teaching methods
- to motivate students to work and learn
- to stimulate mathematical reasoning
- to incorporate "real life" scenarios in teacher training programs
- homo faber + homo sapiens are inseparable (Antonio Gramsci, Italian philosopher)
- to improve the critical thinking and reasoning skills of the students
- to teach students how to extend a concept
- to move from easy to medium and hard problems (gradually)
- math is learned by doing, not by watching
- the students should dedicate to the school
- to become familiar with symbols, rules, algorithms, key words and definitions
- to visualize math notions
- to use computer-generated patterns
- to use various problem-solving strategies such as:
 - perseverance
 - achievement motivation
 - role model
 - confidence
 - flexible thinking
 - fresh ideas
 - different approaches
different data
- to use experimental teaching methods
- function plotters or computer algebra systems
- computer-based learning
- software development
- grant proposal writing
- innovative pedagogy
- to use multi-representational strategies
- to try experimental tools
- to develop discussion groups
- symbol manipulation rules
- to solve template problems
- to do laboratory-based courses
- to think analytically
- to picture ourselves as teacher, or as students
- to use computer-generated patterns and new software tools
- to give the students educational and psychological tests to determine if any of them need special education (for handicapped or gifted students). - American Association on Mental Deficiency measures it.

6) How to diminish the computer anxiety?

In order to diminish the computer anxiety, a teacher needs to develop to the students:
- positive attitudes towards appropriate computer usage
- feeling of confidence in use of computers
- feeling of comfort with computers
- acceptance of computers as a problem-solving tool
- willingness to use a computer for tasks
- attitude of responsibility for ethical use of computer
- attitude that computers are not responsible for "errors"
- free of fear and intimidation of computers (the students anxiety towards computer is diminished as their knowledge about computers increased)
- only after an algorithm is completely understood it is appropriate to rely on the computer to perform it
- Computers help to remove the tedium of time-consuming calculations;
- Enable the students to consolidate the learning of the concepts and algorithms in
 math; the computer session is held at the end of the course when all the lectures
 and tutorials have been completed;
- To simulate real-world phenomena;
- All students should learn to use calculators;
- Math is easier if a calculator is used to solve problems;
- Calculator use is permissible on homework;
- Using calculators makes students better problem solvers;
- Calculators make mathematics fun;
- Using calculator will make students try harder;
- The students should be able to:
 - Assemble and start a computer;
 - Understand the major parts of a computer;
 - Use a variety of educational software;
 - Distinguish the major instructional methodologies;
 - Use word processor, database, and spreadsheet programs;
 - Attach and use a printer, peripherals, and lab probes;
 - Use telecommunications networking;
 - Use hypermedia technology;
 - An instructor helps students to help themselves (it's interesting to study the epistemology of experience);

In the future the technology's role will increase due to the new kind of teaching: distance learning
(internet, audio-visuals, etc.).

The technology is beneficial because the students do not waste time graphing functions anymore, but focusing on their interpretations.

7) Describe your experience teaching developmental mathematics including course names,
semester taught and methods and techniques used.

In my teaching career of more than ten years experience I taught a variety of developmental
mathematics courses, such as:
8) Briefly describe your philosophy of teaching mathematics. Describe the application of this philosophy to a particular concept in a developmental mathematics course you have taught.

- My teaching philosophy is "concept centered" as well as "problem solving directed".

Makarenko: Everything can be taught to everybody if it's done at his/her level of knowledge. This focuses on promoting a student friendly environment where I not only lecture to provide the student a knowledge base by centering on concepts, but I also encourage peer mentoring with groups work to facilitate problem solving. It is my firm conviction that a student's perception, reasoning, and cognition can be strengthened with the application of both traditional and Alternative Learning Techniques and Student Interactive Activities.

- In my Introductory Mathematics course I taught about linear equations:
 - first I had to introduce the concept of variable, and then define the concept of equation; afterwards, tell the students why the equation is called linear; how the linear equation is used in the real world, its importance in the every day's life;
 - second I gave students an example of solving a linear equation on the board, showing them different methods; I classified them into consistent and inconsistent.

9) Describe how you keep current with trends in mathematics instruction and give one example of how you have integrated such a trend into the classroom.

- I keep current with trends in math instruction reading journals such as: "Journal for Research in Mathematical Education", "Mathematics Teacher" (published be the National Council of Teachers of Mathematics, Reston, VA), "Journal of Computers in Mathematics and Science Teaching", "For the learning of mathematics", "Mathematics Teaching" (U.K.), "International Journal of Mathematical Education in Science and Technology"; and participating with papers to the educational congresses, as: The
10) Describe your experience integrating technology into teaching mathematics. Provide specific examples of ways you have used technology in the mathematics classroom.

- I use graphic calculators (TI-85) in teaching Intermediate Algebra; for example: programming it to solve a quadratic equation (in all 3 cases, when D is $>$, $=$, or $<$ 0).
- I used various software packages of mathematics on IBM-PC or compatibles, such as: MPP, MAPLE, UA, etc. to give the students different approaches; for example in teaching Differential Equations I used MPP for solving a differential equation by Euler's method, changing many times the initial conditions, and graphing the solutions.

11) Describe your knowledge and/or experience as related to your ability to prepare classroom materials.

Classroom materials that I use: handouts, different color markers, geometric instruments, take-home projects, course notes, group projects, teaching outline, calculators, graphic calculators, PC, projectors, books, journals, etc.

12) Describe the essential characteristics of an effective mathematics curriculum.

- To develop courses and programs that support the College's vision of an educated person and a commitment to education as a lifelong process;
- To provide educational experiences designed to facilitate the individual's progress towards personal, academic, and work-based goals;
- To encourage the development of individual ideas and insights and acquisition of knowledge and skills that together result in an appreciation of cultural diversity and a quest for further discovery;
- To respond to the changing educational, social, and technological needs of current and prospective students and community employers;

13) Provide specific examples of how you have and/or how you would develop and evaluate mathematics curriculum.

In order to develop a mathematics curriculum:

I identify unmet student need, faculty interest in a new area, request from employers,
recommendation of advisory committee, result of program review, university curriculum development.

Criteria for evaluation of a mathematics curriculum:
- course/program is educationally sound and positively affects course/program offerings within district; course does not unnecessarily duplicate existing course or course content in other disciplines offered throughout the district;
- development or modification of course/program does not adversely impact existing courses/programs offered throughout the district by competing for students and resources;
- course/program is compatible with the mission of the college.

14) Describe your experience, education and training that has provided you with the knowledge of and ability to assess student achievement in mathematics.

I taught mathematics in many countries, for many years, using various student assessments.

15) Provide specific examples of ways you have and/or ways you would assess student achievement in mathematics.

I assess students by: tests in the Testing Center, quizzes in the classroom, homeworks, class participation (either solving problems on the board, or giving good answers for my questions), extra-work (voluntarily), take-home exams, research projects, frequency. Normally a test contains 10 problems, total being 100 points. For each homework I give 5 points, same for each extra-work, for each class participation. For more than 3 absences I subtract points (one point for each absence), and later I withdraw the student.

Take-home exams, quizzes, and research project have the worth of a test.

Finally I compute the average (my students know to assess themselves according to these rules, explained in the class and written in the syllabus).
16) This question is about motivating a typical community college class of students, which is very diverse.
 a) What kinds of students are you likely to have in such a class?
 Students of different races, genders, religions, ages, cultures, national origins, levels of preparendness, with or without physical or mental handicaps.
 b) How would you teach them?
 Catching their common interest, tutoring on a one-to-one basis students after class (according to each individual level of preparendness, knowledge), working differentially with categories of students on groups, being a resource to all students, using multirepresentational strategies, motivating and making them dedicate to the study, finding common factors of the class. Varying teaching styles to respond to various student learning styles.

17) Given the fact that the community college philosophy encourages faculty members to contribute to the campus, the college, and the community, provide examples of how you have and/or would contribute to the campus, the college, and the community.
 I have contributed to the college by:
 - being an Associate Editor of the college (East Campus) "Math Power" journal;
 - donating books, journals to the college (East Campus) Library;
 - volunteering to help organizing the AMATYC math competitions (I have such experience from Romania and Morocco);
 - representing the college at National/International Conferences on Mathematical and Educational Topics (as, for example, at Bloomsburg University, PA, Nov. 14, 1995);
 - publishing papers, and therefore making free publicity for the college;
 I would contribute to the college by:
 - organizing a Math Club for interested students;
 - cooperating with my fellow colleagues on educational projects sponsored by various foundations: National Science Foundation, Fullbright ... Guggenheit?
 - socializing with my fellow colleagues to diverse activities needed to the college.
 - being a liaison between the College and University in order to frequently update the University math software and documentation (public property, reach done will a grant from NSF).

18) Describe your experience within the last three years in teaching calculus for science and
engineering majors and/or survey calculus at a post secondary level.

I have taught Calculus I, II, III in many countries. I have insisted on solving most creatively problems in calculus, because most of them are open-ended (they have more than one correct answer or approach); sometimes, solving a problem relies on common sense ideas that are not stated in the problem. The fundamental basis of the Calculus class is what graphs symbolize, not how to draw them.

Using calculators or computers the students got reasonable approximation of a solution, which was usually just useful as an exact one.

19) Reform calculus a significant issue in math education today. Describe your thoughts on the strengths and weaknesses of reform versus traditional calculus and indicate which form of calculus you would prefer to teach.

Of course, I prefer to teach the Harvard Calculus, because it gives the students the skills to read graphs and think graphically, to read tables and think numerically, and to apply these skills along with their algebraic skills to modeling the real world (The Rule of Three); and Harvard Calculus also states that formal mathematical theory evolves from investigations of practical problems (The Way of Archimedes).

Weaknesses: the students might rely too much on calculators or computers ("the machines will think for us!"); forgetting to graph, solve, compute.

20) Describe your experience in curriculum development including course development, textbook or lab manual development, and development of alternative or innovative instructional methods.

I have developed a course of Calculus I, wrote and published a textbook of Calculus I for students, associated with various problems and solutions on the topic.

Concerning the alternative instructional methods, I'm studying and developing The Interactivity Method of Teaching in Mathematics (inspired by some articles from "Journal for Research in Mathematical Education" and "International Journal of Mathematical Education in Science and Technology").

21) Describe your education and/or experiences that would demonstrate your ability to proactively interact with and effectively teach students from each of the following: different races, cultures, ages, genders, and levels of preparedness. Provide examples of your interaction with and teaching of students from each of these groups.
I have taught mathematics in many countries: Romania (Europe), Morocco (Africa), Turkey (Asia), and USA. Therefore, I am accustomed to work with a diverse student population. More, each country had its educational rules, methods, styles, curriculum missions - including courses, programs, textbooks, math student competitions, etc. that I have acquired a very large experience. I like to work in a multi-cultural environment teaching in many languages, styles (according to the students' characteristics), being in touch with various professors around the world, knowing many cultural habits.

Describe your professional development activities that help you stay in the field of mathematics. Give your best example of how you have integrated one thing into the classroom that came out of your professional development activities.

I subscribe to math journals, such as: "College Mathematics Journal", as a member of the Mathematical Association of America, and often go to the University Libraries, Science Section, to consult various publications.

I keep in touch with mathematicians and educators from all over, exchanging math papers and ideas, or meeting them at Conferences or Congresses of math or education. Studying about "intersurjectivity" in teaching, I got the idea of working differentially with my students, distributing them in groups of low level, medium level, high level according to their knowledge, and therefore assigning them appropriate special projects.

23) a) What are the most important personal and academic characteristics of a teacher?
b) At the end of your first year of district employment how will you determine whether or not you have been successful?
c) What are the greatest challenges in public education today?
d) What do you want your students to learn?
a) To be very good professional in his/her field, improving his/her skills permanently. To be dedicated to his/her work. To love the students and understand their psychology. To be a very good educator. To prepare every day the lesson (its objectives). To do attractive and interesting lessons.
b) Regarding the level of the class (the knowledge in math), the students grades, even their hobby for math (or at least their interest).
c) To give the students a necessary luggage of knowledge and enough education such that they are able to fend for themselves in our society (they are prepared very well for the future).

d) To think. Brainstorm.
To solve not only mathematical problems, but also life problems.

24) What do you want to accomplish as a teacher?
To get well prepared students with good behaviours.

25) How will (do you) go about finding out students’ attitudes and feelings about your class?
I’ll try to talk with every student to find out their opinions, difficulties, attitudes towards the teacher. Then, I’ll try to adapt myself to the class level of knowledge and to be agreeable to the students. Besides that, I’ll try to approach them in extracurricular activities: soccer, tennis, chess, creative art and literature using mathematical algorithms/methods, improving my Spanish language.

26) An experienced teacher offers you following advice: "When you are teaching, be sure to command the respect of your students immediately and all will go well". How do you feel about this?
I agree that in a good lesson the students should respect their teacher, and reciprocally. But the respect should not be "commanded", but earned. The teacher should not hurt the students by his/her words.

27) How do you go about deciding what it is that should be taught in your class?
I follow the school plan, the mathematics textbook, the school governing board directions. I talk with other mathematics teacher asking their opinions.

28) A parent comes to you and complains that what you are teaching his child is irrelevant to the child needs. How will you respond? I try to find out what he wants, what his needs are like. Then, maybe I have to change my teaching style. I respond that irrelevant subjects of today will be relevant subjects of tomorrow.

29) What do you think will (does) provide you the greatest pleasure in teaching?
When students understand what I’m teaching about and they know how to use that in their
30) When you have some free time, what do you enjoy doing the most?
Improving my mathematical skills (subscription to mathematical and education journals).
Teaching mathematics became a hobby for me!

31) How do you go about finding what students are good at?
I try to approach mathematics with what students are good at. For example: I tell ’em that mathematics are applied anywhere in the nature and society, therefore in arts, in music, in literature, etc. Therefore, we can find a tangential joint between two apparent distinct (opposite) interests.

32) Would you rather try a lot of way-out teaching strategies or would you rather try to perfect the approaches which work best for you? Explain your position.
Both: the way-out-teaching strategies combined with approaches to students.
In each case the teacher should use the method/strategy that works better.

33) Do you like to teach with an overall plan in mind for the year, or would you rather just teach some interesting things and let the process determine the results? Explain your position.
Normally I like to teach with an overall plan in mind, but some times - according with the class level and feelings - I may use the second strategy.

34) A student is doing poorly in your class. You talk to him/her, and he/she tells you that he/she considers you to be the poorest teacher he/she has ever met. What would you do?
I try to find out the opinions of other students about my teaching and to get a general opinion of the entire class. I give students a test with questions about my character, skills, style, teaching methods etc. in order to find out my negative features and to correct/improve them by working hard.

35) If there were absolutely no restrictions placed upon you, what would you most want to do in life?
To set up a school (of mathematics especially) for gifted and talented students with a math
club for preparing students for school competitions.

36) How do you test what you teach?
 By written test, final exams, homeworks, class participation, special projects, extra homeworks, quizzes, take-home exams.

37) Do you have and follow a course outline? When would a variation from the outline be appropriate?
 - Yes, I follow a course outline.
 - When I find out the students have gaps in their knowledge and, therefore they are not able to understand the next topic to be taught. Or new topics are needed (due to scientific research or related to other disciplines).

38) Is student attendance important for your course? Why or why not? What are the student responsibilities necessary for success in your class?
 - Yes.
 - If they miss many courses they will have difficulties to understand the others, because mathematics is like a chain.
 - To work in the classroom, to pay attention and ask questions, to do independent study at home too.

39) Describe your turnaround time for returning graded tests and assignments.
 I normally grade the tests over the weekends. Same for all other assignments.

40) Are you satisfied with the present textbooks? Why or why not?
 - Yes.
 - Because they give the students the main ideas necessary in the technical world.

41) Describe some of the supplemental materials you might use for this course.
 - Personal computer with DERIVE software package.
 - TI-92 and an overhead projector.
 - Tables of Laplace Transforms.
42) Describe your method of student recordkeeping.
 - I keep track of: absences, homeworks, tests' grades, final exam's grade, class participations.

43) Describe how you assist or refer students who need remediation.
 - I advise them to go to the College Tutoring Center.
 - I encourage them to ask questions in the classroom, to work in groups with better students, to contact me before or after class.

44) What is your procedure for giving students feedback on their learning progress?
 - By the tests grades.
 - By the work they are doing in the classroom.

45) How do you monitor your evaluation methods so that they are both fair and constructive?
 - My students are motivated to work and improve their grades by doing extra- (home)work.
 - I compare my evaluation methods with other instructors'.
 - I also feel when a student masters or not a subject.

46) Describe your relationship with your colleagues.
 - I share information, journals, books, samples of tests etc. with them.
 - Good communication.

47) What procedures do you use to motivate students?
 - Giving' em a chance to improve their grades.
 - Telling' em that if they don't learn a subject in mathematics, they would not understand the others (because mathematics is cyclic and linear).

48) Are you acquainted with district and campus policies and procedures? Do you have any problems with any of the policies and procedures?
 - I always try to adjust myself to each campus's policy.
49) What mathematical education topic are you working in?
 - I'm studying the radical constructivism (Jean Piaget) and social constructivism (Vygotsky: to place communication and social life at the center of meaning-making), the intersubjectivity in mathematics, the meta-knowledge, the assessment standards.

Learning and teaching are processes of acculturation.