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Abstract 
  
     We develop three new quantum algorithms for searching the desired target state in the 

unstructured database of size N. The first algorithm requires Log N iterative steps. It 
constructs two quantum bags of equal size in terms of two quantum states, out of 
which exactly one quantum state will have nonzero overlap with the target state. This 
determination of overlap is done by taking the inner product, in Log N time [2], of the 
implicitly known target state with any one of these two quantum states. The second 
algorithm requires just one single step which uses a new suitable operator and the 
choice of this operator is problem dependent, i.e. it depends upon the number of 
qubits required to be used to represent an element in the index set. The third 
algorithm again requires only a single step and this algorithm makes use of a fixed 
(same) operator. It is known that algorithm for unstructured database search can be 
easily adaptable for solving NP-Complete problems. However, the computational 
complexity of NP-Complete problems after the adaptations of both the classical as 
well as quantum [1] search algorithms remains of the exponential order as the 
exponent for quantum [1] algorithm changes only to one-half times the exponent for 
classical algorithm. But for our quantum algorithms the exponent falls substantially 
so that our new quantum algorithms for unstructured search are capable if reducing 
the computational complexity of NP-Complete problems to polynomial order! 

 
1. Introduction: In this paper we propose three new quantum algorithms for 

unstructured database search. If N is the size of the unstructured database then we 
show that we can pick out the desired target in just LogN  steps by the first 
algorithm, and in just single step by the other two algorithms! The innovation in the 
first algorithm consists of dividing the given database into two equal sized databases 
in terms of two quantum states and By using the idea of taking inner product in 
LogN  time [2] of any one these quantum states representing the quantum bags with 
the target state which enables one to find out the quantum state to which the target 
state belongs!   

                                    We now proceed to propose our first quantum algorithm for 
unstructured search. This new quantum algorithm proceeds roughly as follows: It 
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begins with the preparation of the implicitly known desired target state. Starting with 
a quantum bag that contains target, i.e. starting with a quantum state that contains the 
target state it then carries out the construction of two suitable initial quantum states 
using state that contains the target state in the superposition. It then evaluates the 
inner product of the target state with any one of the two initially constructed quantum 
states mentioned above. The value of this inner product determines to which quantum 
state the target state belongs. This quantum state to which target state belong is used 
further to construct two more new suitable quantum states and the same procedure is 
repeated iteratively. By iterating these steps for LogN  times we will see that with 
these steps one directly arrives at the desired target state and completes the search. As 
mentioned above the generate-and-test type classical algorithm or quantum [1] 
algorithm for unstructured database search though can be easily adapted to solve the 
NP-Complete problems still the computational complexity of these algorithms after 
the adaptations remains that of the exponential order as the exponent for quantum [1] 
algorithm changes only to one-half times the exponent for classical algorithm. But for 
our first quantum algorithm the exponent becomes the polynomial of logarithm of the 
exponent for the classical algorithm. Therefore, our first quantum algorithm reduces 
the computational complexity of NP-Complete problems to polynomial order! If N is 
the size of the unstructured database then we show that we can attain the desired 
target in just LogN  steps! To attain the desired target the best known generate-and-
test type classical algorithm and quantum [1] algorithm for unstructured search 

requires roughly 
2
N steps and  N  steps respectively. This implies that only 

quadratic speedup is achievable by quantum [1] algorithm over classical algorithm. 
Though such speedup is quite good one still it is not good enough as it doesn’t tame 
the problems with exponential complexity. A formal statement of unstructured search 
problem is as follows: Consider a search problem that requires to find a particular 
element of the database. Given a set containing N candidates, and suppose these N 
candidates are labeled by indices, x in the range )1(0 −≤≤ Nx , and that the index 

of the sought after target item is tx = . Let there be a computational oracle, or 

“black-box function”, )(xf t ,  that when presented with an index x can pronounce on 

whether or not it is the index of the target. Specifically, )(xf t is defined such that 

)(xf t  = 1 if tx =  and )(xf t  = 0 if tx ≠ where 1 stands for YES and 0 
stands for NO. The search problem is unstructured because there is no discernible 
pattern to the values of )(xf t  to provide any guidance in finding tx = . Our job is 

to find index tx = , using fewest calls to the oracle )(xf t . Oracle is nothing but a 
factitious mathematical device that allows one to estimate the computational cost of 
some algorithm measured in the units of the “number of calls to this oracle”, required 
to reach the solution. “Oracle” or “black-box function” or “knowledge holder” are 
synonyms, and if we consider for example the problem of finding name given 
telephone number what is the oracle? The ‘oracle’ in this case is the ‘telephone 
directory’ itself. We now express the search problem in quantum mechanical 
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language. A quantum analog of the bag of indices can be regarded as an equally 
weighted superposition of all the indices in the range )1(0 −≤≤ Nx , i.e. the 

quantum state ∑
−

=

>>=Ψ
1

0
|1|

N

x
x

N
. Thus, the bag of all indices can be looked 

upon as a wave function >Ψ|  given above. Let us suppose that nN 2= . Therefore, 
using binary representation for all the indices in the bag we can express the wave 
function representing bag of indices as  

∑
=

>>=Ψ
1

0,,
21

21

|1|
niii

niii
N L

L  

      To prepare such state is in fact a very easy task. For this one just need to take as a 

starting state a tensor product of n number of zero kets, 





>=

1

0
0| , and then apply 

Hadamard operator, H , on each zero ket, >0| , in the tensor product. Thus, 

  >=>>=Ψ ⊗

=
∑ 000||1|

1

0,,
21

21

LL
L

n

iii
n Hiii

N n

 

      The implicitly known target state >>= nttttt L321|| , where each }1,0{∈it , can 

be prepared using the oracle, )(xf t , which gives value 1 when tx =   and 0 

when tx ≠ , by expressing the target state, >t| corresponding to index tx = by 

using the relation of the target state, >t| ,  and the oracle function, )(xf t . This 
relation can be expressed in the following two equivalent forms: 

[ ] >Ψ−−>= |)1(1
2

| )( xft
Nt                          (A) 

or, 

[ ][ ] >Ψ><−−>= |||211
2

| ttNt                 (B) 

     We now divide the elements in the bag containing indices x , such that 
)1(0 −≤≤ Nx , into two bags such that the first bag will contain half indices, i.e. 

all those indices, x , such that )1
2

(0 −≤≤
Nx  and the second bag will contain 

remaining half indices, i.e. all those indices, x , such that )1(
2

−≤≤ NxN
. It is 

easy to achieve this by constructing these bags in terms of two quantum states, 
>Ψ0|  and >Ψ1|  as follows, where   
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>⊗>>=Ψ −⊗ 000|0|| )1(
0 LnH  

and,  
>⊗>>=Ψ −⊗ 000|1|| )1(

1 LnH  

     Note that the ket >000| L  in the above expressions for  >Ψ0|  and >Ψ1|  is of 

length )1( −n , i.e. a computational basis state in )2( )1( −n  dimensional Hilbert 

space, while >Ψ0|  and >Ψ1|  are obviously states in n2  dimensional Hilbert 

space. Also, >Ψ0|  represents the bag that contains all those indices, x , such that 

)1
2

(0 −≤≤
Nx  and >Ψ1|  represents the bag that contains all those indices, x , 

such that )1(
2

−≤≤ NxN
, as desired. 

     The idea behind our new quantum algorithm in simple terms is to divide “the bag 
which contains the target state” at each iterative step into two separate bags of equal 
size such that now the target state will belong to some one and only one of these two 
bags which now has become equal to half of the size of the original bag and then to 
determine by taking inner product of any one state representing these bags with the 
target state to which the target state belongs. Thus we manage to reduce the size of 
the bag that contains the target state in each of the iterations to half of its size at that 
stage. By proceeding along these lines finally the bag that contains the target state 
will become of size one, i.e. it will contain only the target state itself. Thus, we first 
begin with the bag represented by the wave function, >Ψ| , this original bag contains 
all numbers from 0 to N-1., i.e. it contains the target state. 

      We now proceed systematically with our first new quantum algorithm through precise 
steps as follows: 

 
2. The First New Quantum Search Algorithm implying P = NP : 

 
(i) Construct quantum state, >Ψ|  say,  representing the bag of all indices x , such 

that )1(0 −≤≤ Nx . Namely,  

>=>>=Ψ ⊗

=
∑ 000||1|

1

0,,
21

21

LL
L

n

iii
n Hiii

N
n

 

Let nN 2= .Since, )]12(,0[ −∈ nt , therefore >Ψ>∈|| t , i.e. certainly, 
0| >≠Ψ< t .   

 
(ii)  Since )]12(,0[ −∈ nt , we divide the indices in this bag into two parts of 

identical size and put them into two new bags. This is done in equivalent terms as 
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follows. Construct two quantum states >Ψ0|  and >Ψ1| representing these two 
bags such that >Ψ0|  will represent the bag that contains all those indices, x , such 

that )12(0 )1( −≤≤ −nx  and >Ψ1|  will represent the bag that contains all those 

indices, x , such that )12(2 )1( −≤≤− nn x . Thus, we have   

>⊗>>=Ψ −⊗ 000|0|| )1(
0 LnH  

and, 
>⊗>>=Ψ −⊗ 000|1|| )1(

1 LnH  
          This further implies that either >Ψ>∈ 0|| t  or >Ψ>∈ 1|| t . 
 

(iii) Take inner product of the implicitly known target state >t| , expressed above in 
two equivalent forms, (A) or (B), with any one of the two quantum states 
representing two bags of indices, namely, >Ψ0|  and >Ψ1|  given above.   

      Case (a): Without loss of generality (WLOG), suppose if  0| 0 >≠Ψ< t  then 

clearly we can infer that >Ψ>∈ 0|| t , i.e. )]12(,0[ )1( −∈ −nt , i.e. t  belongs to the 

first bag that contains all those indices, x , such that )12(0 )1( −≤≤ −nx .  
    Case (b): Without loss of generality (WLOG), suppose if  0| 0 >=Ψ< t , i.e. 

0| 1 >≠Ψ< t , then clearly we  can infer that >Ψ>∈ 1|| t , i.e. 
)]12(,2[ )1( −∈ − nnt , i.e. t  belongs to the second bag that contains all those 

indices, x , such that )12(2 )1( −≤≤− nn x .  

(iv)  Case (a): Since  )]12(,0[ )1( −∈ −nt , we divide this bag of indices into two equal 
parts and put them into two new bags. This is done in equivalent terms as follows. 
Construct two quantum states >Ψ00|  and >Ψ01| representing these two bags such 
that >Ψ00|  will represent the bag that contains all those indices, x , such that 

)12(0 )2( −≤≤ −nx  and >Ψ01|  will represent the bag that contains all those 

indices, x , such that )12(2 )1()2( −≤≤ −− nn x . Thus, we have   

>⊗>>>=Ψ −⊗ 000|0|0|| )2(
00 LnH  

and, 
>⊗>>>=Ψ −⊗ 000|1|0|| )2(

01 LnH   

      This further implies that either >Ψ>∈ 00|| t  or >Ψ>∈ 01|| t .  

      Case (b): Since  )]12,2[ )1( −∈ − nnt , we divide this bag of indices into two equal 
parts and put them into two new bags. This is done in equivalent terms as follows. 
Construct two quantum states >Ψ10|  and >Ψ11| representing these two bags such 
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that >Ψ10|  will represent the bag that contains all those indices, x , such that 

)12(2(2 )2()1()1( −+≤≤ −−− nnn x  and >Ψ11|  will represent the bag that 

contains all those indices, x , such that )12()22( )2()1( −≤≤+ −− nnn x . Thus, 
we have   

>⊗>>>=Ψ −⊗ 000|0|1|| )2(
10 LnH  

and, 
     >⊗>>>=Ψ −⊗ 000|1|1|| )2(

11 LnH  

          This further implies that either >Ψ>∈ 10|| t  or >Ψ>∈ 11|| t .  
 

(v) As is done in (iii), by taking inner product of the target state >t|  now with 
>Ψ00|  or >Ψ01|  when case (a) is true, or with >Ψ10|  or >Ψ11|  when case (b) is 

true we determine to which quantum bag represented by these quantum states the 
target state is part of, i.e. the target state has a nonzero overlap with. We continue 
on these lines with dividing, each time the correct quantum bag (the one containing 
the target state), into two separate new quantum bags till (assuredly) the size of the 
correct quantum bag (that has nonzero overlap with target state) will reduce to the 
bag containing just one entry, i.e. the target state itself!! 

 
  
 

3. The Second New Quantum Search Algorithm implying P = NP : 
Let x , )1(0 −≤≤ Nx , be an element in the unstructured database of size N . 

Let nN 2=  hence )12(0 −≤≤ nx . Our aim in the unstructured database 

search problem is to locate and pick out the target index, )]12(,0[ −∈ nt . Note 

that with each index x  we can associate a computational basis state, >x|  made up 

of n  qubits, i.e. >>= nxxxx L21|| , where, nixi ≤≤∈ 1},1,0{ . So, our aim 
in the unstructured database search problem is to substantially amplify the amplitude 
of the target state, >t| . Suppose we have a 1-YES quantum oracle defined in terms 

of operator, O , which performs the operation >−>= xxO xft |)1(| )(
, where as 

mentioned previously )(xf t is defined such that 1)( =xft  if tx =  and 

0)( =xft  if tx ≠ . where 1)( =xft  stands for YES and 0)( =xft  stands for 

NO. It is clear to check that the operator O  is unitary. We can see that the real 
operator O  is an inversion operator which only changes the sign of the target state 
>t|  and keeps all other states >x|  unchanged. If we take a wave function, >Ψ|  



 7

say, made up of some superposition of computational basis states and operate the 
operator O  on it then by its definition it will leave all the computational basis states 
as they are and will change the sign only that of the computational basis state which is 
the target state. Now if we will operate O  one more time then again it will leave all 
the computational basis states as they are and will restore the sign of the target state. 

Thus, IOOOOO === ++2 .We define [ ]))12(||2( IM kk
k −−Ψ><Ψ= , a 

new operator. We now check the following: 
  
Claim: >Ψ>=Ψ+ ||kk MM . 
 
Proof: Note that 1| >=ΨΨ< . Consider the case 1=k  as follows: 

      We have [ ]IM −Ψ><Ψ= ||21 , therefore,  
[ ][ ] >Ψ−Ψ><Ψ−Ψ><Ψ>=Ψ+ |||2||2|11 IIMM  

[ ] >Ψ+Ψ><Ψ−Ψ><Ψ−Ψ><ΨΨ><Ψ= |||2||2|||4 I  
[ ] >Ψ+Ψ><Ψ−Ψ><ΨΨ><Ψ= |||4|||4 I  
[ ] >Ψ+Ψ><Ψ−Ψ><Ψ= |||4||4 I  

>Ψ=| . Let us now consider the case 2=k  as follows: 
[ ][ ] >Ψ−Ψ><Ψ−Ψ><Ψ>=Ψ+ |3||43||4|22 IIMM  

[ ] >Ψ+Ψ><Ψ−Ψ><Ψ−Ψ><ΨΨ><Ψ= |9||12||12|||16 I  
[ ] >Ψ+Ψ><Ψ−Ψ><ΨΨ><Ψ= |9||24|||16 I  
[ ] >Ψ+Ψ><Ψ−Ψ><Ψ= |9||24||16 I  
[ ] ||9|24|16 >Ψ+>Ψ−>Ψ=  

>Ψ=| . On similar lines the general case also follows: 
( )[ ] ( )[ ] >Ψ−−Ψ><Ψ−−Ψ><Ψ>=Ψ+ |12||212||2| IIMM kkkk

kk

[ ] >Ψ−−+Ψ><Ψ−−Ψ><Ψ= |)12)(12(||))12(2(2||22 Ikkkkk  
[ ] >Ψ+−−+++−−= |122222222 2222 kkkkkkkk  
[ ] >Ψ+−++−= |1)2(22)2(2)2(22 222 kkkkk  

>Ψ=| .  
We now define the operator called the “total operator”, OMT kk = . We are now 
ready to discuss our second algorithm which requires only a single step to find the 
target state! Before we discuss the algorithm we state one important result which is 
used in this algorithm.  
 
Claim: Let the initial wave function, >Ψ| , representing the quantum bag of indices 

be an equally weighted superposition of computational basis states, >x| , of length 

k , i.e. the quantum bag contains k2  indices. Also, let there be only one target state, 
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>t| , then the target state, >t| , can be found, or reached, or attained, or achieved 
by just operating once the operator OMT kk )1()1( −− =  on this wave function, >Ψ| .  
 

Proof: It is clear to see that ∑
−

=

>>=Ψ
)12(

0

|
2
1|

k

x
k

x , where >>= kiiix L21||  

We now operate the operator OMT kk )1()1( −− =  on the wave function >Ψ| . Thus 
we have  









>−>Ψ>=Ψ>=Ψ −−− tMOMT

kkkk |
2

2||| )1()1()1(  

[ ] 







>−>Ψ−−Ψ><Ψ= −− tI

k

kk |
2
2|))12(||2( )1()1(

 

>
−

+>Ψ><Ψ−>Ψ+>Ψ−>Ψ=
−

−− tt
k

k

k

k
kk |

2
)12(2||

2
2||2|2

)1(
)1()1(

>+>Ψ















−>Ψ+>Ψ−>Ψ=

−
−− t

k

k

kk

k
kk |

2
2(2|

2
1.

2
2||2|2

)1(
)1()1(

>+>Ψ−>Ψ+>Ψ−>Ψ=
−

−− t
k

k
kk |

2
2(2|||2|2

)1(
)1()1(

>
−

=
−

t
k

k

|
2

)12(2 )1(

 

Thus, we have got only the target state, >t| , with nonzero amplitude and all other 
basis states in >Ψ|  vanish, i.e. their amplitude becomes zero! Note that the 
amplitude of target state becomes large (in fact bigger than unity). This implies that 
the total “operator” is not unitary since the action of unitary operator on a vector 
preserves the length of the vector and we have chosen the wave function (vector) 

>Ψ|  such that 1||||| 2=>Ψ . 
  
We now proceed to formally discuss the steps of the algorithm which consists of just 
applying the appropriate “total operator” on the wave function, >Ψ| , representing 
the given quantum bag of indices containing a single target index. 

Thus, let the given bag of indices contains nN 2=  elements. We will prepare the 
quantum bag in terms of the wave function, >Ψ| , as follows in the following 
 



 9

Steps of the algorithm: 
 

(i) We consider a quantum state containing  n  qubits, all initialized to zero, i.e. the state      

       
n⊗>>= 0|000| L .  

   
(ii) We apply Hadamard transform to all the n  qubits to get 

∑
−

=

⊗⊗ >=>>=Ψ
12

0
|

2

10||
n

xn

nn xH . Clearly, >Ψ>∈|| t . 

(iii) Since the size of the data is nN 2=  so we choose OMT nn )1()1( −− =  as our “total 

operator” to operate on the wave function >Ψ| . 
 
(iv) We carry out the action of the chosen operator on the wave function only in terms 

of the target state itself! 

      







>−>Ψ>=Ψ>=Ψ −−− tMOMT

nnnn |
2

2||| )1()1()1(  

[ ] 







>−>Ψ−−Ψ><Ψ= −− tI

n

nn |
2
2|))12(||2( )1()1(

 

>
−

=
−

t
k

k

|
2

)12(2 )1(

. 

                                                                                                 
 

 
Thus, it is clear that if we carry out measurement then we will get the target state, >t| , 
with probability one!! Thus, this algorithm assures us to obtain the target state with 100% 
guarantee!!!    
       
4. The Third New Quantum Search Algorithm implying P = NP : 

Again, Let x , )1(0 −≤≤ Nx , be an element in the unstructured database of size 

N . Let nN 2=  hence )12(0 −≤≤ nx . Our aim in the unstructured database 

search problem is to locate and pick out the target index, )]12(,0[ −∈ nt . Also, 

Suppose we have a 1-YES quantum oracle defined in terms of operator, O , which 

performs the operation >−>= xxO xft |)1(| )(
, where as mentioned previously 

)(xf t is defined such that 1)( =xft  if tx =  and 0)( =xft  if tx ≠ . where 

1)( =xft  stands for YES and 0)( =xft  stands for NO. As seen previously, the 
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operator O  is unitary. Thus, everything is same as it was in previous algorithms. In 
this new quantum algorithm we will be doing non-unitary quantum computation, i.e. 
the operator we will be using to achieve the task of enhancing the amplitude of the 
target state, >t| , as is done in the previous two algorithms is non-unitary. This 
algorithm also works in just a single step, i.e. it enhances the amplitude of the target 
state to its full in just one operation of the non-unitary operator chosen for this 
algorithm.  
 
Steps of the algorithm: 
 
(i) We consider a quantum state containing  n  qubits, all initialized to zero, i.e. the 

state 
n⊗>>= 0|000| L .  

 
(ii) We apply Hadamard transform to all the n  qubits to get 

              ∑
−

=

⊗⊗ >=>>=Ψ
12

0
|

2

10||
n

xn

nn xH . Clearly, >Ψ>∈|| t . 

 

(iii) We apply non-unitary operator, [ ]OINA −=
2

, on the wave function >Ψ| . 

We get   
     

                [ ] >=







>+>Ψ−>Ψ>=Ψ−>=Ψ tt

N
NOINA ||2||
2

|
2

|             

       .         
 

 

Thus, we have seen that by the action of non-unitary operator, [ ]OINA −=
2

, and 

carry out the measurement then we will get the target state, >t| , with probability 
one! The thing to be seen is whether it is possible to build quantum circuit which will 

perform the action of the non-unitary operator, [ ]OINA −=
2

.  

 
5. Remarks:  
       
         Remark 1: It is clear to see that as the algorithm proceeds we get at each iteration 

the bag containing proper range of indices to which target index belongs, i.e. we get 
during each of the iterations a proper quantum bag reduced to half in size, in terms 
of a quantum state which has nonzero overlap with target state. Thus, as we proceed 
at an intermediate stage we reach at a wave function, 
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>⊗>>=Ψ −⊗ 000||| )(

2121
LLL

kn
kiii Hiii

k  

        which has nonzero overlap with the target state, >t| .  We then divide the quantum 
bag into two new quantum bags, i.e. construct two new states out of which only one 
will have nonzero overlap with the target state, >t| , to be determined by taking 
inner product with any one of these two newly prepared quantum states. Thus, the 
new quantum states constructed from consideration of the earlier reached above 
mentioned quantum state will be    

>⊗>⊗>>=Ψ −−⊗ 000|0||| )1(
21021

LLL
kn

kiii Hiii
k  

and, 

>⊗>⊗>>=Ψ −−⊗ 000|1||| )1(
21121

LLL
kn

kiii Hiii
k .  

         
         Remark 2: It is interesting to see that the amplitude of each state in the equally 

weighted superposition of states (including target state) is initially equal to 
N
1  . 

This state represents the initial quantum bag. After first iteration of the size of the 
quantum bag reduces to half and this size reaches finally to unity, i.e. finally (at the 

thn  iteration) the quantum bag will contain only the target state itself! Therefore, 
after first iteration the amplitude of each state in the equally weighted superposition 

of states becomes
N
2  . The amplitude of each state including target state in the 

superposition changes in the successive iterations as follows:      

12221 2

→→→→→→ LL
NNNN

j

 

 
         Remark 3: It is clear to see that in LogNn =  iterations we will attain the target 

state, i.e. in the final quantum bag, after carrying out LogNn =  iterations, will 

contain only the target state >t|  itself which will lead to the value of inner 
product equal to unity. 

 
        Remark 4: It is important to note that actually in each iteration of the algorithm we 

are getting one bit of the target state. i.e. if the target state is 
>⊗⊗>⊗⊗>⊗>>=>= njnj ttttttttt |||||| 2121 LLLL  then in 

first iteration we determine the first bit namely, >1| t  , in the successive iterations 

we determine >>> nj ttt |,,|,,| 2 LL . Thus in LogNn =  iterations we 

will be able to determine the target state, >t| , completely. 
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         Remark 5: Alternatively, instead of one oracle we may define implicitly n number 

of oracles, )(xf i
t , which gives rise to n number of target states 

>>= + nii
i tttt L)1(|| . Clearly,  )()(1 xfxf tt =  and it gives rise to target 

state >>= tt || 1
. Further, by finding the nonzero inner product between the 

inner products taken that of >it|  with any one of the wave functions, >Ψ 0| i  

and >Ψ 1| i  that we build, namely, >⊗>>=Ψ −− 000|0|| )1(
0 Lin

i H  and                

>⊗>>=Ψ −− 000|1|| )1(
1 Lin

i H , we can determine separately each bit 

>it| of the target state >t|  and then build it as >>= nj ttttt LL21|| . 
 
        Remark 6: As far as the value of inner product is concerned we are only interested 

to know whether it is zero or nonzero, and we are not interested in its exact value. 
Therefore we can use the existing quantum algorithm [2] to evaluate the inner 
product with complexity )(~ LogNO . Since our new quantum algorithm requires 
LogN  steps to reach the desired target state and each iterative step requires to find 
out one inner product which again takes time )(~ LogNO  therefore, our new 

quantum search algorithm is of the order ))((~ 2LogNO .   
       
        Remark 7: For a typical NP-Complete problem in which one has to find an 

assignment of one of the b  values to each of the C  variables, the number of 
candidate solutions, CbN = , grows exponentially with C . Hence, the classical 
algorithm for unstructured search would therefore take time of the order, )(~ CbO , 
to find desired solution (as the target state) e.g. minimum weight Hamiltonian 
circuit among the all possible Hamiltonian circuits as a solution for the traveling 
salesman problem, whereas the Grover’s quantum algorithm [1] would take a time 

of the order, )(~ 2
C

bO . But from the complexity of the order ))((~ 2LogNO  that 
we get for our quantum search algorithm it is easy to check that our quantum search 

algorithm will takes time of the order, )(~
2)(LogCbO , thus an impressive 

(exponential) speedup over existing classical or quantum algorithm. We thus have 
managed NPP =  using our new quantum search algorithm.  

 
         Example 1: Let the bag of indices contains numbers }15,,2,1,0{ L and let the 

target element, 11=t . We begin with the wave function, >Ψ| , namely, 

        >>=Ψ ⊗ 0000|| 4H  which contains the target state, >>=>= 1011|11|| t . 
        We now follow the steps of the algorithm: 



 13

         Cleary, 0| >≠Ψ< t , therefore, we divide quantum bag represented by >Ψ|  into 
two bags, represented by >Ψ0|  and >Ψ1| , where 

        >⊗>>=Ψ ⊗ 000|0|| 3
0 H , and  >⊗>>=Ψ ⊗ 000|1|| 3

1 H . 

         Cleary, 0| 1 >≠Ψ< t , therefore, we further divide quantum bag represented by 

>Ψ1|  into two bags, represented by >Ψ10|  and >Ψ11| , where 

>⊗>⊗>>=Ψ ⊗ 00|0|1|| 2
10 H  , and 

                                       >⊗>⊗>>=Ψ ⊗ 00|1|1|| 2
11 H . 

        Cleary, 0| 10 >≠Ψ< t , therefore, we further divide quantum bag represented by 

>Ψ10|  into two bags, represented by >Ψ100|  and >Ψ101| , where 

 >⊗>⊗>⊗>>=Ψ 0|0|0|1|| 100 H , and 

                                   >⊗>⊗>⊗>>=Ψ 0|1|0|1|| 101 H . 

          Cleary, 0| 101 >≠Ψ< t , therefore, we further divide quantum bag represented 

by >Ψ101|  into two bags, represented by >Ψ1010|  and >Ψ1011| , where 

>⊗>⊗>⊗>>=Ψ 0|1|0|1|| 1010 , and 

                                    >⊗>⊗>⊗>>=Ψ 1|1|0|1|| 1011 . 

           Clearly, 0| 1011 >≠Ψ< t , and in fact 1| 1011 >=Ψ< t , therefore, 

        We have located (reached to) the desired target state, >>=>= 1011|11|| t , 
present in the given database (initial quantum bag containing target) in terms of the 
superposition state,  >>=Ψ ⊗ 0000|| 4H . 

 
        Example 2: Let the bag of indices contains numbers }7,,2,1,0{ L and let the target 

element, 3=t . We begin with the wave function, >Ψ| , namely, 

>>=Ψ ⊗ 000|| 3H  which contains the target state, >>=>= 011|3|| t . 
Carrying out step (iv) of the second algorithm we have 

         [ ][ ][ ]>Ψ−−Ψ><Ψ |))12(||2( 22 OI  

         [ ] 







>−>Ψ−−Ψ><Ψ= tI |

2
2|))12(||2(

3

22  

         [ ] 







>−>Ψ−Ψ><Ψ= tI |

2
1|3||4  

         >+>Ψ><Ψ−>Ψ−>Ψ= tt |
2

3||
2

4|3|4  
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         >>=+>Ψ−>Ψ−>Ψ= tt |
2

3|
2

3
22

1.|
2

4|3|4 . 

 
        Example 3: Consider example same as Example 1 above. We solve it now using 

second algorithm: Let the bag of indices contains numbers }15,,2,1,0{ L and let 
the target element, 11=t . We begin with the wave function, >Ψ| , namely, 

>>=Ψ ⊗ 0000|| 4H  which contains the target state, >>=>= 1011|11|| t . 
Carrying out step (iv) of the second algorithm we have 

         [ ][ ][ ]>Ψ−−Ψ><Ψ |))12(||2( 33 OI  

         [ ] 







>−>Ψ−−Ψ><Ψ= tI |

2
2|))12(||2(

4

33  

         [ ] 



 >−>Ψ−Ψ><Ψ= tI |

2
1|7||8  

         >+>Ψ><Ψ−>Ψ−>Ψ= tt |
2
7||4|7|8  

         >>=+>Ψ−>Ψ−>Ψ= tt |
2
7|

2
7

4
1.|4|7|8 . 

 
        Example 4: Consider same example above. We now solve it using third algorithm: 

Let the bag of indices contains numbers }15,,2,1,0{ L and let the target element, 
11=t . We begin with the wave function, >Ψ| , namely, >>=Ψ ⊗ 0000|| 4H  

which contains the target state, >>=>= 1011|11|| t . We carry out step (iii) of the 

third algorithm, i.e. we apply non-unitary operator, [ ]OINA −=
2

, on the wave 

function >Ψ| . This gives [ ] [ ] >>=−=−= ⊗ tHOIOINA |0000|
2
4

2
4 .  
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