[tlnomiva]: Transmission Line Nominal Values without Tolerance - from Cable Specifications and Technical Data Sheets: FLOSS for MS Windows

N.I. Yannopoulou, P.E. Zimourtopoulos *

Antennas Research Group, Austria

Abstract

[[tlnomiva] is a visual software application developed by the authors for a transmission line characterization from the user's point of view. The numerical computations are based on the precise formulation within the distributed circuit coefficients model of a transmission line, which was theoretically developed by the authors and published in a previous paper. The use of [tlnomiva] is fully demonstrated by an example for the popular RG 214 coaxial cable. This application is Free Libre Open Source Software and provides an option for more detailed figures by calling the executable of the freely distributed source [wgnuplot].

Keywords

transmission line, nominal value, propagation characteristics, circuit coefficients, floss

Introduction

A lot has been published for transmission lines in general, as well as, specifically for their use at high frequencies. The software application [tlnomiva], that is under development and illustrated here, is an intermediate step in the authors' recent effort to clarify a number of obscure or confusing points on this subject. It is intended to reveal the limits in the coexistence of precise formulas of transmission line theory with the available nominal values, usually without tolerance, which are given as cable specifications by established authorities or as data sheets from manufacturers.

The main formulas of [tlnomiva] were presented in [1], while the basic theory is cited in [2], thus only a small part of them is repeated here and just for the sake of completeness. The cut-off frequency has not been taken into account. The data for the presented examples are publicly available through internet.

[tlnomiva] is provided as Free Libre 0pen both Source Software and ready to install and use executable. It is developed in MS Visual Basic 6 in MS Windows XP 32 and in order to support а more sophisticated way of plotting data and functions it optionally uses the [wqnuplot] software, version 5.0 patchlevel 3 [3]. It is tested for compatibility with various MS Windows operating systems, up to W10-64.

To the best of the authors' knowledge, there is no available FLOSS for transmission lines, especially with a precise formulation one.

[tlnomiva]

Fig. 1 shows the main window of [tlnomiva] with the window of [About] open, while Fig. 2 contains all the menu items along with their submenu options numbered from 1 to 6. The application features can be divided according to their functionality in three groups:

(1) R, L, G, C intervals computation from the nominal values of: the attenuation factor α or accurately A in [dB/100m], the velocity factor vf and the characteristic impedance Z_0 and plotting with respect to frequency f [MHz], using working formulas from [1], [2],

(2) a new estimation of A, vf and Z_0 using the numerical results from the previous window for the R, L, G, C, intervals either directly or reading them from a previously saved file and plotting them and

(3) α , β , R_0 , X_0 computation as functions of frequency considering R, L, G, C constant in a range of frequency and plotting them.

In these three groups the plot of all the involved guantities with respect to frequency is possible. Except of R, L, G, C distributed circuit coefficients and α , β , R_{α} , X_o propagation characteristics there are included: the A attenuation factor, the vf velocity factor, the E, and H terms, the maß angles as the upper and lower limit of the \dot{z}_{o} phase angle and finally the ωL , ωC and f/vf. The used units are remain to all forms the same: R $[m\Omega/m]$, L [nH/m], G [μS/m], C [pF/m], f [MHz], α [Np/m], A [dB/100m], β [rad /m], R_{0} , X_{0} , Z_{0} [Ω], m $\alpha\beta$ [deg], $ωL [m\Omega/m], ωC [µS/m], f/vf$ [MHz]. The [feet] option is disabled.

Fig. 1: [tlnomiva] : The main window

Fig. 2: Main window: The unfolded menu items

Working Formulas

The basic expressions between the nominal values of A, vf and Z_0 and the R, L, G, C distributed circuit coefficients of a line are given in [1] and repeated here as:

$$R = \alpha R_{\theta} - \beta X_{\theta} \tag{1}$$

$$L = (\alpha X_{\Theta} + \beta R_{\Theta})/\omega$$
 (2)

$$G = (\alpha R_0 + \beta X_0) / Z_0^2$$
 (3)

$$C = (-\alpha X_0 + \beta R_0) I(\omega \ Z_0^2) \tag{4}$$

It is obvious that if the nominal value of Z_0 is substituted with R_0 , then X_0 will be zero and the above expressions will be actually independent of frequency, a case that will be examined last. Thus, we have to consider Z_0 , as it is usually given in data sheets of cables, as the amplitude of \dot{Z}_0 . Then by using the standard relation

$$Z_{0}^{2} = R_{0}^{2} + X_{0}^{2}$$
 (5)

where

 $R_{\theta} = Z_{\theta} \cos(z_{\theta}) \tag{6}$

 $X_0 = \pm Z_0 |sin(z_0)| \tag{7}$

the above (1)-(4) become functions of the $z_{\rm 0}$ phase angle.

Since:

i. the interval of z_0 is the open interval ($\pi/4$, $\pi/4$),

ii. the four quantities R, L, G, C do not have an extreme inside this interval. This results from the fact that the phase angle of \dot{Z}_0 , which is the angle (z - y)/2, and of $\dot{\gamma}$, which is the angle (z +y)/2 [1], can not be equal inside this interval but only for the case of y = 0 which is impossible since $y \neq 0$ always,

we have to look for the two extreme values only at the ends of the open interval. Furthermore, since the four functions (1)-(4) are continuous with respect to z_0 in the above closed interval, the mentioned extremes will be the values of the continuous extension of these functions at the closed interval, at its ends. Three separated cases are distinguished:

$$\alpha < \beta : -\alpha/\beta < X_{\Theta}/R_{\Theta} < \alpha/\beta$$
 (8)

$$\beta < \alpha : -\beta/\alpha < X_0/R_0 < \beta/\alpha$$
 (9)

$$\alpha = \beta : -1 < X_{0}/R_{0} < 1$$
 (10)

Tab. 1 contains the two extreme values for the four coefficients and for the H term if we consider that

 $H = \omega L G - \omega C R .$ (11)

	α < β	α > β	α = β
R	$(0, \frac{2\alpha\beta}{\gamma}Z_0)$	$(rac{lpha^2-eta^2}{\gamma}Z_{_0}\ ,\ \gamma Z_{_0}\)$	(0, γZ_0)
L	$(\frac{\beta^2-\alpha^2}{\omega\gamma}Z_{\theta}, \frac{1}{\omega}\gamma Z_{\theta})$	$(0, \frac{2\alpha\beta}{\omega\gamma}Z_0)$	$(0, \frac{1}{\omega}\gamma Z_0)$
G	$(0, \frac{2\alpha\beta}{\gamma Z_0})$	$(rac{lpha^2-eta^2}{\gamma Z_{0}}\ ,\ rac{\gamma}{Z_{0}}\)$	$(0, \frac{\gamma}{Z_0})$
с	$(\frac{\beta^2-\alpha^2}{\omega\gamma Z_{\theta}}, \frac{\gamma}{\omega Z_{\theta}})$	$(0, \frac{2\alpha\beta}{\omega\gamma Z_0})$	$(0, \frac{\gamma}{\omega Z_0})$
н	(-2αβ, +2αβ)	(-2αβ, +2αβ)	$(-\gamma^2, +\gamma^2)$

Tab. 1: RLGC and H Open Intervals

The reverse relations of α , β , R_0 and X_0 from the RL GC values are also presented in [1] and repeated here as

$$\alpha = \frac{\sqrt{ZY + RG - X_L X_C}}{\sqrt{2}}$$
(12)

$$\beta = \frac{\sqrt{ZY - RG + X_L X_C}}{\sqrt{2}}$$
(13)

$$R_{\theta} = \frac{\sqrt{ZY + RG + X_{L}X_{C}}}{\sqrt{2}Y}$$
(14)

$$X_{\theta} = \operatorname{sgn}(LG - RC) \frac{\sqrt{ZY - RG - X_{L}X_{C}}}{\sqrt{2}Y} (15)$$

where $X_L = \omega L$ and $X_C = \omega C$, or directly for Z_{θ} from its definition as

$$Z_{0} = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{R^{2} + X_{L}^{2}}{G^{2} + X_{C}^{2}}}$$
(16)

RLGC Intervals from A, vf, Z_{α} Nominal Values

The most usual case of available cable data concerns the attenuation factor per some length of cable, i.e. 100 [m] or 1000 [ft], denoted here as A, the velocity factor vf as a number between 0 and 1, and the characteristic impedance \dot{Z}_{Θ} [Ω], or more accurately its amplitude Z_{0} , of the cable. Fig. 3 shows the window of [tlnomiva] first where it is possible from these data to calculate an interval for R_0 , X_0 , and R,

THURSDAY 19 MAY 2016

L, G, C coefficients in a [Single] frequency. The user must first type the frequency in [MHz] and then the three data A, vf, Z_0 . The application will evaluate all the other quantities through (1)-(11), and display them at the corresponding text boxes using the indicated units. The letter m stands for the minimum and the letter M for maximum for all the quantities.

The maß [°] is significant since it results the boundary angle inside which \dot{Z}_0 will be. This angle is defined by both -maß and +maß and depends on the relation between a and β as it is described in (8)-(10) above. Fig. 4 shows the three cases with the grayed horizontal and vertical thick lines to represent the values range of R_{ρ} , X_{ρ} .

When the option [Multiple] is selected a grid opens where the values for each frequency will be written and two more buttons appear at the right part of the window: [Add Values to Grid] and [Estimation]. The user must give the first and last frequency. Then type each frequency at the text box above and the corresponding A, vf,Z₀ as in [Single] option. By pressing the [Add Values to Grid] button all the calculated values are transferred to a arid line, as it is shown in Fig. 5. In any time it is possible to select from the [File] menu the [Save As] item and save these data to a text file for later use.

📑 [tlnomiva] : (A,vf,Zo)~f> Interval : (R,L,G,C)~f									
[Frequency [MHz]: Sin	ngle or Multiple	Propagation Characteristics							
⊙ Single 50		λ [dB/100m] 5.58 α [Np/m] 0.006424 maβ [deg] 0.231822							
O Multiple	-	vf 0.66 β [rad/m] 1.587761							
	Plot ~ f [MHz]	Zo [Ω] 50 Rom [Ω] 49.999591 RoM [Ω] 50.000000							
C feet © meter	O A [dB/100m]	xom [Ω] -0.202302 xoM [Ω] 0.202302							
[wgnuplot]	O p [rad/m] O Ro [Ω]	H:=wlG-wCR (-2.0400E-02, 2.0400E-02)							
O (R,L,G,C)~f	Ο Χο [Ω]	$E:=RG-\omega L \omega C$ -2.5209E+00 $\alpha/\beta < 1$							
O $(A, \beta, Ro, Xo) \sim f$ O Clear Plot	O R [mΩ/m] O L [nH/m]	Distributed Circuit Coefficients per Frequency							
	OG [µS/m]	Rm [mΩ/m] 0.000000 RM [mΩ/m] 642.415983							
	OC [pF/m]	Lm [nH/m] 252.693875 LM [nH/m] 252.702149							
	ΟΕ ΟΗ Οmaβ[deg]	Gm [µS/m] 0.000000 GM [µS/m] 256.966393							
Help	O Clear Plot	Cm [pF/m] 101.077550 CM [pF/m] 101.080860							

Fig. 3: $[(A, vf, Z_0) \sim f \rightarrow Interval : (R, L, G, C)] - [Single]$

Fig. 4: $\pm m\alpha\beta$ angle: Intervals for R_{ρ} , X_{ρ}

The [Multiple] option enables simultaneously all the buttons in frames [Plot ~ f [Mhz]] and [wgnuplot], but if there is no data available a message will appear to the screen to guide the user. It is possible to enter as many frequency data as it is desired but not for frequencies below or above the first and last frequency respectively.

The user may either plot all the quantities versus f [MHz], directly in the application, as for example is illustrated in Fig. 6 where A [dB/100m] is selected or to use [wgnuplot] and take one of the two possible quadruples as shown in Figs. 7 and 8. Only the points are plotwonuplot application ted in while inside [tlnomiva] it is possible to plot either points with lines, the default state, or only points if the user uncheck the box [Show Lines] at the right of the picture. The lines used here between points are only straight segments of lines.

chart The inside ſtlnomival is movable with the left mouse button. Two verv useful features have been added under the [Graph] menu: [Draft-MinMax] and [Zoom-Graph] with two items [Zoom In] and [ZoomOut] as it is shown in Fig. 2 (3). The first produces a plot exactly with min and max values for both vertical and horizontal axis, and with the second a much bigger chart appears for the plot, centered the at screen. The access to both features is also possible through their shortcut kevs Alt+G+D and Alt+G+ Z+T or Alt+G+Z+O and in addition through the (+) and (-) from the keyboard's numerical pad.

Fig. 9 shows an example for the L coefficient, where it is obvious that the points of different color and shape for its interval ends reveals the existing too small difference between them.

The user may not enter one bv one the frequencies and the corresponding nominal values of A, vf and Z_o but just to read them from an already existing text file using the [File][Open] menu item. An example of such a file is given in Fig. 10, where the first line is a text line. The second contains the number of frequencies (10 in this example) and the common characteristics of the cable as 0.66 for vf, 50. for Z_0 , separated by spaces. Then a list of f in MHz and A in dB/100m couples follows. The grid will be filled in automatically after reading the file. The width of the grid columns is adjustable to ensure the visibility of all the produced values.

Another way is to open an already existing file with previously saved data from this application, as in Fig. 11. Then, again the grid contains the read values while all the text boxes for a11 the quantities remain are blank except the vf, Z_{0} , and the first and last frequency as it shown in Fig. 6.

<pre>[tlnomiva] : (A,vf,Zo)~f> Interval : (R,L,G,C)~f</pre>												
Frequency [MHz]: Sing]	le or Multiple	Propagation C	haracteristics									
O Single 250		A [dB/100m]	16.2 α [N]	p/m] 0.018651 maβ [deg]	0.134607							
© Multiple 50	_ 11000	vf	0.66 ß [r:	ad/m] 7.938807								
	Plot ~ f [MHz]	z ο [Ω]	50 Rom	[Ω] 49.999862 RoM [Ω]	50.000000							
© meter	O A [dB/100m]		Xom [Ω] -0.117467 XoM [Ω] 0.117467									
	Οβ [rad/m]	H:=oLG=oCR	U									
	Ο Ro [Ω]											
$O(R, L, G, C) \sim I$	Ο Xo [Ω]	E:=RG- ω L ω C -6.3024 E+01 $\alpha/\beta < 1$										
O Clear Plot	O Clear Plot OL [nH/m]		Distributed Circuit Coefficients per Frequency									
	OG [µS/m]	$Rm [m\Omega/m]$	Rm [mΩ/m] 0.000000 RM [mΩ/m] 1865.088778									
Add Values To Grid	OC [pF/m]	Lm [nH/m]	uH/m] 252.697988 LM [nH/m] 252.700778									
Estimation		Gm [115/m]	0.00000	GM [115/m] 746.035511								
O mαβ [deg]												
Help	O Clear Plot	Cm [pF/m]	101.079195	CM [pF/m] 101.080311								
f [MHz] A[dB/100m]	$\alpha[Np/m]\beta[rad/m]$	R0m[Ω] R0M[Ω]	X0m[Q] X0M[Q] R	km[mQ/m] RM[mQ/m] Lm[nH/m] LM[n]	1/m] Gm[µS/m] G							
50.000000 5.580000	0.006424 1.587761	49.999591 50.000000	-0.202302 0.202302	0.000000 642.415983 252.693875 252.70	0.000000 2							
150.000000 11.500000 250.000000 16.200000	0.013240 4.763284	49.999807 50.000000 49.999862 50.000000	-0.138978 0.138978 -0.117467 0.117467	0.000000 1323.981314 252.697152 252.70 0.000000 1865.088778 252.697988 252.70	0.000000 5:							

Fig. 5: $[(A, vf, Z_0) \sim f \rightarrow Interval : (R, L, G, C) \sim f] - [Multiple]$

Fig. 6: $[(A, vf, Z_0) \sim f \rightarrow Interval : (R, L, G, C) \sim f] - Plot$

THURSDAY 19 MAY 2016

FUNKTECHNIKPLUS # JOURNAL

Fig. 7: A, β , R_{0} , X_{0} versus frequency from [wgnuplot]

📕 RG2	14-Nomi	nalValu	es.txt	- Note	pad		_ 🗆 ×
File	<u>E</u> dit	F <u>o</u> rmat	<u>V</u> iew	<u>H</u> elp			
Cable	Data: #f[MHz], vf	, Z0: 1st	t line a	d f[MHz],	A[dB/100m]:	list 🔺
12 0.	.66 50.						
50	5.58						
90	8.22						
150	11.50						
250	16.20						
400	22.00						
900	37.70						
1300	48.00						
2200	68.00						
3000	83.40						
5500	125.00						
8000	159.00						
11000	197.00						
•							

Fig. 10: Nominal data values in a text file

Fig. 8: R, L, G, C, coefficients versus frequency from [wgnuplot]

📕 RG2	14-RLGC	-Interva	ls.txt -	Notepad													_ 🗆 ×
File	Edit	Format	View He	elp													
12		20	0.66	50													*
50	5.58	0.006424	1.587761	49.99959	50	-0.202302	0.202302	0	642.416	252.6939	252.7021	θ	256.9664	101.0776	101.0809 -2.5209 -0.02	040 0.02040	0.231822
90	8.22	0.009464	2.857971	49.99973	50	-0.165565	0.165565	0	946.357	252.6959	252.7015	θ	378.5429	101.0784	101.0806 -8.1679 -0.05	09 0.05409	0.189723
150	11.50	0.013240	4.763284	49.99981	50	-0.138978	0.138978	0	1323.981	252.6972	252.7010	θ	529.5925	101.0789	101.0804 -22.689 -0.12	610 0.12610	0.159257
250	16.20	0.018651	7.938807	49.99986	50	-0.117467	0.117467	0	1865.089	252.6980	252.7008	θ	746.0355	101.0792	101.0803 -63.024 -0.29	610 0.29610	0.134607
400	22.00	0.025328	12.70209	49.99990	50	-0.099782	0.099702	0	2532.839	252.6986	252.7006	θ	1013.135	101.0794	101.0802 -161.34 -0.64	850 0.64350	0.114250
900	37.70	0.043404	28.57971	49.99994	50	-0.075934	0.075934	0	4340.368	252.6992	252.7004	θ	1736.147	101.0797	101.0801 -816.80 -2.48	100 2.48100	0.087014
1300	48.00	0.055262	41.28180	49.99995	50	-0.066933	0.066933	0	5526.199	252.6994	252.7003	θ	2210.480	101.0798	101.0801 -1704.2 -4.56	300 4.56300	0.076699
2200	68.00	0.078288	69.86150	49.99997	50	-0.056031	0.056031	0	7828.784	252.6996	252.7002	θ	3131.514	101.0798	101.0801 -4880.6 -10.9	10.940	0.064207
3000	83.40	0.096018	95.26569	49.99997	50	-0.050395	0.050395	0	9601.775	252.6997	252.7002	θ	3840.710	101.0799	101.0801 -9075.5 -18.2	00 18.290	0.057748
5500	125.00	0.143912	174.6538	49.99998	50	-0.041199	0.041199	0	14391.15	252.6998	252.7002	θ	5756.461	101.0799	101.0801 - 30504 - 50.2	00 50.2700	0.047211
8000	159.00	0.183056	254.0418	49.99999	50	-0.036029	0.036029	0	18305.55	252.6999	252.7001	θ	7322.219	101.0800	101.0801 -64537 -93.0	100 93.0100	0.041286
11000	197.00	0.226805	349.3075	49.99999	50	-0.032465	0.032465	0	22680.46	252.6999	252.7001	θ	9072.184	101.0800	101.0801 -122020 -158.	500 158.500	0.037202
•) //.

Fig. 11: Previously saved Data in a text file

Fig. 9: L with-without lines and [Draft-MinMax]

The first line of this file contains four (4) numbers: two (2) integers, the number of lines and columns, and two (2) reals, vf and Z_0 . The following lines are exactly the same as the grid lines of the window.

Fig. 12 shows R_0 , X_0 , maß and H with the [Draft-MinMax] enabled. The difference of R_0 from 50 [Ω] is small enough and the values of maß permit

small imaginary part X_{0} , а since they are less than a quarter of 1° in both sides of the horizontal line of real Z_o. It is also evident that for lower frequencies the intervals are, initially, н closer to zero (0) which means closer to the Heaviside condition while more data are needed to characterize the line as capacitive or inductive.

This window generates eight (8) files in the directory of

[tlnomiva] which are used from the [wgnuplot.exe], with specific filenames of obvious meaning:

R-points	L-points
G-points	C-points
A-points	B-points
Ro-points	Xo-points

Finally, the [Clear Plot] button in the [wgnuplot] frame just closes all occurrences of the wgnuplot application [4] while the same button in the [Plot ~ f [MHz]] frame clears the displayed plot, leaving the chart empty. A short help is available by pressing the [Help] button. The [Estimation] button opens the next window of [tlnomiva] that uses the intervals of RL GC circuit coefficients for a new estimation of A, vf, Z_{0} .

Fig. 12: R_{0} , X_{0} , $m\alpha\beta$ and H with [Draft-MinMax]

A, vf, Z₀ estimation from RLGC Intervals

Relations (12)-(16) are actually result directly from the definition of \dot{z}_{α} and \dot{y} . The problem is that R, L, G and C are not easily determined. They are closely related to the geometrical characteristics of the line and as distributed quantities not measured directly. Here, an attempt is presented to determine some values for Α. vf, Z_{0} and thereafter for α , β , H, E, maß using the RLGC intervals from the previous widow of [tlnomiva]. Additionally, the ωL , ωC and f/vf are also given.

In particular three values are evaluated: the one that corresponds to the lower end of the RLGC intervals, the mean value and the one from the upper end of the intervals. The nominal values are given, respectively, where they are available. The main purpose of this effort is to estimate A, vf, and Z_{Θ} and to achieve a closer approach of RLGC by means of the known nominal values.

Fig 13 shows the second window of [tlnomiva], when it is opened from the [Cable] [Interval : $(R,L,G,C)\sim f-->(A,$ $v,f,Z_0)\sim f$] menu. The table contains the values at the frequency selected from the drop down list box, 400 [MHz]

here. Initially, the table has no values and the message of Fig. 14 is at the top of the window. After pressing the [Load Data] the well known in windows users [Open] dialog box appears to select a file to read. The first line in Fig. 13 shows the path of this data file. Τf the window is accessed through the [Estimation] button of the previous window $[(A, vf, Z_0) \sim f - - > Interval : (R,$ L,G,C)~f] then there is no message at the top and the table is filled automatically with the values corresponding to the first frequency.

The first four (4) lines of the table shows the values of RLGC as described above. The next eight (8) lines in the red frame contain the new estimated values. Their corresponding nominal values are shown at the right. To plot one of these quantities versus frequency, its option button under the label [Plot] must be selected. The colored little squares beside its data column (Red for minimum, Green for mean value, Blue for maximum) and the Black larger square above the nominal values correspond to the used color for the plot and they are buttons. Their default state is on. Pressing one of them or all, changes the state to off and the corresponding data are removed

from the plot for each line.

Fig. 15 shows the full window with the plot of A [db/100m] in the chart. The light blue open circles in the plot indicate the current frequency which is selected from the drop down list box, 1300 [MHz] in this example. Since all the colored buttons are on, all the values are plotted. The menu item [Draft -MinMax] is active for a closer view of the plot as described in the previous section and it is selected here.

Fig. 13: [Interval : (R,L,G,C,)~f --> (A,vf,Z₀)~f] - Table

Fig. 14: Initial message: Load Data

Fig. 15: [Interval : $(R, L, G, C,) \sim f \rightarrow (A, vf, Z_0) \sim f$] – Plot

The minimum value results from (12) to be zero since the lower limits for R and G are equal to zero and the same is true for mαß and H, for this cable. It is obvious that the nominal value of A is achieved for the mean value as shown in Fig. 16 where the green and black colored points are plotted. The light blue point corresponds to the values shown above the chart. Velocity factor is illustrated in Fig. 17 and in Fig. 18 $m\alpha\beta$ Both of them are is given. shown with [Draft-MinMax] enabled. For maß only the positive number is written at the table, while at the plot both plus and minus ma β is shown. Fig. 19 contains Z₀ in both scales, where it is obvious that the difference from nominal value can not be denoted and Fig. 20 shows the H term, almost zero, similarly. If it is positive/ negative in both mean and maximum value then a Capacitive/Inductive label is added. For completeness Figs. 21-22 shows α and β respectively.

The [feet] option is again disabled, the [Show Lines] acts the same as in the previous window, while the [Zoom Graph] item with its sub-items is disabled in the current [tlnomiva] version.

Fig. 16: Attenuation factor estimation and nominal value

Fig. 17: Velocity factor estimation and nominal value

Fig. 18: $m\alpha\beta$ estimation and nominal values

[tlnomiva] : TRANSMISSION LINE NOMINAL VALUES WITHOUT TOLERANCE...

Fig. 19: $Z_{\boldsymbol{\Theta}}$ estimation and nominal values

THURSDAY 19 MAY 2016

FUNKTECHNIKPLUS # JOURNAL

Fig. 20: H estimation and nominal values

[tlnomiva] : TRANSMISSION LINE NOMINAL VALUES WITHOUT TOLERANCE...

Fig. 22: β estimation and nominal values

THURSDAY 19 MAY 2016

v1–27 FUNKTECHNIKPLUS # JOURNAL

α , β , R_{θ} , X_{θ} from Constant R, L, G, C

The next window of [tlnomiva] concerns the investigation of the propagation characteristics behavior with frequency when the circuit coefficients remain constant. The question is, is there any possibility this case to be true in real transmission lines or it is simply a matter of theoretical research as a mathematical exercise?

Well, even if it is only an academic problem it has a considerable interest by itself. From the one hand, (1)-(4) show that if $X_0 = 0$ then R, L, G, C become frequency independent. But this means the Heaviside term is equal to zero. From the other hand, the C distributed circuit coefficient is almost constant over a wide frequency range and L has a small variation. Thus, R and G are the most variable coefficients, and G has in most cases rather small values compared with R [2]. In addition, as it is stated in [2], there is a range of low frequencies over which R, L, G, C can be considered effectively constants. Thus, it is worthwhile to examine the relation of all the four propagation characteristics with frequency as the four circuit coefficients take specific values.

The developed window of [Constant : (R,L,G,C)--> $(\alpha,\beta,$

Ro,Xo)~f] is shown in Fig. 23. It opens with the [Single] frequency as the default state and with some predefined values. The user mav the RLGC coefficients tvpe and the desired frequency or frequency range. When [Range] is activated then the text boxes contain the values of all the quantities at the middle frequency and the buttons for plots are enabled. In this figure the predefined values for RLGC was used and the range [0.001, 1000] [MHz] was selected. A in [dB/100m] is depicted in the chart with [Draft-Min Max] enabled the and with [Show Lines] unchecked.

Fig. 24 shows A of the line used in previous sections, with RLGC almost equal to their mean value at the lower frequency, to the whole permitted range, from 1 Hz to 100 GHz. Evidently there is a limit to what can be drawn in this application. The [wqnuplot A, β, Ro, Xo, mαβ, vf] produces the two triples of Fig. 25, where at the right top side of the plots the RLGC values are written. The white area indicates the band of the line operating frequency. In wonuplot application the developed script plots the (12)-(16) as functions of frequency, that is, curves are plotted and not evaluation in specific number of points.

Fig. 23: [Constant: (R,L,G,C) --> $(\alpha,\beta,Ro,Xo,)$ ~f] - [Range]

Thus, considering a much lower frequency range and a range for A between its minimum and maximum value, which substantially differ slightly, and plotting A function in wgnuplot, we get Fig. 26, where we distinguish the form of "S" we have seen before in Fig. 23 for the first line example.

Six text files are written in the directory of [tlnomiva], which are used from the [wgnuplot.exe], with specific filenames of obvious meaning:

A-function	B-function
Ro-function	Xo-fuction
mab-function	vf-function

In order to emulate the curve structure in the current version of [tlnomiva], the mentioned relations are evaluated in 100 points equally spaced in the logarithmic scale of frequency f in [MHz].

Fig. 24: A [dB/100m] versus f [MHz] with Draft-MinMax

A significant characteristic of this window is that when the [Range] is selected and one of the six quantities is plotted, then every change to the value of any of the RLGC will immediatelv four cause the change of the plot. other features A11 the are the same with the previous windows.

Using this feature of some kind of interaction and varying slightly by one (1) the value of C and particularly by varying the value of L significantly, we get Fig. 27 for a transmission line with R, L, G, C equal to 321 $[m\Omega/m]$, [nH/m], 128 [µS/m] 111 and [pF/m], where the veloc-100 ity factor seems to take values larger than its upper limit of unit (1) (red), from [MHz] and above. A fact 2.6 that needs further research, restates the and issue of line definition.

[tlnomiva] : TRANSMISSION LINE NOMINAL VALUES WITHOUT TOLERANCE...

Fig. 25: A, $\beta,~R_{_{0}},~X_{_{0}}$ vf, maß from [wgnuplot]

Fig. 26: A [dB/100m] versus f [MHz] from [wgnuplot]

Final Remarks

There are two important matters. The first concerns the application [tlnomiva] itself and the second the way that the available cable specifications can be exploited.

In order to avoid un-1 predicted errors in calculations, caused by the different notation of decimal svmbol used in various local MS Windows versions, a decision has to be made. Thus, the dot "." was selected to be the decimal symbol, as well as, the comma "," as the digit grouping symbol - although the later is not used at a11 here. Notably, this choice is mandatory requirement for а [wgnuplot], which does not recognize comma as decimal symbol. Hence, the window of Fig. 28 appears on the screen just after opening the application when a non-dot definition exists in the Regional Settings of Control Panel.

2. The transmission line used to serve as an example of the features of the [tlnomiva], is the RG 214 cable and its specifications which are given in [5]. Since, only four (4) values for the attenuation factor A in ΓdB/ 100ftl are explicitly reported there, we decided to use the accompanying chart, which covers the whole operating frequency range from 50 [MHz] to 11 [GHz].

Fig. 29 shows a straight line for A in the logarithmic chart. Such a line can be represented by:

$$y = k x^{\lambda}$$
(17)

that is:

FUNKTECHNIKPLUS # JOURNAL

$$log(y) = log(k) + \lambda log(x)$$
$$= a log(x) + b$$
(18)

where $a=\lambda$ and b=log(k), and from (17) and (18) we take:

$$y = 10^{b} x^{a}$$
 (19)

Then, we graphically estimate the coordinates of the staring and ending points of the straight line in Fig. 29, as well as, we cross check the results by using the [Opti-Graph] application [6] as it is shown in Fig. 30. After that, we formulate and solve the following linear system:

$$log(1.7) = a log(50) + b log(60) = a log(11000) + b$$
(20)

and by using the Aurora Scientific Calculator SC 500 Plus [7], the solution for a and b is given, with nine (9) decimal digits, as follows:

a = +0.660727178

b = -0.892106736

from which we finally have:

$$A_{[dB/100m]} = \frac{0.128201546}{0.3048} f_{[MHz]}^{0.660727178}$$

In this way, since A has now an analytical expression in terms of frequency, we can determine as many points as we like, that is, for example, those of three (3) significant figures we put in the grid of Fig. 6.

Fig. 29: Extracting analytical expression from a LogLog plot

Conclusion

The limits of what can be estimated or predicted using precise formulation from the nominal values without tolerance of A, vf, and Z_0 , which are usually given nowdays as cable specifications for transmission lines, without taken into account the cut-off frequency, was investigated in this paper.

It seems that the curves for all the involved quantities have more or less the same form, as it was expected and explained by their defining expressions, with a possible differentiation of course in their slope. These curves are strongly depended on how wide is the considered frequency window. Therefore, it is most important to pay

special attention in the op- describes adequately the tranerating frequency range order to be sure that model presented in this paper fications.

in smission line characteristics the in accordance with its speci-

Fig. 28: Warning Message

🟪 OptiGraph 📃 🗌 🗙	OptiGraph
<u>F</u> ile <u>G</u> raph <u>H</u> elp	<u>F</u> ile <u>G</u> raph <u>H</u> elp
Open Graph Click to set point Right Click to reset Y axis X values Position T Drigin X: 267 X maximum Drigin X: 847 4.3 X maximum X: 1551 Y values Y maximum X: 1551 Y values Y maximum X: 1551 Y values Y maximum X: 1555 Current X: 537 Current X: 537 Current X: 178 Coordinates of Selected Point X value: 1.69 Y value: 0.23	Open Graph Click to set point Minimum Flight click to reset Y axis X values Position Y values Origin X: 267 Y values Y maximum X: 1551 Y values Y maximum X: 1551 Y values Y maximum X: 1656 I Current X: 1451 Current X: 1451 Current X: 1451 Current X: 1451 Current X: 1857 Y maximum Egit

Fig. 30: [OptiGraph] : Starting and Ending points

The [tlnomiva] application is developed and presented as a research tool. The intention is to be used: (1) as a reference in the study of the already existing approximate techniques for finding the distributed circuit coefficients and the propagation characteristics, and 2) to be expandable in order to cover: (2a) not only the case of the RLCG theoretical calculation from the cable geometrical characteristics, but in addi-

tion (2b) the case of using the new approximation method for the determination of attenuation factor, which is under current development by the authors.

Finally, the whole of [tlnomiva] software, that is the MIT licensed source code, the installation package, as well as, its future improvements, updates and upgrades, can be always downloaded from the author's website address [8].

References

[1] Yannopoulou N., Zimourtopoulos P., "Transmission Lines – Part 1: A Precise Formulation within the Distributed Circuit Model", FunkTechnikPlus # Journal, Issue 9, Year 3, 2016, pp. 369 – 389, under revision with expanded additions www.otoiser.org/index.php/ftpj/issue/view/2016.01.31

[2] Chipman R.A., "Transmission Lines", McGraw-Hill, 1968, pp. 15, 17, 26, 31 - 32, 42, 44, 47, 58 - 60

THURSDAY 19 MAY 2016

- [3] gnuplot, "Version 5.0 patchlevel 3 last modified 2016-02-04": https://sourceforge.net/projects/gnuplot/files/gnuplot/
- [4] "How To Programmatically Close a Single Instance of a Windows-Based Program", https://support.microsoft.com/en-us/kb/176391
- [5] "Detail, Specification Sheet: Cable, Radio Frequency, Flexible, Coaxial, 50 Ohms, M17/75-RG 214 and M17/75-RG365, MIL-DTL-17/75F, w/Amendment 2", 23 February 2010, https://assist.dla.mil/online/start/
- [6] Yap Chun Wei, Optical Graph Recognition and Manipulation Util for Win32, OptiGraph, Version 1.0, 28 January 2000 First release, ftp://ftp.sk.debian.org/pub/pc/educult/
- [7] Aurora Scientific Calculator SC 500 Manual, www.arg.op4.eu/aurora/sc500p/
- [8] [tlnomiva], http://arg.op4.eu/software/tlnomiva/
 - *Active Links: 19.05.2016 Inactive Links : FTP#J Link Updates: http://updates.ftpj.otoiser.org/

Previous Publication in FUNKTECHNIKPLUS # JOURNAL

"Transmission Lines – Part 1: A Precise Formulation within the Distributed Circuit Model", Issue 9, Year 3, pp. 369 – 390

* About The Authors

Nikolitsa Yannopoulou, Issue 9, Year 3, p. 390

yin@arg.op4.eu

Petros Zimourtopoulos, Issue 9, Year 3, p. 390

pez@arg.op4.eu

This paper is licensed under a Creative Commons Attribution 4.0 International License – <u>https://creativecommons.org/licenses/by/4.0/</u>