More on the connection between logic and matter and the winding number of strings.

John Peel B.A, Grad Cert math, jpeel6942@gmail.com

Abstract: The last paper (see "More on logic being the fundamental components of string theory) gave further analysis of the important concept of information producing fields which can then be configured into strings.

Here we look at the topological connection between branches and centres (singularities) and some more information on branch structure and also some concepts of how angular momentum can produce calculations.

Introduction: To clarify things, rays, which are the connections between branches are not exactly straight lines. They need to be curves which take a minimum path between branches to contain the information processing of each branch.

They must conform geometrically such that the fields can fit together in a "jigsaw puzzle" sense.

The main concern to be studied is a "gluing" function that ties momentum of branches with processing in centres with processing (logical, informational) variables in general.

I have offered a cash prize of $500 for someone to tell me what I forgot when going for a cup of coffee, it involves a large number of fields making it impossible to see one field and the fact that you cant know everything! I have since remembered and you can send me your answer via email! Jpeel6942@gmail.com
Essentially the entire point of these papers is to connect logic/information with matter. This is necessary to explain consciousness.

There is another way of examining why the branches exist. Here if we only consider points appearing in a closed space, bounded by some parameter, it is possible for a particle to trace out many trajectories. If they are travelling at an infinite speed, all trajectories are accounted for and this is trivial.

Secondly if a wave is probabilistic of being at a point, the certain component of the wave, i.e. a point would have to be probabilistic, otherwise we would be able to sum the points to get a trajectory, hence the branches.

As an analogy to Einstein's equation $E = mc$ we have the equation $E = mg$ where g is a gluing function rather than a constant?

The following is some mathematics describing the essence of the fields, fields are branches, Centres (singularities) in combination with their Rays (rays connect the outer boundaries of the fields)
The main tool used here is topology. This can be utilised to equate the branches with their corresponding states in the centres.

If we find the union of all sets of the charts of dimensions within centres we have an atlas, or, the world.

The functions that map one chart to an atlas is not reversible, hence the notion of the arrow of time.

A processing trajectory (described mathematically as a trajectory) must be defined in an appropriate manner otherwise describing the world won't be accurate.

The geometry of branch structure can be used to represent certain problems to be solved. The physical universe has many less variables than the set of mathematical equations, hence the need to find - 'what it is that underlies the multi-verses and our universe in particular'. The mathematics presented may not be accurate for our particular universe but I can find no reason why they would not apply in other universes, component of the multi-verse.
let \mathcal{A}_q be the topological space \mathcal{A} with some additional structure.

Sums are vector algebras, so have

\[\text{something} \]

We consider

- $C \subseteq \mathbb{R}^n$ for each n.
Here is an analogy that time can only travel in one direction.

Also more on topology of fields.

Each field can be topologically related to another field by the following page. The branches are said to be in 'unison' and thus communicate and perhaps merge.
The contraction of lefts processes parameters of the world but this process is not reversible hence the arrow of time.

The many dimensions of the field, sums to an entire universe.
A duality in left must be continuous, this reflect the pull of reality.
The way from there is still has to be...
If the charts do not define a bundle, the underlying structure is incorrect.

\[U \setminus V \text{ is real words} \]

The string finishes with \(y \) in \((R \setminus M) \cup U \)

\[y \ni (R \setminus M) \cup U \]

\[G \]

\[X : \mathbb{R} \rightarrow M = U \]

\[X \circ Y = U \]
Incidentally

\[R \rightarrow \text{Efield} \]

These are maps representing a directed (dynamical device) of real world phenomena.

Thus a collection of brokes can represent mapping chaos (chaotic borders) to real world phenomenon which has a direct correspondence in cities.
Topology added to processing

\[\phi \circ \gamma \circ \chi \circ \psi \circ \delta \circ \alpha \circ \beta \circ \gamma \circ \delta \circ \phi \]

\[y_0 x = (y_0 x^0) \circ (x_0 y) \]

\[x_0 y : \mathbb{R} \to \mathbb{R} \]
Branches/Circles in topology

1st branches move in 2 dimensions

span by translation group

\([T_1, T_2]\)

When \(T_2\) is a 3D boolean group

\(T_2 = \text{shift in } z\) direction

\(T_1, T_2 \in T_1\)

Space of possible \(5 \times 5\) transfers

- Thus we draw the branches

which are called orbits
\[T_1 \cdot T_2 = T_1^*(T_2^m) \]

\[T_1, T_2 \text{ are commuting} \]

\[G = \mathbb{R} \times T \]

\[G = \mathbb{R} \times \mathbb{R} \]

Which is Space of all orbits.

Every orbit has a corresponding intersection of each square.

At every odd node at past

\[(1, 2) \]
The space of all such \(T_z(w) = w \) with \(w \in \mathbb{C} \) and \(w \neq 0 \) is the sphere (the unit sphere in \(\mathbb{C}^2 \)).

Then we glue the sides:

\[\begin{array}{c}
\text{a} \\
\downarrow
\end{array} \quad \begin{array}{c}
\text{b} \\
\uparrow
\end{array} \]

\(\theta \) forms a circle.

Thus, a space of moment of a branch produces a single hole (which is a "hole in the surface")

So a 7D orbit space produces a hole in \(\mathbb{C}^2 \) which is desired result.
Strings can, obviously, also be represented topologically. A line segment is a 1 dimensional representation. If conformal mapping is considered the strings are wrapped around a topological space.

The winding number of strings around a cylinder may equate to the number of fields in a proportional sense, contributing to entire strings in a macroscopic sense. (Here macroscopic is used loosely, strings may certainly be considered microscopic)
Though topology, the branches at centers are welded

\[\text{circle} \]

\[a \quad b \quad a \quad b \quad a \quad b \quad a \quad b \quad a \quad b \]

Where a branch

\[\circ \quad \circ \quad \circ \]

the gap for a branch

changes the shape of a path, as do surface configurations, as well as interior dynamics.

This is like a set of gluing

functions is regarded

be a magic function the preserves

many other functions at the same time.

- And hence do "magnify" involve ..."
Stereographic projection.

- In a scheme, it is received as discrete units (perhaps a group) of points. This is mapped via stereographic projection to the complex plane.

The planes P_1, P_2, P_3, P_4 intersect the branches (a, b, c, d, e) in a circle (xyz) with the sphere plane. This is as follows:
This is a topological model, not a physical object.

The branches curl in pairs of 2.

Thus the coordinates for points of intersection with axes are:

\[
\left(\frac{-2x}{1+xx^2y^2} \right), \left(\frac{2x}{1+xx^2y^2} \right), \left(\frac{y+1-x^2y^2}{1+xx^2y^2} \right), \left(\frac{y-1-x^2y^2}{1+xx^2y^2} \right)
\]

The branches are do most of an

axial, located at very subset of

the 'axes'.
\[\frac{ds}{dy} = \frac{1}{r} = 0.5 \frac{dG}{dy} \]

Total energy now:

\[\frac{1}{n} \text{ fields} = \frac{1}{r} \int \frac{dG}{r} \]

\[\frac{dy}{dx} = \frac{dy}{ds} = \frac{dy}{dr} \cdot \frac{dr}{ds} \]

Effect of any mass over conductor of bonds with inhomogen
the increase.

Adding information increases activity of bonds. This increases the
possibly space of what they can
be held. Which change in
both of the bonding at the center.
This gives rise to a physical
process involving strong activity.
The branches are free to move in any trajectory in 3 dimensional field space. These trajectories can be represented topologically in the centres.

Here we use a group to set the parameters for branch dynamics. The operator described allows movement in one unit right or left and one unit up or down. There is a set of possibilities that equate to a torus with one hole.

Also the branches equate to a line interval from a to b. This can represent a circle by jumping from b to a in another, identical line interval, i.e. you just keep repeating.
Branches and topology

- When in the context of String theory, we have

\[A \rightarrow B \]

This is expressed macroscopically as

\[\text{in terms of fields} \]

\[C \rightarrow E \rightarrow E \text{ Small in Size} \]

- Probably do tell difference between ordinary and microscopic in String theory indicates the equality of all observers of fields
\[\theta_{ij} = \frac{3}{2} \]
\[\frac{d\theta}{dy} = \frac{1}{2} \frac{dy}{dx} \]

Total ending radius

\[\left(\frac{1}{n} \right) \sqrt{\frac{2}{3}} \times \text{radius} = \frac{1}{r} \int_{25}^{25} \frac{dy}{dx} \]

\[\frac{dy}{dx} = \frac{dy}{d\theta} \]

See pull rates done.
Potential field (and) state will merge despite distance. Scenarios allow a configuration of similar fields and communicate especially with the system of fields in a similar state like string, brane etc.

Simple Tucker a representative by departure in a high mean. Balanced Tucker are more complex.

If any potential candidate is (believed) very state will act the electric charge above a reversed probability of whether. Any similar parameter connect with other similar pattern in bands.

Why else probable further state are a matter of mass scale function.
We can see a comparison between strings and fields in a topological sense. We have line interval representing the branch, this can be expressed as an interval of radius of winding number.

As the radii of windings approach a limit they become equivalent to fields.

Identical field states will merge despite distance separating them and configurations of similar fields will communicate. Simple mathematical functions can be represented by simple trajectories of branches, difficult functions are more complex.

If every possible state is computed there will be a skewed distribution of information, this represents physical phenomenon such as charge.
- 2D (line) ideas

- 2D frames

- 3D frames

A circle is not a 0 in string's orientation is preserved
There are a world and a symplectic form on field.

These fields in some bigger air.

Writing annals and exact number of fields.

Contributed to entire things as is example of microscopic symmetry.
& Arrow of line (conjugate)

\[\text{Macroscopic number} \]

\[S = \text{energy} \]

\[n = \text{number of windings} \]

\[\text{Velocity of 3 fields} = \text{velocity of } C \text{ with 3 fields} \]

\[\text{integer} \quad \frac{dx}{dc} \quad n = \text{number of fields} \]

\[W = \text{winding number} \]

A & Telegram & 7 & fields & 9
Each field can be described related to another field by:

\[[0, x] \parallel [0, x'] = r^2 \]

When this occurs the borders are said to be in “unison” and the means they can merge.

\[\delta s = \delta \theta \]

The equality of borders, deciding
As far as I can ascertain the branches work in pairs when seen in the context of topological maps. Stereo-graphic projection can be used to analogise the processing of centres and the relations to the multi-verse.

One pole being at infinity means there are an infinite number of rays that can pass through the multi-verse consisting of dimensional spaces.

The input of energy increases branch activity, this increases the probability space of where they can be located, changing the configuration of both the branches and centres. This converts to altering the configuration of strings which arise as macroscopic manifestations of fields.
Next we have some thoughts on surface area of centres, distances and processing. The equations for surface area are left as sums deliberately to calculate discrete values for each state.

There are 6 branches hence at least 6 various states the centres can be in. The centres change state at time intervals of 1 over planck time. Thus there are many, many processes during a second of macroscopic time.

The sum of squares, often used in statistics, is utilised here to find relationships between branches. This information is critical to information processing and the subsequent input into the centres, to be transmitted across the universe and perhaps multi-verse.

The relationship for equating two branches as a ratio of a set interval is also described.

A set of derivatives is crucial in examining when branches have special processing parameters, namely the first and second derivatives equal to 0.
Area = Curvature of Cylinder

\[\int \sqrt{1 + (\frac{dy}{dx})^2} \, dx \]

\[= \int \sqrt{1 + (\frac{1}{r})^2} \, dx \]

\[= \int \sqrt{1 + \frac{1}{r^2}} \, dx \]

\[= \int \frac{\sqrt{r^2 + 1}}{r} \, dx \]

\[= \frac{2}{r} \ln \left(r \sqrt{r^2 + 1} + 1 \right) + C \]

Area = 4πr^2 + Area of Plane

re-calculated
Surface Area = Curvature x Length

\[S_{\text{Area}} = \int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx \]

for a function \(f(x) \)

\[S_{\text{Area}} = \sum_{k=1}^{n} 2\pi f(x_k) \frac{\sqrt{1 + (f'(x))^2}}{2} \, dx \]

Length = \[\int_a^b \sqrt{1 + (f'(x))^2} \, dx \]

\[\sum_{k=1}^{n} \sqrt{\int_{x_k}^{x_{k+1}} (f(x'))^2 \, dx} \]
The surface area of each hand changes with Celsius (i.e., $\frac{dA}{dC}$). With

$$C = N \int \frac{d^2}{dt^2} \sqrt{ \frac{1}{2} \left(\frac{d^2}{dt^2} \right)} \ dx - \frac{d^2}{dt^2} R$$

$$C = \int \left[\frac{d}{dt} \sqrt{ \frac{1}{2} \left(\frac{d}{dt} \right) } \right] \ dx$$

And so on for so forth.

The change in time which

$$t = \left(\frac{1}{2} \right) \ \text{pt} = \text{plan km}$$

The surface area can be

Sige imposed.
Sum of squares error

\[SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \]

\[TSS = \sum_{i=1}^{n} (CAMEL - CAME2)^2 \]
\(a^2 = b^2 + c^2 \) by Pythagoras

\[L^2 = \Delta x^2 + (f(x_0) + \Delta f(x_0))^2 \]

\[k_1^2 = \frac{L^2}{\Delta x^2} + \frac{(f(x_0) - \Delta f(x_0))^2}{\Delta x^2} \]

\[\lim_{\Delta x \to 0} \frac{L^2}{\Delta x^2} - \frac{(f(x_0) - \Delta f(x_0))^2}{\Delta x^2} \]

\[T = \frac{4a_1}{k_1} - \frac{\Delta x_1 - \Delta x_0}{f(x_0) - f(x_1)} \]
As \(x_k \to p \Rightarrow \in [x_k, x_k'] \)
\(x_k \) is a sequence.
Then we also have that when
\[x_k \to x, \ x_k' \to x \]
\(x \in [x_k, x_k'] \)
By mean value theorem.

\[L_x = \int_a^b \frac{f'(x)}{x} \, dx \]
The trajectories of branches have similarities to the strings in string theory. Especially in regard to particle collisions. There are two input momenta, i.e. branches and a coupling function (constant in string theory) and also some output variables.

I also have a whimsical look at the notion of imaginary universes literally being the complex conjugate (with a factor) of ordinary universes.

The coupling constant in particle physics is replaced with a coupling function, which may be involved in the formula $E = mg$.

Also discussed is the notion that the parameters I have set for the branches may not be the actual definition of what they mathematically are. Also the fields may consist of other entities that are only hinted at by anti-info theory.
Given this graph we also have two aspects (processes/variables). In the following lines we represent the final momenta.

\[S = E \cos^2 \theta \quad \text{(where \(E \) is energy)} \]
\[t = (E^2 - m^2)(-650) \]
\[\nu = (k_1 \times k_4)^2 \]

The probability of finding finite momenta (proportional to \(k \)) is given by \(k \times \text{probability} \). The relevant expression is:

\[S = \left(k_1 \cdot k_2 \right)^2 + \left(k_1 \cdot k_3 \right)^2 - \left(k_1 \cdot k_0 \right)^2 \]

\[S = E \cos^2 \theta \]
The amplitude A_2 can then be found

$$A_2 = \frac{\Gamma (1/2 \pm i k)}{\Gamma (\pm i k)}$$

for highly conducts

which can be written as the following

$$A_2 = \int_0^\infty e^{-\xi t} (1-e^{-\xi t})^{-i} e^{-\xi t} \, dt$$

$$= \frac{2 \pi}{2 \pi} e^{-\xi t}$$

$$= \int_{-\infty}^\infty e^{-\xi t} (1-e^{-\xi t})^{-i} e^{-\xi t} \, dt$$
Copley - Lauben

\[f(g) = \frac{\int_{-1}^{1} \frac{1}{(1-g)^{\frac{3}{2}}} \, dg}{\int_{-1}^{1} \frac{1}{(1-g)^{\frac{3}{2}}} \, dg} \]

This is a coploly fuction for bond/repulsion.

The momentum of bond is be fore by thing for F with.

The angle of interaction is be found by

\[f(g) = \left(\frac{E^2 - m^2}{1 - m^2} \right) (1 - \cos \theta) \]

\[f(g) \] is the sile of two factors

\[F \text{ and } C \] is the 'glue'

Another within actu.
It may be more for a literal interpretation of the mapping above:

\[X \] - 1

\(x + 1 \) - 1

\[x \neq 1 \]

\[\log x - (x - 1) \]

\[(x - 1) \neq 0 \]

\[x \neq 1 \]

\[\log x - (x - 1) \]

\[x \neq 1 \]
there are not necessary
set in some to

\((W_s, w_i, w_{ij}, w_{ij}, \ldots)\) is a

\((W_s, w_i, w_{ij}, w_{ij}, \ldots)\)
The next few pages are about finding, somehow, the number of basic shapes required to enable proper computation of all shapes. This is related to how much information is needed to be inputted at a given time interval. The amount of information processed may seem huge but I suspect the centres have connections to other universes thus they must communicate across the multi-verse.

Discussed also is a probability function of the existence of new universes.

The centres for now, remain a mystery. They are seemingly connected to branches which do not consist of discrete points, but rather, continuous trajectories in the given dimensions. They are branches rather than points for analytic reasons.

Perhaps evidence of fields can be found in the scaling of microscopic phenomena to macroscopic. There are two possibilities, either they are functionally equivalent or are somewhat different when scaled up.

Signals may be submitted one qubit at a time or perhaps in bundles of around 50 qubits. These are transmitted and received by centres.

Taking an integral of the exponential of the inverse of planck time may be an effective estimate of the amount of information distributed to the universe/multi-verse.

Computationally, branches can be represented by vectors which then are configured in such a manner as to give a solution. This is an example of how processing may occur.
If the number of basic shapes given is

\[T = 6n \]

6 = n, of branches
no basic shapes

no number of basic shapes available for transformation

T x g 2 = 2 \text{ informed}
\(n \) or \(\text{bundle} \)
\(\text{bundle} \)
4. To find some basic

- number of basins
- area of basin

\(\text{Area} = \frac{\text{no. of connections} \times \text{angle between branches}}{\text{total angle of branches}} \)

\[\text{Area} = \frac{36}{2\pi} \times \frac{\pi}{2} \]

\[\text{Area} = 9 \]

\[\text{LT} = 6 \]

\[\frac{6}{17} \]

\[\frac{54}{9600} \text{ cables / bundle} \]
The center/backup has no memory of each other, though there is no fine tune.

Branches can be specified by two vectors.

These are the desired amounts of the processing agent as follows.
\[\triangle ABC \]

The using technique is a mix (505, 640) in a prior values using brother.
\[\text{Motional force} = \frac{1}{pt} \text{ per foot} \text{ per} \]

Thus a

\[\int_{\text{body}} \text{ number of dimensions} \text{ body} \text{ in a cube} \]

\[\int \int \int \text{ volume of } c \text{ dr, } d\theta, d\phi \]

No number of zero or multiples

\[\neq 0 \]
There exists a logic to matter formula that may be useful in neuroscience. It is essentially similar to einsteins $E=mc^2$ or $E=mc$.

It is $E=mg$ where g is a function rather than a constant. The branches must also have connecting loops, called links in order to process entities such as repeating numbers or irrational numbers. Obviously these can only be done in partial sequences, if they even exist outside of mathematics.

A computational space of a branch is never filled otherwise the space would be quickly filled with useless information, in the same way there is no memory apart from the macroscopic configuration of fields, e.g the human brain, computers, mountains, plants etc.

If there is such a phenomena as time travel it would require a memory of fields and if so why has no one contacted us?

It is only in organised, macroscopic structures that there is a memory. The fields themselves exist in an instant and disappear in an instant, thus the large scale structures are only an approximation of the states of fields.
Logic to matter formula

- analogous to E=mc²

we have

E = mc²

g is a property constant

* The processing due to back

must consist of straight lines, edges

but also links.

This is reasoning to your

speech/verbal number. Here a

only processed as argued.
A New Topology of Comprehension

[Hand-drawn diagrams]

May Berdmore
If the fields have a quasi-physical radius this should manifest as a radius of the universe dependent on the number of fields and their radius.

The time taken to travel along a branch is a simple matter of the ratio of distance travelled to speed at which the information travels.

There are special cases of field structure, such as when branches coincide with one particular branch, there are also many different configurations the branches can assume.

In describing the centres there are also many different paths that parameters can take, such as a sequence of up, down, left, right, back and forward.

The amplitudes, thus the paths that branches can take are limited by their physical length, thus large amplitudes are unlikely which requires the second equation of amplitude below.

The branches may be actually transparent to other branches, as may centres and also, to other centres. They possibly communicate in special manners. The geometry of centres can be predicted by altering Euler’s famous polyhedral equation

\[V - E + F = 2 \] where \(V \) = vertices, \(E \) = edges, \(F \) = faces.

This becomes

\[V - C + F = G(V,C,F) \] where \(G \) is a function of the given variables and \(C \) is some particular set of curves.
\[x = \frac{12}{s^2} \]

\[v = \text{an axis of } \pm \text{sws} \]

\[\text{so ws} = \text{radius of curve} \]

\[\text{diameter from } s = 2v1ws \]

\[s = \frac{1}{2} \text{height of space bar} \]

\[N_s = \text{only for immediate, otherwise} \]

\[x \text{ from line to travel dry i} \]

\[\text{and is called } t \text{ and length of } \]

\[\text{window is that altitude with} \]

\[\text{sum of squares of other body do} \]

\[\text{get shape.} \]

\[\text{Apologies that worked well due to}\]

\[\text{other being only 6 sides.} \]
Special case, still plan

This design works except for one dimension (brand)

The asymptotic value shown must be halted by center

\[\frac{1}{n} \]
There is a certain value of

followed when values

are

The are a

right hand of

possible

get back within

Center

L is Made Left
R is Made Right
D is more Penn
A large scale had deranged

A. \(\frac{\pi x}{2 \pi} \)

\(\sqrt{\frac{\pi x}{2 \pi}} \)

Anyhuds of bounds in

\(\text{The above is incorrect.}\)
for the order

- there may be danger to
 other brakes

- At half

- when a cube next are any
 present. It goes steadily there in
 a equal with the brake at
 all other bends by

\[V - C + F = P(V, G, F) \]

This is an extension of
the order form

\[V - C + F = P \]

polychora.

Completed Inc.
Conclusion: The axes may be quite a good attempt at unifying the universe with the multi-verse as surely there are some common features between universes. In the first paper I sketched some math that explains how the multi-verses are infinite and, have always been.

The trajectories in 3 dimensional branch space can be converted to the topological space of centres, where I believe, without much grounding, that there are 36 dimensions i.e. 6 branches and 6 ways of arranging them.

The amplitudes of the branches are a good guide to the probability of finding them. Einstein said that God does not play dice with the universe, and with the processing power of the fields, I tend to believe him. The propositions I have put forward may be false or they may be partly or entirely true. The multi-verse may be connected as one. Thus we may be able to infer its “Size” by looking at the processing happening within our own universe.

There is much examination to be done to find the function that “glues” Information in branches to that of centres (Singularities) and also that ties matter with thought in general. It is my reasoning that matter (the brain) converts to thought (the mind/logic) and thus why not in reverse, especially at a very small scale.

We are able to communicate, and even imagine. Is this because we are part of a larger multi-verse of possibilities? Perhaps I am made of coffee instead of water.

Hopefully this is a fertile area and there will come up much work on Anti – information – the title of the theory.