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Abstract G. Adenier and A.Y. Khrennikov (2016) show that a recent “loophole free” CHSH Bell experiment
violates no-signaling equalities, contrary to the expected impossibility of signaling in that experiment. We show
that a local realism setup, in which nature sets hidden variables based on forecasts, and which can violate a Bell
Inequality, can also give the illusion of signaling where there is none. This suggests that the violation of the
CHSH Bell inequality, and the puzzling no-signaling violation in the CHSH Bell experiment may be explained
by hidden variables based on forecasts as well.

1 Introduction

G. Adenier and A.Y. Khrennikov (2016) [1] analyze data from a recent “loophole free” CHSH Bell experiment
reported in Hensen et. al., 2015 [2]. They demonstrate violation of no-signaling equalities, contrary to the
apparent closure of this loophole. In J.R. Dixon (2011) [3] we imagined a local realism setup in which nature
sets hidden variables based on forecasts. And we provided a “proof of concept” that in this setup, a Bell
Inequality can be violated without any need to resort to nonlocal effects. Here we extend that proof of concept
to show that the illusion of signaling can arise in the same setup, without actual signaling. This suggests that
the violation of the CHSH Bell inequality in [2], and the puzzling no-signaling violation noticed in [1], may be
explained by hidden variables based on forecasts as well.

For a convincing argument that “hidden variables based on forecasts by nature” may be behind “quantum”
phenomena, in particular the violation of a Bell Inequality, we refer the reader to our previous paper [3]. The
present paper seeks to further show that the setup in that paper can also give the illusion of signaling. The
notation in this paper is relatively cumbersome, even with extensive abbreviations, compared to our previous
paper. So our previous paper [3] may be a better starting point for the reader unfamiliar with our hypothesis.

In [3] we suggest experiments, which are relatively simple modifications of experiments already conducted,
to test our hypothesis directly. And we hope such experiments will be carried out. We point out a recent
experiment which provides anecdotal support for our hypothesis. In a recent test of local realism in D. Alsina
and J.I. Latorre (2016) [4], the authors conclude:
“Experimental verification of Mermin inequalities for 3, 4 and 5 qubits has been tested on a 5 superconducting
qubit IBM quantum computer. Results do show violation of local realism in all cases, with a clear degradation
in quality as the number of qubits (and needed gates) increases.”
We suggest that the reason for the degradation in quality may be that nature’s forecasting abilities are limited,
and its ability to achieve higher “quantum correlations” decreases as the complexity (number of qubits and
gates) of the setup increases. (Here and in what follows we will use phrases like “quantum correlations”. By
this we mean numerical quantities which have values particular to quantum theoretical calculations, due to the
fact that the underlying physical quantities are “correlated” in a sense that they vary in an interrelated manner
that is unlikely due to chance. But the numerical quantities themselves may not technically fit the mathematical
definition of “correlation”.)
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2 The Illusion of Signaling

In our “Proof of Concept” in [3] that the emitter in a Bell’s Theorem setup sets hidden variables based on
forecasts, and can thus achieve correlations predicted by quantum mechanics, we used the following notation.
We point the reader to that paper for a more detailed discussion of the setup. We use g+− to denote the event
that the emitter guesses that the setting of the left detector will be +1 and that the setting of the right will
be −1. We use e+− to denote the event that the emitter sends a particle to the left in state +1 and to the
right in state −1. We use d+− to denote the event that the setting of the left detector will be +1 and that the
setting of the right will be −1. Other guesses, detector settings, and emissions have analogous notation. We
assume that the observed value at the left and right detectors, which we will denote by OL and OR, are the
product of the emitted states and setting values. For example, if e++ and d+−, then OL = (+1)× (+1) = 1 and
OR = (+1)× (−1) = −1. In addition, to simplify notation: for a number y, we define y = 1− y, and abbreviate
“with probability” by “w.p.”.

The no-signaling equalities of [1] (their equations (13) and (14)) are as follows in our notation:

0 = |P (OL = +1|d−−)− P (OL = +1|d−+)|+ |P (OL = +1|d+−)− P (OL = +1|d++)|.
0 = |P (OR = +1|d−−)− P (OR = +1|d+−)|+ |P (OR = +1|d−+)− P (OR = +1|d++)|.

Under our assumptions about the emissions, detector settings, and resulting observed values, this is equivalent
to:

0 = |P (e−− or e−+|d−−)− P (e−− or e−+|d−+)|+ |P (e++ or e+−|d+−)− P (e++ or e+−|d++)|. (1)

0 = |P (e−− or e+−|d−−)− P (e−− or e+−|d+−)|+ |P (e++ or e−+|d−+)− P (e++ or e−+|d++)|. (2)

Recall that to achieve the exact correlation predicted by quantum mechanics, we assumed that the emitter
might generate an independent random variable X (a pseudorandom variable is adequate), with P (X = 1) = r
and P (X = 0) = r. We assume the emitter follows the following strategy, proven to be able to achieve the exact
quantum correlation, denoted by q, in [3].

When X = 0:

If g+− then e+− w.p. j1 and e−+ w.p. j1.

If g−+ then e−− w.p. j2 and e++ w.p. j2.

If g−− then e+− w.p. j3 and e−+ w.p. j3.

If g++ then e+− w.p. j4 and e−+ w.p. j4.

When X = 1:

If g+− then e−− w.p. k1 and e++ w.p. k1.

If g−+ then e+− w.p. k2 and e−+ w.p. k2.

If g−− then e−− w.p. k3 and e++ w.p. k3.

If g++ then e−− w.p. k4 and e++ w.p. k4.

Compare this to the specification of the strategy in [3], and one can see we have simply introduced notation
j1, j2, j3, j4 and k1, k2, k3, k4 to represent the probability the emitter chooses (via random or pseudorandom
toggling, incidental or intentional) one of the two possible emission configurations allowed under its guess. The
reader may find it intuitively obvious that there is enough leeway under the strategy described in [3] for the
illusion of signaling to arise. What follows is an admittedly cumbersome mathematical demonstration of that
possibility.

Recall that in our setup we assumed that for (cd) = (ab): P (gcd|dab) = p, and for (cd) 6= (ab): P (gcd|dab) =
1
3p. To further simplify the notation, we will define ṗ ≡ 1

3p.
Note that:

P (e−− or e−+|d−−) = r
(
ṗj1 + ṗj2 + pj3 + ṗj4

)
+ r

(
ṗk1 + ṗk2 + pk3 + ṗk4

)
.
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And:

P (e−− or e−+|d−+) = r
(
ṗj1 + pj2 + ṗj3 + ṗj4

)
+ r

(
ṗk1 + pk2 + ṗk3 + ṗk4

)
.

And so the first term of (1) can be simplified by:

P (e−− or e−+|d−−)− P (e−− or e−+|d−+) = r
(
j2(ṗ− p) + j3(p− ṗ)

)
+ r

(
k2(ṗ− p) + k3(p− ṗ)

)
. (3)

Also note that:

P (e++ or e+−|d+−) = r
(
pj1 + ṗj2 + ṗj3 + ṗj4

)
+ r

(
pk1 + ṗk2 + ṗk3 + ṗk4

)
.

And:

P (e++ or e+−|d++) = r
(
ṗj1 + ṗj2 + ṗj3 + pj4

)
+ r

(
ṗk1 + ṗk2 + ṗk3 + pk4

)
.

And so the second term of (1) can be simplified by:

P (e++ or e+−|d+−)− P (e++ or e+−|d++) = r (j1(p− ṗ) + j4(ṗ− p)) + r
(
k1(p− ṗ) + k4(ṗ− p)

)
. (4)

Further:

P (e−− or e+−|d−−) = r (ṗj1 + ṗj2 + pj3 + ṗj4)

+ r (ṗk1 + ṗk2 + pk3 + ṗk4) .

And:

P (e−− or e+−|d+−) = r (pj1 + ṗj2 + ṗj3 + ṗj4)

+ r (pk1 + ṗk2 + ṗk3 + ṗk4) .

And so the first term of (2) can be simplified by:

P (e−− or e+−|d−−)− P (e−− or e+−|d+−) = r (j1(ṗ− p) + j3(p− ṗ)) + r (k1(ṗ− p) + k3(p− ṗ)) . (5)

Finally:

P (e++ or e−+|d−+) = r
(
ṗj1 + pj2 + ṗj3 + ṗj4

)
+ r

(
ṗk1 + pk2 + ṗk3 + ṗk4

)
.

And:

P (e++ or e−+|d++) = r
(
ṗj1 + ṗj2 + ṗj3 + pj4

)
+ r

(
ṗk1 + ṗk2 + ṗk3 + pk4

)
.

And so the second term of (2) can be simplified by:

P (e++ or e−+|d−+)− P (e++ or e−+|d++) = r
(
j2(p− ṗ) + j4(ṗ− p)

)
+ r

(
k2(p− ṗ) + k4(ṗ− p)

)
. (6)

As noted in [3], the solution for r as a function of p and the target quantum correlation q is:

r =
q − 2p + 1

−4p
.
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In the special case where q =
√

2− 1 (the example considered in [3]), we have:

r =
2p−

√
2

4p
and r =

2p +
√

2

4p
.

For p between
√
2
2 and 1, 0 < r < 1 and 0 < r < 1. This is the range for p described in [3], and we restrict to

the same range here. Define p̃ = p− ṗ, and note that it is greater than 0 in the range for p we are considering.
Then:

equation (3) = p̃
(
r(j3 − j2) + r(k3 − k2)

)
,

equation (4) = p̃
(
r(j1 − j4) + r(k1 − k4)

)
,

equation (5) = p̃ (r(j3 − j1) + r(k3 − k1)) ,

equation (6) = p̃
(
r(j2 − j4) + r(k2 − k4)

)
.

And thus:

equation (3) 6= 0 ⇐⇒ (2p +
√

2)(j3 − j2) + (2p−
√

2)(k3 − k2) 6= 0,

equation (4) 6= 0 ⇐⇒ (2p +
√

2)(j1 − j4) + (2p−
√

2)(k1 − k4) 6= 0,

equation (5) 6= 0 ⇐⇒ (2p +
√

2)(j3 − j1) + (2p−
√

2)(k3 − k1) 6= 0,

equation (6) 6= 0 ⇐⇒ (2p +
√

2)(j2 − j4) + (2p−
√

2)(k2 − k4) 6= 0.

If k1 = k2 = k3 = k4 = 1
2 , then this becomes:

equation (3) 6= 0 ⇐⇒ (j3 − j2) 6= 0,

equation (4) 6= 0 ⇐⇒ (j1 − j4) 6= 0,

equation (5) 6= 0 ⇐⇒ (j3 − j1) 6= 0,

equation (6) 6= 0 ⇐⇒ (j2 − j4) 6= 0.

Which is simply:

equation (3) 6= 0 ⇐⇒ j3 6= j2,

equation (4) 6= 0 ⇐⇒ j1 6= j4,

equation (5) 6= 0 ⇐⇒ j3 6= j1,

equation (6) 6= 0 ⇐⇒ j2 6= j4.

Which is satisfied by almost all choices of probabilities j1, j2, j3, j4. And the above differences can be different
enough from 0 to allow statistical significance under typical sample sizes for a wide range of values of j1, j2, j3, j4.
Further, the no-signaling equalities are violated if at least one of equations (3) and (4), and at least one of
equations (5) and (6) are not 0.

3 Conclusion

We have shown that a local realism setup in which nature sets hidden variables based on forecasts, and which
can violate a Bell Inequality, can also violate no-signaling equalities. But in our scenario, there is no signaling
between the detectors. There is just an illusion of signaling. Thus we suggest the same hypothesis might explain
the no-signaling violation G. Adenier and A.Y. Khrennikov (2016) [1] found in the “loophole free” CHSH Bell
experiment reported in Hensen et. al. (2015) [2], despite the expected closure of that loophole. We again suggest
experiments like those described in J.R. Dixon (2011) [3] to test our hypothesis directly.
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