A POLYNOMIAL RECURSION FOR PRIME CONSTELLATIONS

SCOTT B. GUTHERY

Abstract. An algorithm for recursively generating the sequence of solutions of a prime constellation is described. The algorithm is based on a polynomial equation formed from the first \(n \) elements of the constellation. A root of this equation is the next element of the sequence.

1. Introduction

Hypothesis \(H \) is one of the few mathematics conjectures that is distinguished by having its own Wikipedia page. The hypothesis, proposed independently by Schinzel-Sierpinski [1] and Bateman-Horn [2], describes a pattern of integers and then hypothesizes that there is an instance of the pattern such that all the integers in the pattern are prime numbers. It is a small step to conjecture that there are an infinite number of such occurrences.

The twin prime pattern, \(n, n + 2 \), is one of the forms characterized Hypothesis \(H \) but the hypothesis also subsumes the conjectures of de Polignac [3], Bunyakovskii [4], Hardy-Littlewood [5], Dickson [6], Shanks [7], and many others regarding the infinitude and density of patterns of primes.

Hypothesis \(H \). Let \(m \) be a positive integer and let \(F = \{ f_1(x), f_2(x), \ldots, f_m(x) \} \) be a set of irreducible polynomials with integral coefficients and positive leading coefficients such that there is not a prime \(p \) which divides the product

\[
 f_1(n) \cdot f_2(n) \cdot \ldots \cdot f_i(n) = \prod_{i=1}^{m} f_i(n) \tag{1}
\]

for every integer \(n \). Then there exists an integer \(q \) such that \(f_1(q), f_2(q), \ldots, f_m(q) \) are all prime numbers.

A sequence of functions \(F \) which satisfies Hypothesis \(H \) is traditionally called a prime constellation. A value \(q \) such that \(f_1(q), f_2(q), \ldots, f_m(q) \) are all prime numbers is called a solution of \(F \) while \(F \) is said to be solved by \(q \). Table 1 lists some familiar examples of prime constellations.

Date: June 30, 2016.
2010 Mathematics Subject Classification. 11B83.
Key words and phrases. prime generation, prime constellations, Hypothesis \(H \).
<table>
<thead>
<tr>
<th>Familiar Name</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twin Primes</td>
<td>{x, x + 2}</td>
</tr>
<tr>
<td>Sophie Germain Primes</td>
<td>{x, 2x + 1}</td>
</tr>
<tr>
<td>Shanks Primes</td>
<td>{x^4 + a}</td>
</tr>
<tr>
<td>Hardy-Littlewood Primes</td>
<td>{ax^2 + bx + c}</td>
</tr>
<tr>
<td>Dickson Chains</td>
<td>{a_i x + b_i}</td>
</tr>
<tr>
<td>Cunningham Chains</td>
<td>{2^{i-1}x + (2^{i-1} - 1)}</td>
</tr>
</tbody>
</table>

Table 1. Examples of Prime Constellations

Given the first n solutions of a prime constellation we describe a polynomial one of whose roots is the next solution in this sequence. The polynomial can be regarded as a generalization of Rowland [8] which is, in turn, based on the formula for generating the next prime of Gandhi [9]. See also Golomb [10] and [11], Vanden Eynden [12], and Ellis [13]. An interpretation of the recursion is that the first n solutions of an instance of Hypothesis H algebraically encode the $(n+1)^{st}$ solution.

2. Generation of Prime Constellations

The recursion for prime constellation generation is based on the following primality test:

Lemma 1. Let

$$Q_d(x) = \sum_{k=1}^{d-1} \gcd(x, x-k) - 1 = \sum_{i=1}^{d-1} \gcd(i, x-i) - 1.$$ (2)

p is prime if and only if $Q_p(p) = 0$.

Let $F = \{f_1(x), f_2(x), \ldots, f_m(x)\}$ be a prime constellation and let p be a solution of F. Set

$$Q_{F,p}(x) = \sum_{i=1}^{m} Q_{f_i,p}(f_i(x)).$$ (3)

As an example of a $Q_{F,p}(x)$, take $F = \{x, x + 2, x + 6\}$. This prime constellation is solved by $n = 5$, viz., (5, 7, 11). In this case,

$$Q_{F,5}(x) = Q_5(x) + Q_7(x + 2) + Q_{11}(x + 6).$$
Recursion. Let \(p \) be solution of the prime constellation \(F \) so that
\[
Q_{F,p}(p) = 0.
\]
If \(q \) is the next integer greater than \(p \) such that \(Q_{F,p}(q) = 0 \), then \(q \) is a solution of the prime constellation \(F \).

Example. The sequence of prime numbers
If \(F = \{ x \} \), then
\[
Q_{F,p}(x) = Q_p(x).
\]
According to the above recursion, if \(p \) is the \(i \)th prime and \(q \) is the next larger root of \(Q_p(x) \) beyond \(p \), then \(q \) is the \(i + 1 \)st prime.

It is straightforward to show that this recursion yields the sequence of primes using Bertrand’s Postulate ([14], [15], [16], [17]) that guarantees there is always a prime between \(n \) and \(2n \).

Example. The sequence of twin primes
If \(F = \{ x, x + 2 \} \), then
\[
Q_{F,p}(x) = Q_p(x) + Q_{p+2}(x + 2).
\]
According to the above conjecture, if \((p, p + 2) \) is a twin prime and \(q \) is the next larger root of \(Q_{F,p}(x) \) beyond \(p \), then \((q, q + 2) \) is a twin prime.

3. Continuations

A continuous rendering of \(Q_{F,p}(x) \) permits existing equation-solving methods to be used in finding its roots.

As one possibility, take
\[
P_d(x) = \prod_{\substack{n \leq d \leq x \atop n \mid d}} \sin^2 \left(\frac{\pi(x - n)}{d} \right).
\]
Then, \(P_d(x) \) is zero if and only if \(\gcd(x, d) = 1 \). If we set
\[
\tilde{Q}_d(x) = \sum_{k=1}^{d-1} P_k(x),
\]
then \(\tilde{Q}_d(x) \) is zero if and only if \(Q_d(x) \) is zero so \(\tilde{Q}_d(x) \) can be used in Equation 3 as well as \(Q_d(x) \). Since \(\tilde{Q}_d(x) \) is continuous and periodic a next larger is guaranteed to exist.

As a second possibility, Slavin [18] has shown that for odd \(n \)
\[
\gcd(n, m) = \log_2 \prod_{k=0}^{n-1} \left(1 + e^{-2\pi i km/n} \right) = n + \log_2 \left(\prod_{k=1}^{(n-1)/2} \cos \frac{km\pi}{n} \right)^2.
\]
When both arguments of \(\gcd \) in Equation 3 are even, Slavin’s formula produces a negative infinity so it can also be used to find roots of \(Q_{F,p}(x) \).
4. The Dual

The recursion states that given solution p for a prime constellation F, the next element in the sequence of solutions is obtained by finding the next larger root of $Q_{F,p}$. One can also formulate this recursion using the divisors of the integers between 1 and p rather than the non-divisors. Since the number of divisors grows slightly more quickly than the number of non-divisors, this may yield computational efficiency by reducing the complexity of $Q_{F,p}$.

To take this dual approach, we set

$$P_d(x) = \prod_{1 \leq n < d \atop n \mid d} (x \mod d - n)^2$$

and

$$Q_d(x) = \prod_{k=1}^{d-1} P_k(x).$$

To generate a sequence of prime constellation solutions using this formulation, we seek non-zero values of a product over the constellation functions rather than a zero value over a sum. The difficulty of seeking a non-zero value as compared to seeking a root may, of course, offset the reduction in complexity of the function being analyzed.
5. The Computation

The next larger root of $Q_{F,p}(x)$ is readily computed and easily checked as the next solution F after p. The following Mathematica routine computes the next n sequence elements satisfying constellation after the solution start:

```mathematica
Sieve[constellation_, start_, n_] := Module[{f, i, j, q = start, l},
    For[i = 1, i <= n, i++,
        f[x_] :=
            Sum[Q[constellation[[i]]][x], constellation[[i]][q]],
                {i, 1, Length[constellation]}];
        q = NextZero[f, q];
        l = {};
        For[j = 1, j <= Length[constellation], j++,
            p = pattern[[j]][q];
            AppendTo[l, {p, PrimeQ[p]}];
            ];
        Print[{q, l}];
    ];
]
```

Table 2 below lists some prime constellations for which sequences of solutions have been generated using this routine. The starting value Table 2 is a value which when substituted into the pattern yields a prime sequence satisfying the pattern. Thus, for example, when looking for Shank’s primes of the form $n^2 + 1$ a starting value could be 4. Tables 3 and 5 lists some other types of prime sequences to which the routine has been applied.
<table>
<thead>
<tr>
<th>Familiar Name</th>
<th>Pattern</th>
<th>Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primes</td>
<td>({ # })</td>
<td>5</td>
</tr>
<tr>
<td>Twin Primes</td>
<td>({ # , # + 2 })</td>
<td>3</td>
</tr>
<tr>
<td>Cousin Primes</td>
<td>({ # , # + 4 })</td>
<td>3</td>
</tr>
<tr>
<td>Prime Constellation</td>
<td>({ # , # + 2 , # + 6 })</td>
<td>5</td>
</tr>
<tr>
<td>Sophie Germain Primes</td>
<td>({ # , 2 # + 1 })</td>
<td>5</td>
</tr>
<tr>
<td>Gaussian Primes</td>
<td>({ # , 4 # + 3 })</td>
<td>5</td>
</tr>
<tr>
<td>Cunningham Chain</td>
<td>({ # , 2 # + 1 , 4 # + 3 })</td>
<td>5</td>
</tr>
<tr>
<td>Dickson Chain</td>
<td>({ # , 2 # + 1 , 3 # + 4 })</td>
<td>5</td>
</tr>
<tr>
<td>Star Primes</td>
<td>({ 6 # (# - 1) + 1 })</td>
<td>2</td>
</tr>
<tr>
<td>Shanks Primes</td>
<td>({ # ^ 2 + 1 })</td>
<td>4</td>
</tr>
<tr>
<td>Shanks Twins</td>
<td>({ (# - 1) ^ 2 + 1 \ & , (# + 1) ^ 2 + 1 \ & })</td>
<td>3</td>
</tr>
<tr>
<td>Shanks Quads</td>
<td>({ (# - 1) ^ 2 + 1 \ & , (# + 1) ^ 2 + 1 \ & })</td>
<td>4</td>
</tr>
<tr>
<td>Hardy-Littlewood Primes</td>
<td>({ # ^ 2 + # + 1 })</td>
<td>3</td>
</tr>
<tr>
<td>Safe Primes</td>
<td>({ # , (# - 1) / 2 })</td>
<td>11</td>
</tr>
<tr>
<td>Centered Heptagonal Primes</td>
<td>({ (7 # ^ 2 - 7 # + 2) / 2 })</td>
<td>4</td>
</tr>
<tr>
<td>Centered Square Primes</td>
<td>({ # ^ 2 + (# + 1) ^ 2 })</td>
<td>3</td>
</tr>
<tr>
<td>Centered Triangular Primes</td>
<td>({ 3 # ^ 2 + 3 # + 2 } / 2)</td>
<td>3</td>
</tr>
<tr>
<td>Centered Decagonal Primes</td>
<td>({ 5 (# ^ 2 - #) + 1 })</td>
<td>2</td>
</tr>
<tr>
<td>Pythagorean Primes</td>
<td>({ 4 # + 1 })</td>
<td>0</td>
</tr>
<tr>
<td>Prime Quadruplets</td>
<td>({ # , # + 2 , # + 6 , # + 8 })</td>
<td>3</td>
</tr>
<tr>
<td>Sexy Primes</td>
<td>({ # , # + 6 })</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2. Hypothesis H Constellations
A POLYNOMIAL RECURSION FOR PRIME CONSTELLATIONS

Familiar Name Pattern Start
Thabit Primes \(3 \times 2^{\#} - 1\) 3
Wagstaff Primes \((2^\# + 1)/3\) 5
Proth Primes \(2^\# + 1, 3\) 4
Kynea Primes \((2^\# + 1)^2 - 2\) 2
Mersenne Primes \(2^\# - 1\) 1
Double Mersenne Primes \(2(2^\# - 1) - 1\) 2
Mersenne Prime Exponents \(\#^\#, 2^\# - 1\) 2
Carol Primes \((2^\# - 1)^2 - 2\) 2
Cullen Primes \(\#(2^\#) + 1\) 1
Fermat Primes \(2(2^\#) + 1\) 0
Generalized Fermat Primes Base 10 \(10^{\#+1}\) 0
Factorial Primes \(# + 1\) or \(# - 1\) 0

Table 3. Other Single-Variable Prime Sequences

Familiar Name Pattern Start
Leyland Primes \(#_1^{#_2} + #_2^{#_1}\) 0
Pierpont Primes \(2^{#_1} 3^{#_2}\) 0
Solinas Primes \(2^{#_1} \pm 2^{#_2} \pm 1\) 0
Primes of Binary Quadratic Form \(#_1^2 + #_1 \#_2 + 2 \#_2^2\) 0
Quartan Primes \(#_1^4 + #_2^4\) 0

Table 4. Two-Variable Prime Sequences

The following Mathematica routine implements the dual.

```mathematica
Sieve[constellation_, start_, n_] := Module[{f, i, j, q = start, l},
  For[i = 1, i <= n, i++,
    f[x_] :=
      Sum[Q[constellation[[i]][x], constellation[[i]][q]],
        {i, 1, Length[constellation]}];
    q = NextNonZero[f, q];
    l = {};
    For[j = 1, j <= Length[constellation], j++,
      p = pattern[[j]][q];
      AppendTo[l, {p, PrimeQ[p]}];
    ];
    Print[{q, l}];
  ];
]```

The following Mathematica routine implements the dual.
References


E-mail address: sbg@acw.com