New spherical static solution in Gravity field

Sangwha-Yi
Department of Math, Taejon University 300-716

ABSTRACT
In the general relativity theory, we discover new solution in gravity field by Einstein’s gravity field equation with cosmological constant term. We treats curvature tensor in new solution.

PACS Number:04.04.90.+e
Key words: General relativity theory,
Gravity field equation
New static solution
Curvature tensor
e-mail address:sangwha1@nate.com
Tel:051-624-3953
1. Introduction

We solve new solution in gravity field by gravity field equation with cosmological constant term.

Gravity field equation with cosmological constant term is in vacuum

$$R_{\mu\nu} = \Lambda g_{\mu\nu}$$ \hspace{1cm} (1)

The spherical coordinate is

$$dr^2 = W(r,t)dt^2 - \frac{1}{c^2} [U(t,r)dr^2 + V(t,r)\{d\theta^2 + \sin^2 \theta d\phi^2\}]$$ \hspace{1cm} (2)

In this time, Einstein’s gravity equation is

$$R_{tt} = \frac{1}{2} \frac{\ddot{U}U - \dot{U}^2}{U^2} + \frac{1}{2} \frac{W'W - W^2}{U^2} + \frac{1}{4} \frac{W'^2}{U^2} - \frac{1}{4} \frac{W'W}{U^2} - \frac{1}{4} \frac{U'W}{U^2} + \frac{1}{2} \frac{V^2}{V^2} + \frac{1}{2} \frac{\dot{W}W - \ddot{W}}{2UW} - \frac{1}{2} \frac{W'V}{2UV} = -\Lambda W$$ \hspace{1cm} (3)

$$R_{\theta\theta} = \frac{1}{2} \frac{W'^2}{W^2} - \frac{1}{4} \frac{W'W}{4UW} + \frac{1}{4} \frac{W'V}{4UW} + \frac{1}{4} \frac{V'U - VU}{2U^2} - \frac{1}{4} \frac{U'V}{4UW} + \frac{1}{4} \frac{U'V}{4U^2} - 1$$ \hspace{1cm} (4)

$$= \Lambda V$$ \hspace{1cm} (5)

$$R_{\phi\phi} = \sin^2 \theta R_{\theta\theta}$$ \hspace{1cm} (6)

$$R_{r\theta} = \frac{V}{V} - \frac{\dot{V}}{2V^2} - \frac{\dot{U}}{2U} - \frac{W}{2U} = 0$$ \hspace{1cm} (7)

In this time, \hspace{1cm} $\dot{A} = \frac{\partial A}{\partial r}, \overset{\cdot}{A} = \frac{1}{c} \frac{\partial A}{\partial t}$ \hspace{1cm} (8)

2. New spherical static solution in Gravity field

We think

$$W(r,t) = g(r), \quad U(t,r) = 1, \quad V(t,r) = h(r)$$ \hspace{1cm} (9)

In vacuum, Eq(7) is

$$R_{r\theta} = \frac{V}{V} - \frac{\dot{V}}{2V^2} - \frac{\dot{U}}{2U} - \frac{W}{2U} = 0$$ \hspace{1cm} (10)

In vacuum, Eq(3)-(5) is

$$R_{tt} = \frac{1}{2} \frac{1}{U} - \frac{1}{4} \frac{W^2}{W^2} - \frac{WV}{2UV} = -\Lambda W$$
\[
R'' = -\frac{g''}{2} + \frac{g'^2}{4g} - \frac{g'h}{2h} = -\Lambda g \\
R' = \frac{1}{2} W' - \frac{W'H}{4W^2} + \frac{V'}{V} - \frac{1}{2} \frac{V'^2}{V^2} = \Lambda U \\
R'' = \frac{1}{2} \frac{g''}{g} - \frac{g'^2}{4g^2} + \frac{h''}{h} - \frac{1}{2} \frac{h'^2}{h^2} = \Lambda \\
R_{\theta\theta} = \frac{W'V}{4WW} + \frac{V'}{2U} - 1 = \Lambda V \\
R_{\theta\theta} = \frac{g'h}{4g} + \frac{h'}{2} - 1 = \Lambda h
\]

Therefore, Eq(11)-Eq(13) is
\[
-\frac{g''}{2g} + \frac{g'^2}{4g^2} - \frac{g'h}{2hg} = -\Lambda \\
\frac{g''}{2g} - \frac{g'^2}{4g^2} + \frac{h'}{h} - \frac{1}{2} \frac{h'^2}{h^2} = \Lambda \\
\frac{g'h}{4g} + \frac{h'}{2} - 1 = \Lambda h
\]

In Eq(16), if \(h \) is constant, the equation (14)-(16) solved.
\[
h = -\frac{1}{\Lambda}
\]

Hence, Eq(14)-(15) is
\[
\frac{g''}{2g} - \frac{g'^2}{4g^2} = \Lambda
\]

The solution of Eq(18) is
\[
g = \exp(2\sqrt{\Lambda}r)
\]

Therefore, new solution is in vacuum in gravity field
\[
dr^2 = -c^2 dt^2 = -c^2 e \times p\partial(\sqrt{\Lambda}r)dt^2 + dr^2 - \frac{1}{\Lambda}(d\theta^2 + ri\theta d\phi^2)
\]

We treat curvature tensor of new solution.
\[
g_{\mu} = -e \times p\partial(\sqrt{\Lambda}r) , \ g_{\mu} = 1 , \ g_{\theta\theta} = -\frac{1}{\Lambda} \\
\Gamma'_{\mu} = \frac{1}{2} g'' \left(-\frac{\partial g_{\mu}}{\partial r}\right) = \sqrt{\Lambda} e \times p\partial(\sqrt{\Lambda}r) \\
R'' = \frac{\partial \Gamma'_{\mu}}{\partial r} = 2\Lambda \exp(2\sqrt{\Lambda}r) , \ R_{\mu\nu} = g_{\mu}R'_{\mu\nu} = 2\Lambda \exp(2\sqrt{\Lambda}r)
\]
3. Conclusion

Therefore, new spherical solution in gravity field is

\[\text{d}t^2 = \exp(2\sqrt{\Lambda}r)\text{d}t^2 - \frac{1}{c^2}[\text{d}r^2 - \frac{1}{\Lambda}(\text{d}\theta^2 + \sin^2 \theta\text{d}\phi^2)]\]

(21)

According to the variable \(r\), the observer’s light speed is over light velocity \(c\) in vacuum.

Reference