A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their Use in Solving “Construction” Problems

Jim Smith
QueLaMateNoTeMate.webs.com
email: nitac14b@yahoo.com

June 24, 2016

Abstract

This document is intended to be a convenient collection of explanations and techniques given elsewhere ([1]-[3]) in the course of solving tangency problems via Geometric Algebra.
Geometric-Algebra Formulas
for Plane (2D) Geometry

The Geometric Product, and Relations Derived from It
For any two vectors \(a \) and \(b \),
\[
\begin{align*}
\mathbf{a} \cdot \mathbf{b} &= \mathbf{b} \cdot \mathbf{a} \\
\mathbf{b} \wedge \mathbf{a} &= -\mathbf{a} \wedge \mathbf{b} \\
\mathbf{a} \mathbf{b} &= \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b} \\
\mathbf{b} \mathbf{a} &= \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \wedge \mathbf{a} = \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \wedge \mathbf{b} \\
\mathbf{a} \mathbf{b} + \mathbf{b} \mathbf{a} &= 2\mathbf{a} \cdot \mathbf{b} \\
\mathbf{a} \mathbf{b} - \mathbf{b} \mathbf{a} &= 2\mathbf{a} \wedge \mathbf{b} \\
\mathbf{a} \mathbf{b} = 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \wedge \mathbf{a} \\
\mathbf{b} \mathbf{a} = 2\mathbf{a} \wedge \mathbf{b} - \mathbf{a} \cdot \mathbf{b}
\end{align*}
\]

Definitions of Inner and Outer Products (Macdonald A. 2010 p. 101.)
The inner product
The inner product of a \(j \)-vector \(A \) and a \(k \)-vector \(B \) is
\[
\mathbf{A} \cdot \mathbf{B} = \langle \mathbf{AB} \rangle_{k-j}.
\]
Note that if \(j > k \), then the inner product doesn’t exist.
However, in such a case \(\mathbf{B} \cdot \mathbf{A} = \langle \mathbf{BA} \rangle_{j-k} \) does exist.

The outer product
The outer product of a \(j \)-vector \(\mathbf{A} \) and a \(k \)-vector \(\mathbf{B} \) is
\[
\mathbf{A} \wedge \mathbf{B} = \langle \mathbf{AB} \rangle_{k+j}.
\]

Relations Involving the Outer Product and the Unit Bivector, \(\mathbf{i} \)
For any two vectors \(\mathbf{a} \) and \(\mathbf{b} \),
\[
\begin{align*}
\mathbf{i} \mathbf{a} &= -\mathbf{a} \mathbf{i} \\
\mathbf{a} \wedge \mathbf{b} &= [(\mathbf{a} \cdot \mathbf{i}) \cdot \mathbf{b}] \mathbf{i} = -[\mathbf{a} \cdot (\mathbf{b} \mathbf{i})] \mathbf{i} = -\mathbf{b} \wedge \mathbf{a}
\end{align*}
\]

Equality of Multivectors
For any two multivectors \(\mathcal{M} \) and \(\mathcal{N} \),
\(\mathcal{M} = \mathcal{N} \) if and only if for all \(k, \langle \mathcal{M} \rangle_k = \langle \mathcal{N} \rangle_k \).

Formulas Derived from Projections of Vectors
and Equality of Multivectors
Any two vectors \(\mathbf{a} \) and \(\mathbf{b} \) can be written in the form of “Fourier expansions”
with respect to a third vector, \(\mathbf{v} \):
\[
\begin{align*}
\mathbf{a} &= (\mathbf{a} \cdot \mathbf{v}) \mathbf{v} + [\mathbf{a} \cdot (\mathbf{v} \mathbf{i})] \mathbf{i} \mathbf{v} \\
\mathbf{b} &= (\mathbf{b} \cdot \mathbf{v}) \mathbf{v} + [\mathbf{b} \cdot (\mathbf{v} \mathbf{i})] \mathbf{i} \mathbf{v}
\end{align*}
\]
Using these expansions,
\[
\begin{align*}
\mathbf{a} \mathbf{b} &= \{[(\mathbf{a} \cdot \mathbf{v}) \mathbf{v} + [\mathbf{a} \cdot (\mathbf{v} \mathbf{i})] \mathbf{i} \mathbf{v}] \mathbf{v} + [\mathbf{b} \cdot (\mathbf{v} \mathbf{i})] \mathbf{i} \mathbf{v}] \}
\end{align*}
\]
Equating the scalar parts of both sides of that equation,
\[a \cdot b = [a \cdot \hat{v}] [b \cdot \hat{v}] + [a \cdot (\hat{v}i)] [b \cdot (\hat{v}i)], \text{ and} \\
\quad a \land b = \{(a \cdot \hat{v}) [b \cdot (\hat{v}i)] - [a \cdot (\hat{v}i)] [b \cdot (\hat{v}i)]\} i. \]

Also, \(a^2 = [a \cdot \hat{v}]^2 + [a \cdot (\hat{v}i)]^2\), and \(b^2 = [b \cdot \hat{v}]^2 + [b \cdot (\hat{v}i)]^2\).

Reflections of Vectors, Geometric Products, and Rotation operators

For any vector \(a\), the product \(\hat{v}a\hat{v}\) is the reflection of \(a\) with respect to the direction \(\hat{v}\).

For any two vectors \(a\) and \(b\), \(\hat{v}ab\hat{v} = ba\), and \(vabv = v^2 ba\). Therefore, \(\hat{v}e^{\theta i} \hat{v} = e^{-\theta i}\), and \(ve^{\theta i}v = v^2 e^{-\theta i}\).

A useful relationship that is valid only in plane geometry: \(abc = cba\).

Here is a brief proof:

\[
abc = \{a \cdot b + a \land b\} c \\
= \{a \cdot b + [(ai) \cdot b] i\} c \\
= (a \cdot b) c + [(ai) \cdot b] ic \\
= c (a \cdot b) - c [(ai) \cdot b] i \\
= c (a \cdot b) + c [a \cdot (bi)] i \\
= c (b \cdot a) + c [(bi) \cdot a] i \\
= c \{b \cdot a + [(bi) \cdot a] i\} \\
= c \{b \cdot a + b \land a\} \\
= cba.
\]
1 Introduction

This document discusses reflections of vectors and of geometrical products of two vectors, in two-dimensional Geometric Algebra (GA). It then uses reflections to solve a simple tangency problem.

2 Reflections in 2D GA

2.1 Reflections of a single vector

For any two vectors \(\hat{u} \) and \(v \), the product \(\hat{u}v\hat{u} \) is

\[
\hat{u}v\hat{u} = \{2\hat{u} \wedge v + v\hat{u} \} \hat{u} \tag{2.1}
\]

\[
= v + 2 [(\hat{u}\cdot v) \hat{u}] \hat{u} \tag{2.2}
\]

\[
= v - 2 [v \cdot (\hat{u}\hat{u})] \hat{u}, \tag{2.3}
\]

which evaluates to the reflection of the reflection of \(v \) with respect to \(\hat{u} \) (Fig. 2.1).

![Figure 2.1: Geometric interpretation of \(\hat{u}v\hat{u} \), showing why it evaluates to the reflection of \(v \) with respect to \(\hat{u} \).](image)

We also note that because \(u = |u| \hat{u} \),

\[
uvu = u^2 (\hat{u}v\hat{u}) = u^2 v - 2 [v \cdot (u\hat{u})] u\hat{u}. \tag{2.4}\]
2.2 Reflections of a bivector, and of a geometric product of two vectors

The product $\hat{u}vw\hat{u}$ is

$$\hat{u}vw\hat{u} = \hat{u}(v \cdot w + v \wedge w)\hat{u}$$

$$= \hat{u}(v \cdot w)\hat{u} + \hat{u}(v \wedge w)\hat{u}$$

$$= \hat{u}^2(v \cdot w) + \hat{u}([-v \cdot (\hat{u}i)](-\hat{u}i))$$

$$= v \cdot w + \hat{u}^2[(\hat{u}i) \cdot v]i$$

$$= w \cdot v + w \wedge v$$

$$= vw.$$

In other words, the reflection of the geometric product vw is wv, and does not depend on the direction of the vector with respect to which it is reflected. We saw that the scalar part of vw was unaffected by the reflection, but the bivector part was reversed.

Further to that point, the reflection of geometric product of v and w is equal to the geometric product of the two vectors’ reflections:

$$\hat{u}vw\hat{u} = \hat{u}v(\hat{u}\hat{u})w\hat{u}$$

$$= (\hat{u}v\hat{u})(\hat{u}w\hat{u}).$$

That observation provides a geometric interpretation (Fig. 2.2) of why reflecting a bivector changes its sign: the direction of the turn from v to w reverses.

![Figure 2.2: Geometric interpretation of $\hat{u}vw\hat{u}$, showing why it evaluates to the reflection of v with respect to \hat{u}. Note that $\hat{u}vw\hat{u} = \hat{u}v(\hat{u}\hat{u})w\hat{u} = (\hat{u}v\hat{u})(\hat{u}w\hat{u})$.](image)
3 Use of reflections to solve a simple tangency problem

The problem that we will solve is

“Given two coplanar circles, with a point Q on one of them, construct the circles that are tangent to both of the given circles, with point Q as one of the points of tangency” (Fig. 3.1).

Several solutions that use rotations are given by [1], but here we will use reflections. The triangle TQC_3 is isosceles, so \hat{t} is the reflection of \hat{w} with respect to the mediatrix of segment QT. In order to make use of that fact, we need to express the direction of that mediatrix as a vector written in terms of known quantities. We can do so by constructing another isosceles triangle (C_1SC_3) that has the same mediatrix (Fig. 3.2).

The vector from C_1 to S is $c_2 + (r_2 - r_1) \hat{w}$, so the direction of the mediatrix of QT is the vector $[c_2 + (r_2 - r_1) \hat{w}] i$. The unit vector with that direction is $\frac{[c_2 + (r_2 - r_1) \hat{w}] i}{\|c_2 + (r_2 - r_1) \hat{w}\|}$. Therefore, to express \hat{t} as the reflection of \hat{w} with respect
We’ll use point C_1 as the origin.

We’ll use point C_1 as the origin.

Figure 3.2: Adding segment C_1S to Fig. 3.1 to produce a new isosceles triangle with the same mediatrix as QT.

to the mediatrix, we write

$$\hat{t} = \left[\frac{c_2 + (r_2 - r_1) \hat{w}}{\|c_2 + (r_2 - r_1) \hat{w}\|} \right] \hat{w} \left[\frac{c_2 + (r_2 - r_1) \hat{w}}{\|c_2 + (r_2 - r_1) \hat{w}\|} \right]$$

$$= \frac{[c_2 + (r_2 - r_1) \hat{w}] \hat{w}}{[c_2 + (r_2 - r_1) \hat{w}]^2} \left[c_2 + (r_2 - r_1) \hat{w} \right] \hat{w} \left[c_2 + (r_2 - r_1) \hat{w} \right] i i$$

from which

$$t \ (= r_1 \hat{t}) = -r_1 \left\{ \frac{[c_2 + (r_2 - r_1) \hat{w}] \hat{w}}{[c_2 + (r_2 - r_1) \hat{w}]^2} \right\} . \quad (3.1)$$

Interestingly, the geometric interpretation of that result is that \hat{t} and $-\hat{w}$ are reflections of each other with respect to the vector $c_2 + (r_2 - r_1) \hat{w}$. After expanding and rearranging the numerator and denominator of (3.1), then using $w = r_2 \hat{w}$, we obtain

$$t = r_1 \left\{ \frac{c_2^2 - (r_2 - r_1)^2}{r_2c_2^2 + 2 (r_2 - r_1) c_2 \cdot w + r_2 (r_2 - r_1)^2} \right\} w - 2 \left[c_2 \cdot w + r_2 (r_2 - r_1) \right] c_2 . \quad (3.2)$$

References
