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 Abstract 

In this note, we present a new and direct approach to prove the Goldbach conjecture 
that if the existence of the limit of ξ(P) = NSGL/2P as P → ∞ being 1/2 can be 
confirmed by asymptotic result arising from large-scale observation data for status of 
ξ(P) then the Goldbach conjecture is true, where P is a prime greater than 3 but NSGL 
and 2P are separately the largest strong Goldbach number and the largest Goldbach 
number generated by P. Further, the existence of the limit also implies the twin prime 
conjecture by means of the existence of good approximate function form to ρ2(A)  
such as our introduced ρ2(A) ≈ C2/A

1/2 as an attempt, which tends to lower order 
infinitesimal as 1/A approaches infinitesimal, where A = NSGL–P but ρ2(A) is the 
density of strong Goldbach numbers generated by distinct twin prime pairs (p, p+2) 
among all strong Goldbach numbers from P+1 to P+A and C2 is the twin prime 
constant in the first Hardy-Littlewood conjecture. 
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1. Introduction 
Goldbach and twin prime conjectures are two subproblems of Hilbert’s 8th problem in 
mathematics. The Goldbach conjecture states that every even number greater than 2 
can be written as the sum of two primes, which is equivalent to the statement that 
every even number greater than 4 can be written as the sum of two odd primes. The 
twin prime conjecture states that there are infinitely many primes p such that p+2 is 
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also prime. Chen showed that every sufficiently large even integer is the sum of either 
two primes, or a prime and the product of two primes in 1973[1] and showed that 
there are infinitely many primes p with p+2 being a prime or the product of two 
primes but such primes p are called Chen prime[2]. Zhang proved that for some 
integers N less than 7×107, there is an infinite number of pairs of primes that differ by 
N, and according to the Polymath project, the bound has been reduced to 246 without 
assuming. There are some researches on the exceptional set of Goldbach numbers to 
come close to the Goldbach conjecture[3,4,5,6,7,8,9]. By Li[7,8], Goldbach number is 
defined as a positive number to be a sum of two odd primes and the exceptional set of 
Goldbach numbers is usually written as E(x) to denote the number of even numbers 
not exceeding x which cannot be represented as the sum of two odd primes. Thus the 
Goldbach conjecture is equivalent to proving that E(x) = 2 for every x ≥ 4 and also 
equivalent to proving that all even numbers greater than 4 are Goldbach numbers. In 
this note we built a mathematical framework in which every original continuous odd 
prime number sequence { 3, 5, …, P } will generate a corresponding strong Goldbach 
number sequence { 6, 8, …, NSGL } in the set of Goldbach numbers NG = p1+p2 arising 
from { 3, 5, …, P }. Basing on such a framework, we get a result that if the existence 
of the limit of ξ(P) = NSGL/2P as P → ∞ being 1/2 is confirmable then the Goldbach 
conjecture is true, since the existence of the limit implies all even numbers greater 
than 4 are Goldbach numbers. The existence of the limit also implies the twin prime 
conjecture if it can be confirmed that there exists a good approximate function form to 
ρ2(A) which tends to lower order infinitesimal as 1/A approaches infinitesimal.    
 

2. Strong Goldbach number sequence 
Definition 2.1 Let P be prime greater than 3. For a continuous odd prime number 
sequence, if its first term is 3 then the sequence is called an original continuous odd 
prime number sequence and written as { 3, 5, …, P }, where P is the last term of the 
sequence.  

Obviously, { 3, 5, …, P } contains all odd primes from 3 to P for any given P. 
 
Definition 2.2 Let p1 and p2 be two same or distinct odd primes not greater than P, 
then NG = p1+p2 is called a Goldbach number generated from { 3, 5, …, P }.  

By Definition 2.1 and Definition 2.2, 6 = 3+3 is the smallest Goldbach number but 
2P = P+P is the largest Goldbach number for a given { 3, 5, …, P }. Obviously, the 
number of pairs of odd primes not greater than P to generate a Goldbach number NG 
should be equal to or greater than 1 for a given { 3, 5, …, P }.  
 
Definition 2.3 Let Q be even number greater than 6. For a continuous even number 
sequence, if its first term is 6 then the sequence is called an original continuous even 
number sequence and written as { 6, 8, …, Q }, where Q is the last term of the 
sequence.  

Obviously, { 6, 8, …, Q } contains all even numbers from 6 to Q for any given Q. 
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Definition 2.4 In the set of Goldbach numbers NG arising from a given { 3, 5, …, P }, 
if all terms of { 6, 8, …, Q } are Goldbach numbers NG in this set then { 6, 8, …, Q }  
is called strong Goldbach number sequence generated by { 3, 5, …, P } and written as 
{ 6, 8, …, NSGL }, where NSGL is the last term of the sequence, in which every term is 
called strong Goldbach number and written as NSG.  

According to Definition 2.4, the last term NSGL is the largest strong Goldbach 
number generated by { 3, 5, …, P }. By Definition 2.2 and Definition 2.4 every term 
NSG in { 6, 8, …, NSGL } must be also a Goldbach number NG but every Goldbach 
number NG outside { 6, 8, …, NSGL } is not a strong Goldbach number NSG for a given 
{ 3, 5, …, P }. 
 
Lemma 2.5 There is a strong Goldbach number sequence { 6, 8, …, NSGL } in the set 
of Goldbach numbers NG for any given { 3, 5, …, P }. 
 
Proof For the first { 3, 5, …, P } i.e. { 3, 5 }, there is a strong Goldbach number 
sequence { 6, 8, 10 } and NSGL = 10 is the last term of the sequence. Since        
every { 3, 5, …, P } is contained by next { 3, 5, …, P } so that { 6, 8, …, NSGL } 
generated by every { 3, 5, …, P } will remain in the set of Goldbach numbers NG  

arising from next { 3, 5, …, P } as the first part ( including complete sequence ) of  
{ 6, 8, …, NSGL } generated by next { 3, 5, …, P }. Hence the lemma holds.  

Put simply, the lemma means that any given P will generate a corresponding NSGL.  
 
Observation 2.6 Status of { 6, 8, …, NSGL } generated by { 3, 5, …, P } for P less than 
500.  

By Lemma 2.5 we can give an observation for status of { 6, 8, …, NSGL } generated 
by { 3, 5, …, P } for P less than 500. In the following observation, ξ(P) = NSGL/2P    
is the ratio of the largest strong Goldbach number to the largest Goldbach number 
generated by a given P, and A = NSGL–P but δ2(A) is the number of strong Goldbach 
numbers NSG generated by twin prime pairs (NSG/2–1, NSG/2+1) for P+1 ≤ NSG ≤ P+A 
and ρ2(A) = δ2(A)/k is the density of strong Goldbach numbers generated by      
twin prime pairs among the strong Goldbach numbers from P+1 to P+A, whose 
number is k = [(P+A)–(P–1)]/2 = (A+1)/2. In the observation, C2/A

1/2 is assumed as  
an approximate function to ρ2(A), where C2 ( ≈ 0.6601618… ) is the twin prime 
constant in the first Hardy-Littlewood conjecture, and (C2/A

1/2–ρ2(A))/ρ2(A) is relative 
error using C2/A

1/2. We give a suitable example for the observation data as follows 
 
Status of { 6, 8, …, NSGL } generated by { 3, 5, …, 251 }:  
NSG: 6, 8, 10, …, 470, 472, 474. NG ( Goldbach numbers outside the strong Goldbach 
number sequence ): 478, 480, 482, 490, 492, 502. Strong Goldbach numbers NSG 
generated by distinct twin prime pairs for (251+1) ≤ NSG ≤ (251+223): 276 = 137+139, 
300 = 149+151, 360 = 179+181, 384 = 191+193, 396 = 197+199.  
P = 251, NSGL = 474, A = 223, ξ(251) = 0.94422, δ2(A) = 5, k = (223+1)/2 = 112,  
ρ2(A) = 5/112 = 0.04464, C2/A

1/2 = 0.04421, (C2/A
1/2–ρ2(A))/ρ2(A) = – 0.00963. 
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P    NSGL=P+A          ξ(P)            ρ2(A)   δ2(A)   C2/A
1/2       (C2/A

1/2–ρ2(A))/ρ2(A) 

5    10=5+5          1.00000      0.33333   1    0.29523         – 0.11430 

7    14=7+7          1.00000      0.50000   2    0.24952         – 0.50096 

11   18=11+7         0.81818       0.25000   1    0.24952         – 0.00192 

13   26=13+13        1.00000      0.14286   1    0.18310          0.28167 

17   30=17+13        0.88235      0.14286   1    0.18310          0.28167 

19   38=19+19        1.00000      0.20000   2    0.15145         – 0.24257 

23   42=23+19        0.91304      0.20000   2    0.15145         – 0.24257 

29   42=29+13        0.72414      0.14286   1    0.18310          0.28167 

31   54=31+23        0.87097      0.08333   1    0.13765          0.65187 

37   62=37+25        0.83784      0.07692   1    0.13203          0.71646 

41   74=41+33        0.90244      0.05882   1    0.11492          0.95376 

43   74=43+31        0.86047      0.06250   1    0.11857          0.89712 

47   90=47+43        0.95745      0.09091   2    0.10067          0.10736 

53   90=53+37        0.84906      0.10526   2    0.10853          0.03107 

59   90=59+31        0.76271      0.12500   2    0.11857         – 0.05144 

61   108=61+47       0.88525      0.04167   1    0.09629          1.31078 

67   114=67+47       0.85075      0.04167   1    0.09629          1.31078 

71   114=71+43       0.80282      0.04545   1    0.10067          1.21496 

73   134=73+61       0.91781      0.06451   2    0.08452          0.31018 

79   134=79+55       0.84810      0.07143   2    0.08902          0.24626 

83   146=83+63       0.87952      0.09375   3    0.08317        – 0.11285 

89   162=89+73       0.91011      0.05405   2    0.07727          0.42960 

97   172=97+75       0.88660      0.05263   2    0.07623          0.44841 

101  180=101+79      0.89109      0.05000   2    0.07427          0.48540 

103  186=103+83      0.90291      0.04762   2    0.07246          0.52163 

107  186=107+79      0.86916      0.05000   2    0.07427          0.48540 

109  218=109+109     1.00000      0.07273   4    0.06323        – 0.13062 

113  222=113+109     0.98230      0.07273   4    0.06323        – 0.13062 

127  230=127+103     0.90551      0.05769   3    0.06048          0.04836 

131  240=131+109     0.91603      0.05454   3    0.06223          0.14100 

137  240=137+103     0.87591      0.05769   3    0.06048          0.04836 

139  254=139+115     0.91367      0.05172   3    0.06560          0.26837 

149  258=149+109     0.86577      0.03636   2    0.06323          0.73900          

151  270=151+119     0.89404      0.03333   2    0.06517          0.95530 

157  270=157+113     0.85987      0.03509   2    0.06210          0.76973 

163  290=163+127     0.88957      0.04688   3    0.05858          0.24957 

167  290=167+123     0.86826      0.04839   3    0.05952          0.23001 

173  290=173+117     0.83815      0.05085   3    0.06103          0.20020 

179  330=179+151     0.92179      0.05263   4    0.05372          0.02071 

181  348=181+167     0.96133      0.04762   4    0.05109          0.07287 

191  348=191+157     0.91099      0.05633   4    0.05269        – 0.06462 

193  366=193+173     0.94819      0.05747   5    0.05019        – 0.12667 

197  366=197+169     0.92893      0.05882   5    0.05078        – 0.13669 
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199  366=199+167     0.91960      0.05952   5    0.05108        – 0.14180 

211  398=211+187     0.94313      0.06383   6    0.04828        – 0.24361 

223  398=223+175     0.89238      0.05682   5    0.04990        – 0.12179 

227  410=227+183     0.90308      0.05435   5    0.04880        – 0.10212 

229  410=229+181     0.89520      0.05495   5    0.04907        – 0.10701 

233  434=233+201     0.93133      0.04950   5    0.04656        – 0.05939 

239  440=239+201     0.92050      0.04950   5    0.04656        – 0.05939 

241  440=241+199     0.91286      0.05000   5    0.04680        – 0.06400 

251  474=251+223     0.94422      0.04464   5    0.04421        – 0.00963 

257  474=257+217     0.92218      0.05505   6    0.04481        – 0.18601 

263  474=263+211     0.90114      0.05660   6    0.04545        – 0.19700 

269  474=269+205     0.88104      0.05825   6    0.04611        – 0.20841 

271  474=271+203     0.87454      0.05882   6    0.04633        – 0.21234 

277  522=277+245     0.94224      0.04878   6    0.04218        – 0.13530 

281  522=281+241     0.92883      0.04959   6    0.04252        – 0.14257 

283  528=283+245     0.93286      0.04878   6    0.04218        – 0.13530 

293  528=293+235     0.90102      0.05085   6    0.04306        – 0.15320 

307  566=307+259     0.92182      0.05385   7    0.04102        – 0.23825 

311  570=311+259     0.91640      0.05385   7    0.04102        – 0.23825 

313  570=313+257     0.91054      0.05423   7    0.04118        – 0.24064 

317  570=317+253     0.89905      0.05512   7    0.04150        – 0.24710 

331  614=331+283     0.92749      0.04930   7    0.03924        – 0.20406 

337  614=337+277     0.91098      0.05036   7    0.03967        – 0.21227 

347  630=347+283     0.90778      0.05634   8    0.03924        – 0.30351 

349  634=349+285     0.90831      0.05594   8    0.03910        – 0.30104 

353  650=353+297     0.92068      0.05370   8    0.03831        – 0.28659 

359  680=359+321     0.94708      0.04969   8    0.03685        – 0.25840 

367  680=367+313     0.92643      0.04459   7    0.03731        – 0.16326 

373  680=373+307     0.91153      0.04545   7    0.03768        – 0.17096 

379  680=379+301     0.89710      0.04636   7    0.03805        – 0.17925 

383  680=383+297     0.88773      0.04698   7    0.03831        – 0.18455 

389  686=389+297     0.88175      0.04027   6    0.03831        – 0.04867 

397  686=397+289     0.86398      0.04138   6    0.03883        – 0.06162 

401  686=401+285     0.85536      0.03497   5    0.03910          0.11810 

409  686=409+277     0.83863      0.03597   5    0.03967          0.10286 

419  722=419+303     0.86158      0.03947   6    0.03792        – 0.03927 

421  722=421+301     0.85748      0.03974   6    0.03805        – 0.04253 

431  794=431+363     0.92111      0.03297   6    0.03465          0.05096 

433  794=433+361     0.91686      0.03315   6    0.03476          0.04857 

439  794=439+355     0.90433      0.03371   6    0.03504          0.03945 

443  822=443+379     0.92777      0.03158   6    0.03391          0.07378 

449  822=449+373     0.91537      0.03209   6    0.03418          0.06513 

457  854=457+397     0.93435      0.02513   5    0.03330          0.32511 

461  854=461+393     0.92625      0.02538   5    0.03330          0.31206 
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463  854=463+391     0.92225      0.02551   5    0.03339          0.30890 

467  906=467+439     0.97002      0.02727   6    0.03151          0.15548 

479  906=479+427     0.94572      0.02804   6    0.03195          0.13944 

487  930=487+443     0.95483      0.02703   6    0.03137          0.16056 

491  930=491+439     0.94705      0.02727   6    0.03151          0.15548 

499  962=499+463     0.96393      0.02586   6    0.03068          0.18639 

 

In above observation table, we see there is 0.5 < ξ(P) ≤ 1 and NSGL generated by 
every P can be written as P+A for P less than 500, where A is an odd number greater 
than 3 and takes on an obvious and relatively stable growth trend with the growth of 
value of P, such as A(5) = 5, A(97) = 75, A(197) = 169, A(293) = 235, A(397) = 289 
and A(499) = 463, though there are some small fluctuations in the growth process. 
The observation indicates that there exist connections between the exceptional set of 
Goldbach numbers and the strong Goldbach number sequence generated by P. 
Considering every A to be an odd number greater than 3, NSGL = P+A > P and NSGL = 
P+A > P–1 for P less than 500. In the observation, the largest P is 499 and P–1 = 498 
is the largest even number not exceeding P = 499. Taking P = 499 as x, we see NSGL = 
962 and x–1 = P−1 = 498 so that x–1 = 498 is contained by NSGL = 962 as a strong 
Goldbach number, therefore, all even numbers from 6 to 498 are strong Goldbach 
numbers and also Goldbach numbers, which implies E(x) = 2 for 4 ≤ x ≤ 499. It is an 
example which means E(x) = 2 is true for a given finite area of x using a known 
strong Goldbach number sequence. In the observation, we also see δ2(A) ≥ 1 for every 
A generated by P and value of δ2(A) takes on a slow and obvious growth trend but 
value of ρ2(A) takes on a slow reduction trend with the growth of P. Trying to 
introduce the function C2/A

1/2 as an approximation to ρ2(A), we see relative errors  
are small in general for P less than 500, in which the best data arise from the relative 
errors calculated as 0.192% for P = 11 and – 0.963% for P = 251.    
 

3. A basic proposition about the Goldbach conjecture 
Proposition 3.1 NSGL generated by every P ≥ 5 can be written as NSGL = P+A, where  
A is an odd number greater than 3 and an undetermined function A(P) which 
approaches lower order infinity as P → ∞. 
 
Remark 3.2 Taking P+1 as x, from E(x) = 2 for every x ≥ 4 we get E(P+1) = 2, which 
means all even numbers from 6 to P+1 are Goldbach numbers and also strong 
Goldbach numbers generated by P. If A is taken as a negative odd number A = −a  
then there is NSGL = P+A = P−a, which means NSGL = P−a is the largest strong 
Goldbach number for a given P so that NSGL+2 = P−a+2 is not a Goldbach number 
and also not a strong Goldbach number generated by P. Since P+1 ≥ P−a+2 = 
(P+1)−(a−1), P+1 is not a strong Goldbach number generated by P. It contradicts to 
above result that P+1 is a strong Goldbach number generated by P. Thus A cannot be 
taken as negative odd number. In addition, if A = 0 then NSGL = P+A = P, which is not 
true since NSGL is an even number but P is an odd number. Hence A should remain 
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positive in Proposition 3.1. 
. 
Remark 3.3 By Remark 3.2 A can be taken as 1, which makes P+1 become a 
Goldbach number and also a strong Goldbach number generated by P. However, P+1 
cannot become the largest strong Goldbach number for a given P, since if P+1 is a 
strong Goldbach number then P+3, P+5, P+7 are all strong Goldbach numbers so that 
NSGL cannot be written as NSGL = P+1 for any given P. Considering P to be defined as 
a prime greater than 3, even if NSGL = 2P = P+P is the largest strong Goldbach 
number for a given P, there is no a value of P which makes NSGL written as NSGL = 
P+3. But for A < P, if P+3 is a strong Goldbach number then P+5, P+7 are all strong 
Goldbach numbers for a given P. Hence A should be an odd number greater than 3 in 
Proposition 3.1. 
 
Remark 3.4 In Observation 2.6 we have seen value of A takes on a growth trend with 
the growth of value of P, therefore, we assume there is a growth trend of A in general 
case. Thus A can be assumed as an undetermined function A = A(P) whose value will 
take on a growth trend with the growth of P up to P → ∞. By the prime number 
theorem we see the density of prime numbers ρ(x) ≈ 1/(In x) will be lower and lower 
with the growth of x. It means the density of prime numbers will be lower and lower 
with the growth of P up to P → ∞. Thus the growth rate of A(P) will be much lower 
than the growth rate of P so that A(P) will approach lower order infinity as P → ∞. 
However, we should see the observation scale for status of A(P) generated by P in 
Observation 2.6 is too small to imply existence of an approximate function form of 
A(P). Hence A = A(P) should be assumed as an undetermined function which will 
approach lower order infinity as P → ∞ in Proposition 3.1. 
 
Corollary 3.5 ( Proposition 3.1 ) NSGL → ∞ as P → ∞.  
 
Proof By Proposition 3.1 NSGL = P+A and undetermined function A(P) approaches  
lower order infinity as P → ∞. Since the limit of the ratio A/P as P → ∞ is 0, the limit 
of the ratio ( P+A )/P as P → ∞ is 1 so that NSGL = P+A → ∞ as P → ∞. Thus the 
corollary holds. 
 
Corollary 3.6 ( Proposition 3.1 ) The limit of the ratio ξ(P) = NSGL/2P as P → ∞ is 
1/2.  
 
Proof By Proposition 3.1 NSGL = P+A and undetermined function A(P) approaches  
lower order infinity as P → ∞. Since the limit of the ratio A/2P as P → ∞ is 0, the 
limit of ξ(P) = NSGL/2P = P/2P+A/2P as P → ∞ is 1/2. Thus the corollary holds. 
 
Conjecture 3.7 (Goldbach conjecture）Every even number greater than 4 can be 
written as the sum of two odd primes. 
 
Proposition 3.8 Corollary 3.5 is equivalent to Conjecture 3.7. 
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Proof Let P → ∞, by Corollary 3.5 we obtain NSGL → ∞ as P → ∞. Since NSGL is the 
largest strong Goldbach number generated by P according to Definition 2.4, the 
strong Goldbach number sequence { 6, 8, 10, …, NSGL−4, NSGL−2, NSGL } generated 
by P → ∞ will become an infinite sequence by NSGL → ∞ as P → ∞. Thus all even 
numbers greater than 4 will become strong Goldbach numbers NSG and also Goldbach 
numbers NG as P → ∞ by Definition 2.2 and Definition 2.4, in which every even 
number is the sum of two odd primes not greater than P such as 6 = 3+3. It implies 
every even number greater than 4 is the sum of two odd primes. Hence the Goldbach 
conjecture is true and the proposition holds. 

 
Proposition 3.9 Corollary 3.6 is equivalent to Conjecture 3.7. 
 
Proof By Corollary 3.6 the limit of the ratio ξ(P) = NSGL/2P as P → ∞ is 1/2. The 
result means that the limit of the ratio NSGL/P as P → ∞ is 1, which clearly implies    
NSGL → ∞ as P → ∞. By Proposition 3.8 every even number greater than 4 is the sum 
of two odd primes. Hence the Goldbach conjecture is true and the proposition holds. 

   
Lemma 3.10 In a given strong Goldbach number sequence { 6, 8, …, NSGL }, if NSG is 
greater than 6 but contained by NSGL then all even numbers from 6 to NSG are strong 
Goldbach numbers and also Goldbach numbers. 
 
Proof Since strong Goldbach number NSG is greater than 6 but contained by NSGL in 
{ 6, 8, …, NSGL }. Hence { 6, 8, …, NSG } is a subsequence of { 6, 8, …, NSGL } so that 
all even numbers from 6 to NSG are strong Goldbach numbers and also Goldbach 
numbers by Definition 2.2 and Definition 2.4. Thus the lemma holds.    

  
Corollary 3.11 ( Proposition 3.1 ) E(x) = 2 for every x ≥ 4. 
 
Proof By Proposition 3.1 A remains positive for any given P including P → ∞, 
therefore, NSGL = P+A > P and NSGL = P+A > P−1 for any given P including P → ∞. 
Taking P as x, x−1 = P−1 is the largest even number not exceeding x = P. By 
Corollary 3.5 NSGL → ∞ as x = P → ∞. Thus x−1 = P−1 is contained by NSGL as a 
strong Goldbach number as x = P → ∞. By Lemma 3.10 all even numbers from 6 to 
x−1 = P−1 are strong Goldbach numbers and also Goldbach numbers as x = P → ∞. 
The result implies E(x) = 2 for every x ≥ 4, which is equivalent to the Goldbach      
conjecture. Thus the corollary holds. 
 
Remark 3.12 Although Proposition 3.1 remains unproved, it has become a basic 
proposition, whose hardcore is the existence of undetermined function A = A(P) 
approaching lower order infinity as P → ∞ to be a product of the prime number 
theorem, and brought us many results of concern to support the Goldbach conjecture. 
However, Proposition 3.1 seems to be not the only proposition to imply the Goldbach 
conjecture, and there is another one as the following proposition. 
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Proposition 3.13 Let Pn be the nth prime greater than 3, then Pn+1+1 is a strong 
Goldbach number GSG generated by Pn.  
 
Corollary 3.14 ( Proposition 3.13 ) The Goldbach conjecture is true. 
 
Proof By Proposition 3.13 Pn+1+1 is a strong Goldbach number GSG generated by Pn 
as n → ∞. Hence all even numbers from 6 to Pn+1+1 are strong Goldbach numbers 
and also Goldbach numbers generated by Pn as n → ∞. It implies every even number 
greater than 4 is the sum of two odd primes, that is, the Goldbach conjecture is true.  
 
Remark 3.15 We have seen all data arising from Observation 2.6 support Proposition 
3.13. However, it needs a proof that Proposition 3.13 holds in general case specially 
as n → ∞. The problem is relative to the gap between Pn and Pn+1 as n → ∞. Zhang 
proved the limit of the lower bound of gap between Pn and Pn+1 as n → ∞ is 7×107 
and the limit of the lower bound has been reduced to 246 without assuming. Relying  
on the existence of so small limit of the lower bound of gap between Pn and Pn+1 as     
n → ∞, it is certain that Pn+1+1 is a strong Goldbach number GSG generated by Pn as  
n → ∞ so that all even numbers from 6 to Pn+1+1 are strong Goldbach numbers and 
also Goldbach numbers as n → ∞, therefore, the Goldbach conjecture is true.  
 
Proposition 3.16 If (Pn, Pn+1) is a pair of twin primes, then Pn+1+1 is a strong 
Goldbach number generated by Pn. 
 
Proof Since (Pn, Pn+1) is a pair of twin primes. Hence Pn+1+1 = Pn+3 is a Goldbach 
number generated by Pn. If Pn+1 is a strong Goldbach number generated by Pn then 
Pn+3 must be a strong Goldbach number generated by Pn, therefore, Pn+1+1 is a strong 
Goldbach number generated by Pn.   
 

4. The Goldbach conjecture attributed to the limit of ξ(P) 
In this note we proposed a basic proposition ( Proposition 3.1 ), whose basis is the 
prime number theorem, to make the three results, including NSGL → ∞ as P → ∞, the 
limit of the ratio ξ(P) = NSGL/2P as P → ∞ being 1/2 and E(x) = 2 for every x ≥ 4, 
become corollaries of the proposition. These corollaries are clearly equivalent to the 
Goldbach conjecture. We also gave an argument for the rationality of proposing the 
proposition by Remark 3.2, Remark 3.3 and Remark 3.4 but Remark 3.2 relies on the 
Goldbach conjecture itself. Hence there is no an independent argument for the 
rationality of the proposition. However, the observation scale for status of A(P) 
generated by P in Observation 2.6 is too small to imply existence of a function form 
which is good approximation to A(P) and will approach lower order infinity as P → ∞. 
Therefore, a large-scale observation for status of A(P) generated by P is necessary, for 
example, all primes P less than 106 will be considered by computer programs to find 
the function form. If there is really a function form being a good approximation to 
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A(P) and approaching lower order infinity as P → ∞ then the asymptotic result arising 
from it will independently give an explanation for the rationality of Proposition 3.1 so 
that the basic proposition will be proven and the Goldbach conjecture will be proven 
by Corollary 3.5, Corollary 3.6 or Corollary 3.11. From the result we see there are 
very close connections between the Goldbach conjecture and the prime number 
theorem. We should also see there is a similar result which will appear in a large-scale 
observation for status of ξ(P) generated by P, that is, if there is really a function form 
being a good approximation to ξ(P) whose limit as P → ∞ is 1/2 then the Goldbach 
conjecture will be proven by Corollary 3.5, Corollary 3.6 or Corollary 3.11 since 
Proposition 3.1 will be proven by the following theorem. 
 
Theorem 4.1 The limit of the ratio ( P+A )/2P as P → ∞ is 1/2 if and only if A = A(P) 
approaches lower order infinity as P → ∞. 
 
Proof If A = A(P) approaches lower order infinity as P → ∞, then the limit of the ratio 
( P+A )/2P = P/2P+A/2P as P → ∞ is 1/2 since the limit of the ratio A/2P as P → ∞  
is 0. If the limit of the ratio ( P+A )/2P = P/2P+A/2P as P → ∞ is 1/2, then the limit of 
the ratio A/2P as P → ∞ is 0 since the limit of the ratio P/2P as P → ∞ is 1/2, which 
implies A = A(P) approaches lower order infinity as P → ∞. Hence the theorem holds. 
 
Remark 4.2 Theorem 4.1 satisfies necessary and sufficient conditions, therefore, 
finding a good approximate function form to A(P) which approaches lower order 
infinity as P → ∞ is equivalent to finding a good approximate function form to    
ξ(P) whose limit as P → ∞ is 1/2. It implies there is a direct approach to prove the 
Goldbach conjecture without assuming as the following proposition shows. 
 
Proposition 4.3 The correctness of the Goldbach conjecture is directly attributed to 
the existence of the limit of ξ(P) = NSGL/2P as P → ∞ being 1/2. 
 
Proof Since the limit of the ratio ξ(P) = NSGL/2P as P → ∞ being 1/2 implies the  
limit of ratio NSGL/P as P → ∞ being 1, and the limit of ratio NSGL/P as P → ∞ being 1 
implies NSGL → ∞ as P → ∞ but NSGL → ∞ as P → ∞ is equivalent to the Goldbach     
conjecture. Hence the proposition holds. 
 
Remark 4.4 Proposition 4.3 means we may directly get NSGL → ∞ as P → ∞ without 
assuming, since the result can be directly obtained from the existence of the limit of 
the ratio ξ(P) = NSGL/2P as P → ∞ being 1/2 arising from large-scale observation data 
for status of ξ(P), even if we know nothing about Proposition 3.1 whose basis is the 
existence of A = A(P) approaching lower order infinity as P → ∞ to be only an 
assumption before making a large-scale observation for status of A(P) as Remark 3.4 
states. Although Proposition 4.3 seems to be similar to Proposition 3.9, the latter 
contains above assumption but the former is presented without the assumption. 
However, by Theorem 4.1 the existence of the limit of the ratio ξ(P) = NSGL/2P as    
P → ∞ being 1/2 implies the existence of A = A(P) approaching lower order infinity 
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as P → ∞, therefore, the existence of the limit of the ratio ξ(P) = NSGL/2P as P → ∞ 
being 1/2 must remain essentially a positive result arising from the prime number 
theorem, whether or not A = A(P) approaching lower order infinity as P → ∞ is 
mentioned in a specific computation model. 
 

5. A basic proposition about the twin prime conjecture 
Proposition 5.1 Let ρ2(A) be an undetermined function which tends to infinitesimal   
as A = A(P) approaches infinity, then ρ2(A) tends to lower order infinitesimal as 1/A 
approaches infinitesimal. 
 
Remark 5.2 In Observation 2.6 we have seen δ2(A) ≥ 1 for every P ≥ 5 and there are a 
slow but obvious growth trend of δ2(A) and a slow reduction trend of ρ2(A) for P  
less than 500, therefore, we can assume ρ2(A) as an undetermined function which    
tends to infinitesimal as A approaches infinity. However, the first Hardy-Littlewood 
conjecture[10], a stronger form of the twin prime conjecture, postulates there is a 
distribution law for twin primes akin to the prime number theorem, and the conjecture 
can be expressed as π2(x) ≈ 2C2x/(In x)2, where C2 is the twin prime constant ( 60 
digits listed ) but π2(x) denotes the number of twin primes p and p+2 such that p ≤ x. 
From the conjecture we see the density of twin primes ρ2(x) ≈ 2C2/(In x)2 will be 
lower and lower with the growth of x so that the density of twin primes will be lower 
and lower with the growth of P up to P → ∞. Comparing it with ρ(x) ≈ 1/(In x), it 
seems certain that ρ2(A) should tend to lower order infinitesimal as 1/A approaches 
infinitesimal. In fact, we can give a few examples arising from the data in Observation 
2.6 to support the basic proposition, such as ρ2(A) = 0.33333 and 1/A = 0.20000 for  
P = 5, ρ2(A) = 0.12500 and 1/A = 0.03226 for P = 59, ρ2(A) = 0.07273 and 1/A = 
0.00917 for P = 113, ρ2(A) = 0.05495 and 1/A = 0.00552 for P = 229, ρ2(A) = 0.04930 
and 1/A = 0.00353 for P = 331, ρ2(A) = 0.03315 and 1/A = 0.00277 for P = 433,  
ρ2(A) = 0.02586 and 1/A = 0.00216 for P = 499. 
 
Corollary 5.3 ( Proposition 5.1 ) δ2(A) tends to lower order infinity as A approaches 
infinity.   
 
Proof By Proposition 5.1 ρ2(A) tends to lower order infinitesimal as 1/A approaches 
infinitesimal. Considering δ2(A) = kρ2(A) = (A+1)ρ2(A)/2 = ρ2(A)/(2/A)+ρ2(A)/2, we 
see ρ2(A)/2 tends to infinitesimal as A approaches infinity but ρ2(A) tends to lower 
order infinitesimal as 2/A approaches infinitesimal. Hence δ2(A) = ρ2(A)/(2/A) tends to 
lower order infinity as A approaches infinity. Thus the corollary holds. 
 
Conjecture 5.4 ( twin prime conjecture ) There are infinitely many twin primes.  
 
Proposition 5.5 Corollary 5.3 is equivalent to Conjecture 5.4.  
 
Proof By Corollary 5.3 δ2(A) tends to lower order infinity as A approaches infinity. It 
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implies there are infinitely many strong Goldbach numbers NSG for P+1 ≤ NSG ≤ P+A 
as P → ∞ which can be represented as sums of distinct twin prime pairs (NSG/2–1, 
NSG/2+1), therefore, there are infinitely many twin primes. Thus Conjecture 5.4 is true 
and the proposition holds. 
 
Proposition 5.6 The existence of the limit of the ratio ξ(P) = NSGL/2P as P → ∞ being 
1/2 implies Conjecture 5.4 if it is confirmed that there is a good approximate  
function form to ρ2(A) which tends to lower order infinitesimal as 1/A approaches 
infinitesimal. 
 
Proof If the existence of the limit of the ratio ξ(P) = NSGL/2P as P → ∞ being 1/2 is 
confirmed by an asymptotic result arising from the large-scale observation data for 
status of ξ(P) then by Theorem 4.1 we get A = A(P) approaching lower order infinity 
as P → ∞. Since the result is the precondition of proposing Proposition 5.1. Hence if 
there is a function form being good approximation to ρ2(A) which tends to lower order 
infinitesimal as 1/A approaches infinitesimal then Proposition 5.1 holds. Therefore, by 
Corollary 5.3 and Proposition 5.5 there are infinitely many twin primes. Thus the 
proposition holds. 
 
Remark 5.7 Proposition 5.6 means that it is necessary for proving the twin prime 
conjecture to find a good approximate function form to ρ2(A) which tends to lower 
order infinitesimal as 1/A approaches infinitesimal. We have seen the observation 
scale of Observation 2.6 is too small to find good approximate functions to A(P) and  
ξ(P), however, we discovered really there is a suitable function C2/A

1/2 which can be 
thought as an acceptable approximation to ρ2(A) at so small observation scale of 
Observation 2.6, in which we got the data with small relative errors using C2/A

1/2. If 
the data calculated by C2/A

1/2 are more close to ρ2(A), which means relative errors are 
smaller, in a large-scale observation for status of ρ2(A) then the function C2/A

1/2 can be 
confirmed as a good approximation to ρ2(A), therefore, the twin prime conjecture will 
be implied by both the existence of the limit of the ratio ξ(P) = NSGL/2P as P → ∞ 
being 1/2 and the existence of the approximate function ρ2(A) ≈ C2/A

1/2, since    
δ2(A) ≈ kC2/A

1/2 ≈ (C2/2)A1/2+(C2/2)/A1/2 tends to lower order infinity as A approaches  
infinity. Considering (C2/2)/A1/2 tending to infinitesimal as A approaching infinity, we   
obtain δ2(A) ≈ (C2/2)A1/2 for large P up to P → ∞. The twin prime constant C2 in the 
first Hardy-Littlewood conjecture can be expressed as C2 = exp{(2–2n)[P(n) –2–n]/n}, 
where P(n) is the prime zeta function to be a generalization of the Riemann zeta 
function. Therefore, it seems not accidental that there are small relative errors in 
general using C2/A

1/2 in Observation 2.6.     
 

6. Conclusion 

By Proposition 4.3 and Remark 4.4 we have found a simple, independent and direct 
approach to prove the Goldbach conjecture, that is, as long as the existence of the 
limit of the ratio ξ(P) = NSGL/2P as P → ∞ being 1/2 has been confirmed by an 
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asymptotic result arising from the large-scale observation data for status of ξ(P) 
through a specific computation model, we are sure that the Goldbach conjecture has 
been proven. Further, by Proposition 5.6 and Remark 5.7, If not only the existence of 
the limit of the ratio ξ(P) = NSGL/2P as P → ∞ being 1/2 is confirmable but also the 
function C2/A

1/2 can be confirmed as a good approximation to ρ2(A) by a large-scale 
observation for status of ρ2(A), which implies δ2(A) ≈ (C2/2)A1/2 tends to lower order 
infinity as A approaches infinity, then the twin prime conjecture is true.          
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