The Radical Circle of Ex-Inscribed Circles of a Triangle

In this article, we prove several theorems about the radical center and the radical circle of ex-inscribed circles of a triangle and calculate the radius of the circle from vectorial considerations.

1st Theorem.

The radical center of the ex-inscribed circles of the triangle ABC is the Spiecker’s point of the triangle (the center of the circle inscribed in the median triangle of the triangle ABC).

Proof.

We refer in the following to the notation in Figure 1. Let I_a, I_b, I_c be the centers of the ex-inscribed circles of a triangle (the intersections of two external bisectors with the internal bisector of the other angle). Using tangents property taken from a point to a circle to be congruent, we calculate and find that:

$$AF_a = AE_a = BD_b = BF_b = CD_c = CE_c = p,$$

$$BD_c = BF_c = CD_b = CE_b = p - a,$$
$$CE_a = CD_a = AF_c = AE_c = p - b,$$
$$AF_b = AE_b = BF_c = BD_c = p - c.$$

If A_1 is the middle of segment D_cD_b, it follows that A_1 has equal powers to the ex-inscribed circles (I_b) and (I_c). Of the previously set, we obtain that A_1 is the middle of the side BC.

![Diagram](image)

Figure 1.

Also, the middles of the segments E_bE_c and F_bF_c, which we denote U and V, have equal powers to the circles (I_b) and (I_c).

The radical axis of the circles (I_b), (I_c) will include the points A_1, U, V.

Because $AE_b = AF_b$ and $AE_c = AF_c$, it follows that $AU = AY$ and we find that $\angle AUV = \frac{1}{2}\angle A$, therefore the
radical axis of the ex-inscribed circles \((F_b)\) and \((I_c)\) is the parallel taken through the middle \(A_1\) of the side \(BC\) to the bisector of the angle \(BAC\).

Denoting \(B_1\) and \(C_1\) the middles of the sides \(AC\), \(AB\), respectively, we find that the radical center of the ex-inscribed circles is the center of the circle inscribed in the median triangle \(A_1B_1C_1\) of the triangle \(ABC\).

This point, denoted \(S\), is the Spiecker’s point of the triangle \(ABC\).

2nd Theorem.

The radical center of the inscribed circle \((I)\) and of the \(B\) – ex-inscribed and \(C\) – ex-inscribed circles of the triangle \(ABC\) is the center of the \(A_1\) – ex-inscribed circle of the median triangle \(A_1B_1C_1\), corresponding to the triangle \(ABC\).

Proof.

If \(E\) is the contact of the inscribed circle with \(AC\) and \(E_b\) is the contact of the \(B\) – ex-inscribed circle with \(AC\), it is known that these points are isotomic, therefore the middle of the segment \(EE_b\) is the middle of the side \(AC\), which is \(B_1\).

This point has equal powers to the inscribed circle \((I)\) and to the \(B\) – ex-inscribed circle \((I_b)\), so it belongs to their radical axis.
Analogously, C_1 is on the radical axis of the circles (I) and (I_c).

The radical axis of the circles (I), (I_b) is the perpendicular taken from B_1 to the bisector II_b.

This bisector is parallel with the internal bisector of the angle $A_1B_1C_1$, therefore the perpendicular in B_1 on II_b is the external bisector of the angle $A_1B_1C_1$ from the median triangle.

Analogously, it follows that the radical axis of the circles (I), (I_c) is the external bisector of the angle $A_1C_1B_1$ from the median triangle.

Because the bisectors intersect in the center of the circle A_1-ex-inscribed to the median triangle $A_1B_1C_1$, this point S_a is the center of the radical center of the circles (I), (I_b), (I_c).

Remark.

The theorem for the circles (I), (I_a), (I_b) and (I), (I_a), (I_c) can be proved analogously, obtaining the points S_c and S_b.

3rd Theorem.

The radical circle’s radius of the circles ex-inscribed to the triangle ABC is given by the formula:
$$\frac{1}{2}\sqrt{r^2 + p^2},$$
where r is the radius of the inscribed circle.
Proof.

The position vector of the circle \(I \) of the inscribed circle in the triangle ABC is:

\[
\overrightarrow{PI} = \frac{1}{2p} (a\overrightarrow{PA} + b\overrightarrow{PB} + c\overrightarrow{PC}).
\]

Spiecker’s point \(S \) is the center of radical circle of ex-inscribed circle and is the center of the inscribed circle in the median triangle \(A_1B_1C_1 \), therefore:

\[
\overrightarrow{PS} = \frac{1}{p} \left(\frac{1}{2} a\overrightarrow{P_{A_1}} + \frac{1}{2} b\overrightarrow{P_{B_1}} + \frac{1}{2} c\overrightarrow{P_{C_1}} \right).
\]

Figure 2.

We denote by \(T \) the contact point with the \(A \)-ex-inscribed circle of the tangent taken from \(S \) to this circle (see Figure 2).
The radical circle's radius is given by:

\[ST = \sqrt{SI_a^2 - l_a^2} \]

\[l_a S = \frac{1}{2p} (a l_{aA_1} + b l_{aB_1} + c l_{aC_1}). \]

We evaluate the product of the scales \(l_a S \cdot l_a S \); we have:

\[l_a S^2 = \frac{1}{4p^2} (a^2 l_{aA_1}^2 + b^2 l_{aB_1}^2 + c^2 l_{aC_1}^2 + 2ab l_{aA_1} \cdot l_{aB_1} + 2bc l_{aB_1} \cdot l_{aC_1} + 2ac l_{aA_1} \cdot l_{aC_1}). \]

From the law of cosines applied in the triangle \(l_a A_1 B_1 \), we find that:

\[2l_{aA_1} \cdot l_{aB_1} = l_a A_1^2 + l_a B_1^2 - \frac{1}{4} c^2, \]

therefore:

\[2ab l_{aA_1} \cdot l_{aB_1} = ab(l_a A_1^2 + l_a B_1^2 - \frac{1}{4} abc^2). \]

Analogously, we obtain:

\[2bc l_{aB_1} \cdot l_{aC_1} = bc(l_a B_1^2 + l_a C_1^2 - \frac{1}{4} a^2 bc), \]

\[2ac l_{aA_1} \cdot l_{aC_1} = ac(l_a A_1^2 + l_a C_1^2 - \frac{1}{4} ab^2 c). \]

\[l_a S^2 = \frac{1}{4p^2} \left[(a^2 + ab + ac)l_{aA_1}^2 + (b^2 + ab + bc)l_{aB_1}^2 + (c^2 + bc + ac)l_{aC_1}^2 - \frac{abc}{4} (a + b + c) \right], \]

\[l_a S^2 = \frac{1}{4p^2} \left[2p(a l_{aA_1}^2 + b l_{aB_1}^2 + c l_{aC_1}^2) - 2RS_p \right], \]

\[l_a S^2 = \frac{1}{2p} (a l_{aA_1}^2 + b l_{aB_1}^2 + c l_{aC_1}^2) - \frac{1}{2} Rr. \]

From the right triangle \(l_a D_a A_1 \), we have that:

\[l_a A_1^2 = r_a^2 + A_1 D_a^2 = r_a^2 + \left[\frac{a}{2} - (p - c) \right]^2 = r_a^2 + \frac{(c-b)^2}{4}. \]

From the right triangles \(l_a E_a B_1 \) și \(l_a F_a C_1 \), we find:
\[I_a B_1^2 = r_a^2 + B_1 E_a^2 = r_a^2 + \left[\frac{b}{2} - (p - b) \right]^2 = r_a^2 + \frac{1}{4} (a + c)^2, \]
\[I_a C_1^2 = r_a^2 + \frac{1}{4} (a + b)^2. \]
Evaluating \(al_a A_1^2 + bl_a B_1^2 + cl_a C_1^2 \), we obtain:
\[al_a A_1^2 + bl_a B_1^2 + cl_a C_1^2 = 2pr_a^2 + \frac{1}{2} p(ab + ac + bc) - \frac{1}{4} abc. \]
But:
\[ab + ac + bc = r^2 + p^2 + 4Rr. \]
It follows that:
\[\frac{1}{2p} [al_a A_1^2 + bl_a B_1^2 + cl_a C_1^2] = r_a^2 + \frac{1}{4} (r^2 + p^2) + \frac{1}{2} Rr \]
and
\[I_a S^2 = r_a^2 + \frac{1}{4} (r^2 + p^2). \]
Then, we obtain:
\[ST = \frac{1}{2} \sqrt{r^2 + p^2}. \]
References.
