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 After proposition of General Relativity theory by Albert Einstein, at 1914, some scientists tried to solve the field 
equations of this theory. The first one was Schwarzschild, which his solution leads to the discovery of blackholes. In 
this research a general compound field construction around a blackhole will be considered using tensor calculations. For 
this purpose at first some mathematical concepts will be introduced.   
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1. Introduction 

    Schwarzschild was the first one who solved the Einstein field equations, and then based on his 
solution, blackholes was discovered. Gravitational field around a blackhole is described very well 
by Einstein field equations in General Relativity. But the gravity is not the only field which is exists 
around a blackhole, and there are some other fields like electromagnetic field around it. In this 
research we will try to consider a compound field (eg field) around a blackhole, mathematically. 
For this purpose we need to use both symmetric and antisymmetric tensor calculations, and for 
better understanding, at first some mathematical concepts will be introduced. 

2. Antisymmetric tensors 

    A particularly important class of tensors of type (0,s) is the class of totally antisymmetric tensors, 
i.e., covariant tensors which are antisymmetric in every pair of their arguments,  

1 1( ,..., ,..., ,..., ) ( ,..., ,..., ,..., )s sT X X X X T X X X Xμ υ υ μ= −                              (1) 

for all pairs of indices μ  and υ  and for all X’s. Tensor of this kind can be constructed out of a 
general tensor T of type (0,s) by applying to it the alternating operator A whose effect on it, is to 
give the linear combination defined by 
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Where the summation is extended over all s! permutations of the s integers (1,…,s) and 
1sgn( ,..., ) 1sυ υ = ±  , according as 1( ,..., )sυ υ  is an even or an odd permutation of (1,…,s); and 

equation (2)  is to be valid for every 1( ,..., )sX X . 

It is clear that if T is already totally antisymmetric, the effect of A on it is, simply, to reproduce T. 
Also, if s n〉 (the dimension of the vector space) the effect of A on  1( ,..., )sT X X  is to reduce it to 
zero; in other words, there can be no totally antisymmetric tensor of type (0,s) for s n〉 . 

    Totally antisymmetric tensor of type (0,s) are called s-forms. Since they must vanish when any 
two of their arguments coincide, it follows that the s-forms span a vector space of 

dimension !
!( )!

n
s n s−

. This space is denoted by *s
pTΛ . 
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A basis for *s
pTΛ  can be obtained by applying the alternative operator A to the basis elements of the 

tensor product:             1( ... )sA e eυυ ⊗ ⊗                                                                                      (3)             

The resulting basis elements are written as the exterior or the wedge product of the ,eυ s in the 
manner:      1 2 .... se e eυυ υ∧ ∧ ∧             1 2( .... )sυ υ υ〉 〉 〉                                                                  (4) 

A general s-form can be written as:    1 2

1... ... s

s
e e eυυ υ

υ υΩ = Ω ∧ ∧                     1 2( .... )sυ υ υ〉 〉 〉     (5) 

where the summation is now extended only over strictly descending sequences. 

    Since interchanging a pair of indices is equivalent to interchanging the corresponding elements in 
the wedge product, it follows that interchanging the elements in a wedge product must be 
accompanied by a change of sign; thus           e e e eυ τ τ υ∧ = − ∧ .                                             (6) 

    In a local coordinate basis, the expression for an s-form is    1

1... ... s

s
dx dx υυ

υ υΩ = Ω ∧ ∧       (7) 

Given any p-form 1Ω  and a q-form 2Ω , we can form their wedge product by the rule 

                                                1 2 1 2( )AΩ ∧Ω = Ω ⊗Ω                                                                  (8) 

to obtain a (p+q) form. (it must accordingly vanish identically if ( )p q n+ 〉 ). 

For, by definition,        1 1

1 1

1 2 1 2
... ...( ... ) ( ... )p q

p q
e e e eυ τυ τ

υ υ τ τΩ ∧Ω = Ω ∧ ∧ ∧ Ω ∧ ∧                           (9) 

Where  1( ,..., )pυ υ   and    1( ,..., )qτ τ  are strictly descending sequences. Accordingly, 
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1 2 2 1 2 1
... ...( 1) ( ... ) ( ... ) ( 1)q p

q p

pq pqe e e eτ υτ υ
τ τ υ υΩ ∧Ω = − Ω ∧ ∧ ∧ Ω ∧ ∧ = − Ω ∧Ω                          (10) 

since each of the q basis elements  1 ,..., qe eττ  must suffer p interchanges before 1 2Ω ∧Ω  can be 
brought to the form required of 2 1Ω ∧Ω . 

    The derivative of a wedge product can be calculated as following: 

1 1

1 1... ...( ) ( ... ... )p q

p q
d A B d A dx dx B dx dxυ τυ τ

υ υ τ τ∧ = ∧ ∧ ∧ ∧ ∧  

1 1 1

1

...
...... ...p p q

qi

A
dx dx dx B dx dx

x
υ υ υ τυ τμ

τ τ

∂
= ∧ ∧ ∧ ∧ ∧ ∧

∂
 

1 1 1

1

...
... ... ...q p q

p

B
A dx dx dx dx dx

x
τ τ υ τυ τμ

υ υ μ

∂
+ ∧ ∧ ∧ ∧ ∧ ∧

∂
 

3. Some mathematical concepts 

    We define the covariant differentiation, which is a type of differentiation which requires that the 
manifold be endowed with an additional structure. This additional structure is an affine connection, 
∇ , which assigns to each vector-field X on N a differential operator  x∇  , which maps an arbitrary 
vector-field ,Y, into a vector-field xY∇ . Consistent with these requirements, we impose the 
conditions,  

(a) xY∇ is linear in the argument X, i.e., fX gY x YZ f Z g Z+∇ = ∇ + ∇      ( 1
0, ,X Y Z T∈ )   (11)         
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When f and g are any two arbitrary functions defined on N. 

(b) xY∇ is linear in the argument Y, i.e., ( )x x xY Z Y Z∇ + = ∇ +∇        ( 1
0, ,X Y Z T∈ )   (12) 

(c)   x f Xf∇ =          (13)         Where f is any function on N, and finally, 

(d)   ( ) ( )x x xfY f Y f Y∇ = ∇ + ∇                                                                                          (14) 

It should be noted that, according to equation (13) in a local coordinate basis ( τ∂ ,
τ∂

∇ ), when acting 

on functions, coincides with partial differentiation with respect to x τ . With the action of x∇  on 

vector fields Y( 1
0T∈ ) specified by the rules (a)-(d), we now define the covariant derivative, Y∇ of 

Y as a tensor field of type (1,1) which maps the contravariant vector-field X to xY∇ ,i.e., 

( ) , xY X Y X Y∇ = ∇ = ∇        (15)        for every  1
0X T∈ .  

In this notation, we can rewrite equation (14) in the form  ( )fY df Y f Y∇ = ⊗ + ∇        (16) 

To clarify what the assignment of a connection precisely means, it will be useful to rewrite 

xY∇ relative to some chosen dual basis (eμ ) and (eυ ). Thus, making the use of the rules  (a)-(d), 

we have: ( ) ( )x x xY Y e XY e Y eυ υ υ
υ υ υ∇ = ∇ = + ∇                                                               (17) 

Since x eυ∇ , for a particulareυ , is a tensor field of type (1,0) we must have a representation, in the 

chosen basis , of the form         ( )x e X eσ
υ υ σω∇ =                                                               (18) 

Where  σ
υω  (depending on σ  and υ ) are one-forms. Accordingly we may write  

( ) ( )xY XY e Y X eυ υ σ
υ υ σω∇ = +  .                                                                                       (19) 

Alternatively, we may also rewrite equation (17) in the form 

( ) ( )x ex e
Y XY e Y e XY e Y X eτ

ττ

υ υ υ υ τ
υ υ υ υ∇ = + ∇ = + ∇                                                     (20)  

 or in conformity with the definition (18),       ( ) ( )xY XY e Y X e eυ υ τ σ
υ υ τ σω∇ = +            (21)                                

Letting      ( )eσ σ
υ τ υτω ω=       (22)    be the coefficient of eτ in the expansion of σ

υω in the basis (eτ ), 

we conclude that a connection ∇  is specified by the 2n  one-forms σ
υω , or equivalently, by the 

3n scalar fields σ
υτω . Returning to equation (19) and rewriting it in the form  

[ ( ) ]xY XY X Y eυ υ σ
σ υω∇ = +     (23)       We infer that  ( ) ( )xY XY X Yυ υ υ σ

σω∇ = + .     (24) 

In a local coordinate basis ( ,dx σ
τ∂ ), equation (24) gives: 

 ,( )Y Y Y Y Y
τ

υ υ σ υ υ σ υ
τ στ τ στω ω∂∇ = ∂ + = +                                                                             (25) 

In a local coordinate basis, it is customary to write  υ
στΓ  in place of  υ

στω    (26), so we obtain the 

standard formula    ; ,Y Y Yτ τ
υ υ σ υ

στ= + Γ                                                                                 (27) 

The definition of covariant derivatives of vector fields can be extended to tensor fields, in general, 
by requiring that the operation of ∇  satisfies the Leibnitz rule when acting on tensor products. 
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Thus, we require that        ( )F T F T F T∇ ⊗ =∇ ⊗ + ⊗∇         (28)    where F and T are two 
arbitrary tensor-fields. An immediate consequence of this requirement is : 

1 1 1
1 1 1

1
1 1

[ ( ,..., , ,..., )] ( )( ,..., , ,..., ) ( ,..., , ,..., ) ...

( ,..., , ,..., , )

r r r
x s x s x s

r
s x s

T Y Y T Y Y T Y Y

T Y Y Y

ω ω ω ω ω ω

ω ω −

∇ = ∇ + ∇ +

+ ∇
   (29) 

Thus if Ω  is a one-form, then for every vector field Y, the foregoing equation gives 

( ( )) ( )( ) ( )x x xY Y Y∇ Ω = ∇ Ω +Ω ∇            (30)          or in terms of a local basis (eμ ) and (eυ ), we 

have ( ( )) ( ) ( )x x xY Y Yυ υ υ
υ υ υ∇ Ω = ∇ Ω +Ω ∇                                                                     (31) 

Now making use of rule ( c ) and equation (24), we find : 

( ) ( ) ( ) [ ( )]

( ) ( )
x Y X Y XY XY Y X

X Y X Y

υ υ υ υ σ υ
υ υ υ υ σ

υ σ υ
υ σ υ

ω

ω

∇ Ω = Ω +Ω −Ω +

= Ω −Ω
                            (32) 

We conclude that                 ( ) ( )x X Xσ
υ υ σ υω∇ Ω = Ω −Ω                                                 (33)      

or alternatively,                   [ ( )]x X X eσ υ
υ σ υω∇ Ω = Ω −Ω                                                 (34) 

Specializing this last equation to the case when  eυΩ = , we obtain the formula 

                                             ( )x e X eυ υ σ
σω∇ = −                                                                (35)  

which is to be contrasted with the earlier formula (18). Equation (35) shows that a knowledge of the 
2n  one-forms σ

υω  suffices to determine the covariant derivatives of one-forms, as well, once we 
accept the leibnitz rule for tensor products. Also we may note that in a local coordinate basis, 
equation (33) gives            ; ,

σ
υ τ υ τ σ υτΩ = Ω −Ω Γ                                                                 (36)     

An important result follows from equations (33) and (36) when applied to the one-form df. Since 
the components of df in a local coordinate basis are ,f υ , we obtain from equation (36), in this case,  

, ; , , ,f f f σ
υ τ υ τ σ υτ= − Γ                                                                                                              (37) 

and by permuting the indices υ  and τ  in this equation, we obtain , ; , , ,f f f σ
τ υ τ υ σ τυ= − Γ    (38) 

Returning to equation (29) we now observe that, with aide of equations (23) and (33), we can 
readily write down the covariant derivative of an arbitrary tensor-field. Thus,  

    ; ,A A A A Aμυ μυ ρυ μ μρ υ μυ ρ
τ σ τ σ τ ρσ τ ρσ ρ τσ= + Γ + Γ − Γ                                                                       (39) 

    If we choose a suitable coordinate, it will be seen that our field equations, will be appropriate for 
infinitely small four dimensional regions.  Let x1, x2  and  x3  be  the  space coordinates and x4  be the 
time coordinate in an appropriate unit.  Here the appropriate unit is the coordinate in which the time 
unit chosen so that the light speed is equal unit (c=1) in local coordinate. If a rigid rod is chosen, 
which is given as the unit measure, the coordinates with a given orientation of the coordinates have 
direct physical meaning in the sense of the theory of relativity. According to relativity theory, the 
following expression has a value which is independent of the orientation of the local system of 
coordinates:          2 2 2 2 2

1 2 3 4ds dx dx dx dx= − − − +                                   .                  
Let ds be the magnitude of linear element pertaining to points of the four-dimensional continuum in 
infinite proximity. To the mentioned linear element or to the two infinitely proximate point events, 
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there are correspond definite differentials dx1, dx2, dx3, dx4. In this system the dx υ  represented here 

by definite linear homogeneous expression of the dxơ :    dx dxυ υσ σ
σ

α=∑      inserting these 

expressions in above equation, we obtain:  2ds g dx dxστ σ τ
τσ

= ∑        where gστ are functions of x σ . 

These are independent from the orientation and the state of motion of the local system of the 
coordinates. ds is independent of any particular choice of coordinates.  

    If it is possible to choose a system of coordinate in the finite region in such a way that the g μυ has 
constant values:  

   

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

g μυ

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥+⎣ ⎦

                                                                                           (40) 

We will see that a free material point moves, relatively to this system, with uniform motion on a 
straight line. But if we choose a new space-time coordinates 1 2 3 4, , ,x x x x , the g μυ in the new system 
will not be constant, but functions of space and time, and the motion of free material point will be a 
curvilinear non-uniform motion. We must interpret this motion as motion under the influence of the 
compound eg field. So we find the occurrence of an eg field connected with the space-time 
variables of g μυ .So the g μυ  representing the eg field at the same time define the metrical properties 
of the space-time. 

    There is a simple relationship between the coordinate basis vectors  1 2 3 4
ˆ ˆ ˆ ˆ( , , , )h h h h hμ =  and the 

coordinate system of  u μ  where 1,2,3, 4μ = . We must have: 2 .ds h h du duμ υ
μ υ=    (41)   and    

.h h gμ υ μυ=    where g μυ  is the fundamental tensor. 

We have: g R Rατ μ μα
υστ υσ= where R μ

υστ  is the Riemann tensor.  

Now we write:          h R Rμα μα
α υσ υσα=                                                                                (42)   

By contracting (42), two times, we find:    R Rμα
υμα υ=   , where Rυ  is the curvature four vector.                   

We define  S μυ  using the following wedge product:       S R hμυ μ υ= ∧                        (43)    

Now we define the eg tensor as following: 

   ( )
S

h S S
x x x

τ τ
μυ κ τ κ τ τ τυτ υσ

μ υτ σκ υσ τκ μσ τυ συ μτσ σ τ

∂ ∂Γ ∂Γ
+ − +Γ Γ −Γ Γ −Γ −Γ

∂ ∂ ∂
                                         (44)          

4. The eg field equation in the absence of matter 

    The mathematical importance of the above mentioned eg tensor is that, If there is  a  coordinate  
system with  reference to  which the  gµν   are  constant, then all components of the eg tensor will 
vanish . If we choose any new system of coordinates, the gµν  will not be constant, but the 
transformed components of the eg tensor will still vanish in the new system. Relatively to this 
system, all components of the eg tensor vanish in any other system of coordinates. Thus the 
required equations of the matter-free eg field must in any case be satisfied if all components of the 
eg tensor vanish.  
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So using expression (44), the equations of matter-free eg field, are:                    

( ) 0
S

h S S
x x x

τ τ
μυ κ τ κ τ τ τυτ υσ

μ υτ σκ υσ τκ μσ τυ συ μτσ σ τ

∂ ∂Γ ∂Γ
+ − +Γ Γ −Γ Γ −Γ −Γ =

∂ ∂ ∂
                                 (45)                                 

5. The Equation of the Geodetic Line  

    Let Y represent a contravariant vector-field. We must consider its variation along a curve λ  on 
N. The change Yδ in Y caused by a displacement along λ  resulting from an increment tδ  in t 
(which parameterizesλ ) is given (in a local coordinate system) by, 

    
,

( ( ))( ) dx tY Y t
dt

τ
υ υ

τ
λδ δ=                                                                                          (46) 

In Euclidean geometry and in a Cartesian system of coordinates, one would say that Y is ‘parallely 
propagated’ along λ  if 0Yδ = . In a general differentiable manifold with a connection, one defines, 
analogously, that a vector Y is parallely propagated alongλ , if 

;

( ( )) ( ( ))( ) ( ) 0dx t dx tDY Y t Y t
dt dtτ τ

τ τ
υ υ υλ λδ δ∂= ∇ = =                                                  (47) 

or, alternatively, if               ,
( ( ))( ) 0dx tY Y t
dt

τ
υ σ υ
τ στ

λ δ+ Γ =  .                                       (48)      

In other words, for parallel propagation of Y along λ , we require that  

( ( ))( ) dx tY Y t
dt

τ
υ σ υ

στ
λδ δ= − Γ .                                                                                     (49)  

In particular, for the tangent vector to the curveλ , ( ( ))dx t
dt

υ λ  parallely propagated along λ , 

( ( )) ( ( )) ( ( ))( )dx t dx t dx t t
dt dt dt

υ σ τ
υ
στ

λ λ λδ δ= −Γ .                                                             (50)  

A curve λ  on N is said geodesic if the tangent vector toλ , parallely propagated, remains a multiple 
of itself. This condition for λ  to be a geodesic, is, clearly, 

2

2

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))[1 ( ) ][ ]dx t dx t dx t dx t d x tt t t t
dt dt dt dt dt

υ σ τ υ υ
υ
στ

λ λ λ λ λδ φ δ δ−Γ = − +      (51) 

Where ( )tφ  is some function of t. In the limit 0tδ → , the equation for geodesic becomes, 

2

2 ( )d x dx dx dxt
dt dt dt dt

υ σ τ υ
υ
στ φ+ Γ =                                                                                   (52)  

It can be readily verify that if we reparameterize the curve λ  by the variable 

{ }exp ( )
t t

s dt dt tφ
′′

′′ ′ ′= ∫ ∫  ,                                                                                      (53)  

Equation (52) becomes        
2

2 0d x dx dx
ds ds ds

υ σ τ
υ
στ+ Γ =     (54)     
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6. The General Form of the field Equations 

    The field equations (eq.45), which are obtained for matter free space-time, are to be compared 
with the field equation 2 0ϕ∇ =  of Newton’s theory or  0Rμυ =  of Einstein gravity field equations 

in vacuum. We require the equation corresponding to Poisson’s equation:   2 4kϕ πρ∇ =     or   
1
2

R g R kTμυ μυ μυ− = −   of Einstein general form of the gravitational field equation. For this purpose 

we define Tµνơ  as following:   ( )T g kT k T hα α
μυσ αυ σ σ μ′ ′= +                                            (55)  

Where k and k ′ are two constants related to the gravity and electromagnetism respectively, and  
T g T α
υσ αυ σ=     is the energy-momentum tensor and T α

σ′  is the electromagnetic energy tensor. 

Thus instead of eq.45 we write:  

1( )
2

S
h S S g h R T

x x x

τ τ
μυ κ τ κ τ τ τυτ υσ

μ υτ σκ υσ τκ μσ τυ συ μτ υσ μ μυσσ σ τ

∂ ∂Γ ∂Γ
+ − +Γ Γ −Γ Γ −Γ −Γ − = −

∂ ∂ ∂
       (56)       

Where R is the Ricci scalar. We can find out that, the electromagnetic energy tensor can be written 

as :  1( )
4

g T h h T T h F F g F Fα α αβ
αυ σ μ μ υσ μυσ μ σα υ συ αβ′ ′ ′= = = − +                             (57)                  

where Fαβ  is the electromagnetic tensor.  

Therefore we have found the required general form of the field equations around a blackhole.  
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