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Starting with acceleration, the Equivalence Principle is used to argue that the known law of
decreasing acceleration for high speed motion in the domain of low acceleration, produces the same
result in a weak gravitational field with subsequent implications for stronger fields.

I. INTRODUCTION

The acceleration four-vector defined in special relativ-
ity is a compact and elegant way to describe non-inertial
motion and is inclusive of the fact that objects cannot
reach the light speed. While it is accepted that general
relativity provides the correct generalization of special
relativity for accelerating frames, nevertheless accelera-
tion in the context of special relativity alone can still
provide a very useful form of analysis.

We now briefly introduce the notation we will be using
in this paper in order to describe accelerations within the
framework of special relativity. We define a spacetime
coordinate differential with a four-vector dX = [cdt, dx]
where, in general, x is a vector with contribution from
three spatial dimensions and t is the time in a par-
ticular reference frame and c is the invariant speed of
light1. In this paper we will be dealing exclusively with
one-dimensional motion and so we can suppress two of
the space dimensions. In the co-moving frame we have
dx = 0 that defines τ the proper time. We also define,
in general, the four-velocity V = dX

dτ = [γc, γv], where

v = dx/dt and γ = t/τ = 1/
√

1− v2/c2. We then have

the proper velocity
√
V · V =

√
γ2c2 − γ2v2 = c that

is a Lorentz invariant. We also have the acceleration
A = dV

dτ = [γ4va/c, γ4a], where we have shown the spe-
cial case for one-dimensional motion in which v is parallel
to a. We then find the Lorentz invariant proper acceler-
ation

√
A ·A =

√
γ8v2a2/c2 − γ8a2 = γ3a. (1)

In the momentarily co-moving frame (MCF) we have
v = 0 and so we have the acceleration vector A = [0, α]
and the velocity V = [c, 0]. This then gives the expected
orthogonality condition V · A = 0. Hence, the MCF
defines the invariant proper acceleration α so that in dif-
ferent frames we have the acceleration a = α/γ3.

We now consider how acceleration appears inside
an accelerating rocket from different inertial reference
frames that each view the acceleration of the rocket with
different initial velocities. Using the principle of equiva-
lence we then transfer our results to a gravity setting.

A. A thought experiment

Consider a rocket deep in outer space far from the ef-
fects of gravity. In this effectively flat region of space
we place small frames of reference that individually can
measure the acceleration of passing objects. We will call
these types of frames PG1 for particle group 1. The PG1
frames are currently at rest relative to the rocket and also
with respect to each other and they span the space sur-
rounding the rocket. The rocket also has a hole at the top
and bottom so that the PG1 can pass straight through
and measure the acceleration of the rocket. The rocket
also has an inbuilt mechanism so that, when the rocket
is accelerating, it will start dropping a second group of
particles, labeled PG2, from the top of the rocket, at pre-
determined fixed time intervals. PG2 can also measure
the rockets acceleration.

Now, for the sake of argument, let the rocket be ac-
celerated at 9.8 m s−2 and as specified, PG2 will start
to drop from the top of the rocket. The rocket now ac-
celerates away from the PG2 frames with acceleration
α = F/m = 9.8ms−2, where m is the mass of the rocket
and F is the applied thrust. The PG2, once released,
are clearly inertial objects not partaking in the rockets
acceleration. Additionally, as the rocket continues its ac-
celeration it will encounter PG1 lying in its path that
will enter the hole at the top of the rocket and while
passing through measure the acceleration of the rocket.
Now, as the rocket is maintaining a steady acceleration,
clearly the velocity of the rocket will be steadily increas-
ing. Hence the rocket will be encountering the PG1 at
higher and higher relative velocities.

The question to be considered is: Will PG1 and PG2
measure the same acceleration for the rocket?

Based on known physics, we expect the answer to be
negative. This is because special relativity asserts that
as the rocket’s velocity converges to the light speed up-
per bound, the acceleration will appear to decrease, as
viewed by the surrounding inertial frames PG1. This
current example assumes a constant rocket thrust but
from the PG1 frames will fail to increase velocities in ac-
cordance with α = F/m. Indeed, this is a well verified
phenomena commonly encountered in particle accelera-
tors where under a constant applied force the particles
slowly converge to the light speed bound.

Hence, the one-dimensional relativistic equation for ac-
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celeration a measured in the PG1 frames, is

a =
α

γ3
=
F

m

(
1− v2

c2

)3/2

, (2)

where α is the acceleration measured in the co-moving
frames PG2, v is the velocity of the rocket relative to
PG1.

The results so far are well established result from spe-
cial relativity when accelerations are considered. How-
ever, following on from the above we now ask a more im-
portant question: Given the principle of equivalence will
the result in the rocket be the same as under gravity?

We, presume that for appropriately small regions of
the field, that the answer must be yes.

B. Gravity fields

The central role played by the the equivalence principle
in the general theory was stated by Einstein in 1907:

we [...] assume the complete physical equivalence of a
gravitational field and a corresponding acceleration of the
reference system.

Einstein’s equivalence principle is based firstly on the
well established equivalence of gravitational and inertial
mass, also called the weak equivalence principle, which
has been confirmed by experiment2 to an accuracy better
than 1× 10−15.

The full Einstein equivalence principle also incorpo-
rates the relativity principles such as Lorentz invariance
that is stated as:

The outcome of any local non-gravitational experiment
in a freely falling laboratory is independent of the velocity
of the laboratory and its location in spacetime.

The Einstein equivalence principle essentially requires
a curved spacetime metric theory of gravity in which par-
ticles follow geodesics within this space as described by
Einstein in his general theory3.

Hence, incorporating the equivalence principle, our
current proposition is that since Eq. (2) pertains to a ref-
erence frame described above with an accelerating rocket
then we also must have in a gravitational field

a =
GM

r2

(
1− v2

c2

)3/2

. (3)

The purest case holds for the proper frame of the inertial
falling object. This proposal shows that for gravity the
rate of acceleration is a function of initial velocity, the
gravitational mass and the position in the field.

II. SCHWARZSCHILD SOLUTION

For a static, non-rotating, spherical mass the field
equations of general relativity give the Schwarzschild so-

lution3 with the metric

c2dτ2 =

(
1− 2µ

r

)
c2dt2 −

(
1− 2µ

r

)−1

dr2 (4)

−r2dθ2 − r2 cos2 θdφ2,

where µ = GM/c2 and r measured from the center and
outside the mass3.

Now viewing the Schwarzschild solution as the metric
distance we can find a Lagrangian,

L =

(
1− 2µ

r

)
c2ṫ2 −

(
1− 2µ

r

)−1

ṙ2 = c2, (5)

where ṫ = dt
dτ and ṙ = dr

dτ and for purely radial motion
the angular terms are zero. Hence we now extremize the
action S =

∫
Ldτ and using Lagrange’s equations for t

we find

d

dτ

((
1− 2µ

r

)
c2ṫ

)
=
dL
dt

= 0. (6)

Hence we have a constant of the motion(
1− 2µ

r

)
ṫ =

E

mc2
. (7)

Now if a particle at rest slowly enters the field then the
particles’ energy E is approximately its rest energy mc2,
however if we wish to inject the particle into the field

with velocity V then E = γmc2 = mc2√
1−V 2/c2

. Now,

substituting Eq. (7) back into the metric we find

dr

dτ
= c

√
1

1− V 2/c2
−
(

1− 2µ

r

)
. (8)

We can see that as r →∞ then dr
dτ → V as required.

The second derivative with respect to proper time is

d2r

dτ2
= −Mc2

r2
= −GM

r2
, (9)

which shows a constant acceleration as assumed for the
rocket frame as measured by PG2, referred to earlier as
proper acceleration. This thus corresponds with Eq. (2)
when v = 0.

Now, for an observer at infinity viewing the falling ob-
ject we find, substituting back into Eq. (4) that

dr

dt
=

(
1− 2µ

r

)(
1−

(
1− 2µ

r

)(
1− V 2

c2

))1/2

, (10)

where dr
dt → V as r → ∞, as required. The second

derivative gives

d2r

dt2
= −m

r2

(
1− 2µ

r

)(
3

(
1− 2µ

r

)(
1− V 2

c2

)
− 2

)
.

(11)
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Therefore we can see that the Schwarzschild solution also
gives a velocity dependent acceleration for observers at
rest with respect to the gravitational field coordinates.
This implies an apparent weakening of the field strength
in gravity, for moving objects relative to stationary ob-
servers in weak gravitational fields. Indeed, to a first ap-

proximation, we have a velocity dependence 1 − 3v2

2c2 . . .

compared with a Schwarzschild dependence of 1 − 3v2

c2 .
Hence we can see that, in fact, Schwarzschild and gen-
eral relativity predicts approximately twice the effect to
Eq. (2). This implies a possible agreement between the
approximate solution and the stronger Schwarzchild solu-
tion, and suggests the basic principle to be sound enough
to warrant experimental testing. This might be achieved
in an earth bound frame, if there are accurate enough
clocks to measure such deviations from current expected
accelerations.

III. EXPERIMENTAL TESTS

Integrating the expression in Eq. (8), we can find the
proper time taken between two heights as

τ =

∫ r

r0

dr√
V 2

1−V 2/c2 + 2GM
r

. (12)

This allows us to calculate the expected time difference
for a falling particle based on velocity dependence V , and
so allowing an experimental test of this principle.

Also, due to the rockets mild acceleration rate, then
inside the rocket frame itself, there will only very small

time dilation effects. This allows the stationary frame in
gravity, to be the frame of reference to to measure fairly
accurately the rates of acceleration of PG1 and PG2. It
is therefore proposed that this should be is the reference
frame for an experimental test of the principle.

In order to maximize the effect predicted in Eq. (2) we
envisage a test on particles falling in the earths gravita-
tional field at velocities approaching the speed of light.
For example, an apparatus involving an electron gun ori-
ented vertically with a sensitive measurement of velocity
at the top and bottom of the apparatus should be able
to detect a variation in the gravitational acceleration as
a function of velocity.

IV. DISCUSSION

We show in this paper that by considering accelerating
objects within the context of special relativity and using
the equivalence principle, the behavior of weak uniform
gravitational fields are predicted. Specifically, we have
shown that acceleration due to gravity, is a function of
particle velocity as shown in Eq. (2). This can also be in-
terpreted as a weakening of the field. As noted, our result
based on accelerating frames, leads to an expected effect
about half that predicted by general relativity. Hence it
would make an interesting experiment to precisely mea-
sure this effect, and to account for the discrepancy be-
tween the two types of analysis. This test would also
thus allow a further verification of the Einstein principle
of equivalence.
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