The real parts of the nontrivial Riemann zeta function zeros Igor Turkanov

ABSTRACT

This theorem is based on holomorphy of studied functions and the fact that nearby of a singularity point the imaginary part of the specific function can accept zero value.

The colored markers are:

- - assumption or a fact which is not proven at present;
- - the statement which requires additional attention;
- - statement which is proved earlier or clearly undestandable.

THEOREM

• The real parts of all the nontrivial Riemann zeta function zeros ρ are equal $Re(\rho) = \frac{1}{2}$.

PROOF:

• According to the functional equality [10, p. 22], [5, p. 8-11]:

$$\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta\left(s\right) = \Gamma\left(\frac{1-s}{2}\right)\pi^{-\frac{1-s}{2}}\zeta\left(1-s\right), \qquad Re\left(s\right) > 0 \qquad (1)$$

 $\zeta\left(s\right)$ - the Riemann zeta function, $\Gamma\left(s\right)$ - the Gamma function.

• From [5, p. 8-11] $\zeta(\bar{s}) = \overline{\zeta(s)}$, it means that $\forall \rho = \sigma + it: \zeta(\rho) = 0$ and $0 \leq \sigma \leq 1$ we have:

$$\zeta\left(\bar{\rho}\right) = \zeta\left(1-\rho\right) = \zeta\left(1-\bar{\rho}\right) = 0 \tag{2}$$

- From [11], [9, p. 128], [10, p. 45] we know that $\zeta(s)$ has no nontrivial zeros on the line $\sigma = 1$ and consequently on the line $\sigma = 0$ also, in accordance with (2) they don't exist.
- Let's denote the set of nontrivial zeros $\zeta(s)$ through \mathcal{P} (multiset with consideration of multiplicitiy):

$$\mathcal{P} \stackrel{\text{\tiny def}}{=} \left\{ \rho: \ \zeta\left(\rho\right) = 0, \ \rho = \sigma + it, \ 0 < \sigma < 1 \right\}.$$

And:
$$\mathcal{P}_1 \stackrel{\text{def}}{=} \left\{ \rho : \zeta(\rho) = 0, \ \rho = \sigma + it, \ 0 < \sigma < \frac{1}{2} \right\},$$
 (3)
 $\mathcal{P}_2 \stackrel{\text{def}}{=} \left\{ \rho : \zeta(\rho) = 0, \ \rho = \frac{1}{2} + it \right\},$
 $\mathcal{P}_3 \stackrel{\text{def}}{=} \left\{ \rho : \zeta(\rho) = 0, \ \rho = \sigma + it, \ \frac{1}{2} < \sigma < 1 \right\}.$

Then:

$$\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3 \text{ and } \mathcal{P}_1 \cap \mathcal{P}_2 = \mathcal{P}_2 \cap \mathcal{P}_3 = \mathcal{P}_1 \cap \mathcal{P}_3 = \varnothing,$$

 $\mathcal{P}_1 = \varnothing \Leftrightarrow \mathcal{P}_3 = \varnothing.$

• Hadamard's theorem (Weierstrass preparation theorem) on the decomposition of function through the roots gives us the following result [10, p. 30], [5, p. 31], [12]:

$$\zeta(s) = \frac{\pi^{\frac{s}{2}} e^{as}}{s(s-1)\Gamma\left(\frac{s}{2}\right)} \prod_{\rho \in \mathcal{P}} \left(1 - \frac{s}{\rho}\right) e^{\frac{s}{\rho}}, \qquad \operatorname{Re}\left(s\right) > 0 \tag{4}$$

$$a = \ln 2\sqrt{\pi} - \frac{\gamma}{2} - 1$$
, γ – Euler's constant and

$$\frac{\zeta'(s)}{\zeta(s)} = \frac{1}{2}\ln\pi + a - \frac{1}{s} + \frac{1}{1-s} - \frac{1}{2}\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} + \sum_{\rho\in\mathcal{P}}\left(\frac{1}{s-\rho} + \frac{1}{\rho}\right) \quad (5)$$

• According to the fact that $\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$ - Digamma function of [10, p. 31],

[5, p. 23] we have:

$$\frac{\zeta'(s)}{\zeta(s)} = \frac{1}{1-s} + \sum_{\rho \in \mathcal{P}} \left(\frac{1}{s-\rho} + \frac{1}{\rho} \right) + \sum_{n=1}^{\infty} \left(\frac{1}{s+2n} - \frac{1}{2n} \right) + C, \quad (6)$$
$$C = const$$

• From [4, p. 160], [8, p. 272], [3, p. 81]:

$$\sum_{\rho \in \mathcal{P}} \frac{1}{\rho} = 1 + \frac{\gamma}{2} - \ln 2\sqrt{\pi} = 0,0230957\dots$$
 (7)

• Indeed, from (2):

$$\sum_{\rho \in \mathcal{P}} \frac{1}{\rho} = \frac{1}{2} \sum_{\rho \in \mathcal{P}} \left(\frac{1}{1-\rho} + \frac{1}{\rho} \right)$$

• From (5):

$$2\sum_{\rho\in\mathcal{P}}\frac{1}{\rho} = \lim_{s\to 1}\left(\frac{\zeta'\left(s\right)}{\zeta\left(s\right)} - \frac{1}{1-s} + \frac{1}{s} - a - \frac{1}{2}\ln\pi + \frac{1}{2}\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}\right)$$

• Also it's known, for example, from [10, p. 49], [3, p. 98] that the number of nontrivial zeros of $\rho = \sigma + it$ in strip $0 < \sigma < 1$, the imaginary parts of which t are less than some number T > 0 is limited, i.e.

$$\|\{\rho: \rho \in \mathcal{P}, \rho = \sigma + it, |t| < T\}\| < \infty.$$

• Indeed, it can be presented that on the contrary the sum of $\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}$ would have been unlimited.

• Thus $\forall T > 0 \exists \delta_x > 0, \ \delta_y > 0$ such that

in area $0 < t \leq \delta_y, 0 < \sigma \leq \delta_x$ there are no zeros $\rho = \sigma + it \in \mathcal{P}$. (8)

Let's consider random root $q \in \mathcal{P}_1 \cup \mathcal{P}_2$ Let's denote k(q) the multiplicity of the root q. Let's examine the area $Q(R) \stackrel{\text{def}}{=} \{s : ||s - q|| \leq R, R > 0\}.$

• From the fact of finiteness of set of nontrivial zeros $\zeta(s)$ in the limited area follows $\exists R > 0$, such that Q(R) does not contain any root from \mathcal{P} except q.

• From [1], [10, p. 31], [5, p. 23] we know that the Digamma function $\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$ in the area Q(R) has no poles, i.e. $\forall s \in Q(R)$

$$\left\|\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}\right\| < \infty.$$

Let's denote:

$$I_{\mathcal{P}}(s) \stackrel{\text{\tiny def}}{=} -\frac{1}{s} + \frac{1}{1-s} + \sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho}$$

and

$$I_{\mathcal{P}\setminus\{q\}}(s) = -\frac{1}{s} + \frac{1}{1-s} + \sum_{\rho \in \mathcal{P}\setminus\{q\}} \frac{1}{s-\rho}.$$
(9)

Hereinafter $\mathcal{P} \setminus \{q\} \stackrel{\text{\tiny def}}{=} \mathcal{P} \setminus \{(q, k(q))\}$ (the difference in the multiset).

Summation - $\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho}$ and $\sum_{\rho \in \mathcal{P} \setminus \{q\}} \frac{1}{s-\rho}$ further we shall consider as the sum of pairs $\left(\frac{1}{s-\rho} + \frac{1}{s-(1-\rho)}\right)$ and $\sum_{\rho \in \mathcal{P}} \frac{1}{\rho}$ as the sum of pairs $\left(\frac{1}{\rho} + \frac{1}{1-\rho}\right)$ as a consequence of division of the sum from (6) $\sum_{\rho \in \mathcal{P}} \left(\frac{1}{s-\rho} + \frac{1}{\rho}\right)$ into $\sum_{\rho \in \mathcal{P}} \frac{1}{s-\rho} + \sum_{\rho \in \mathcal{P}} \frac{1}{\rho}$. As specified in [4], [6], [8], [10].

Let's note that $I_{\mathcal{P}\setminus\{q\}}(s)$ is holomorphic function $\forall s \in Q(R)$.

Then from (5) we have:

$$\frac{\zeta'(s)}{\zeta(s)} = \frac{1}{2}\ln\pi + a - \frac{1}{2}\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} + \sum_{\rho\in\mathcal{P}}\frac{1}{\rho} + I_{\mathcal{P}}(s).$$
(10)

And in view of (7):

$$Im\frac{\zeta'(s)}{\zeta(s)} = Im\left(-\frac{1}{2}\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} + I_{\mathcal{P}}(s)\right).$$
(11)

Let's note that from the equality of

$$\sum_{\rho \in \mathcal{P}} \frac{1}{1 - s - \rho} = -\sum_{(1 - \rho) \in \mathcal{P}} \frac{1}{s - (1 - \rho)} = -\sum_{\rho \in \mathcal{P}} \frac{1}{s - \rho}$$
(12)

follows that:

$$I_{\mathcal{P}}(1-s) = -I_{\mathcal{P}}(s), \ I_{\mathcal{P}\setminus\{1-q\}}(1-s) = -I_{\mathcal{P}\setminus\{q\}}(s), \ Re(s) > 0.$$

• Besides

$$I_{\mathcal{P}\setminus\{q\}}(s) = I_{\mathcal{P}}(s) - \frac{k(q)}{s-q}$$

and $I_{\mathcal{P}\setminus\{q\}}(s)$ is limited in the area of $s \in Q(R)$ as a result of absence of its poles in this area as well as its differentiability in each point of this area.

• If in (5) to replace s with 1 - s that in view of (7):

$$\frac{\zeta'\left(s\right)}{\zeta\left(s\right)} + \frac{\zeta'\left(1-s\right)}{\zeta\left(1-s\right)} = -\frac{1}{2} \frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} - \frac{1}{2} \frac{\Gamma'\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{1-s}{2}\right)} + \ln\pi, \ Re\left(s\right) > 0.$$
(13)

• Let's examine a circle with the center in a point q and radius $r \leq R$, laying in the area of Q(R):

• For
$$s = x + iy$$
, $q = \sigma_q + it_q$

$$Im\frac{k(q)}{s-q} = Im\frac{k(q)}{x+iy-\sigma_q-it_q} = \frac{k(q)(t_q-y)}{(x-\sigma_q)^2 + (y-t_q)^2} = k(q)\frac{t_q-y}{r^2},$$

• Consider also the function $\ln \zeta(s)$ - principal branch function $Ln\zeta(s)$ for which of the (4), in view of (7) $\forall s \in Q(R)$ is true:

$$\ln \zeta(s) = \frac{\ln \pi}{2} s - \ln \left(s(1-s) \right) - \ln \Gamma \left(\frac{s}{2} \right) + \sum_{\rho \in \mathcal{P}} \ln \left(1 - \frac{s}{\rho} \right).$$
(14)

The sum as stipulated earlier, is taken in pairs:

$$\ln\left(1-\frac{s}{\rho}\right) + \ln\left(1-\frac{s}{1-\rho}\right).$$

Let's designate the real function of two variables for s = x + iy:

$$\omega(x,y) \stackrel{\text{\tiny def}}{=} Im\left(-\ln\left(s(1-s)\right) - \ln\Gamma\left(\frac{s}{2}\right) + \sum_{\rho \in \mathcal{P} \setminus \{q\}} \ln\left(1 - \frac{s}{\rho}\right)\right).$$

• Note that the function $\omega(x, y)$ and its partial derivatives on both variables exist and are limited to $\forall s = x + iy \in Q(R)$, since

$$\omega(x,y) = Im \ln \zeta(x+iy) - \frac{\ln \pi}{2}y - k(q)Im \ln \left(1 - \frac{x+iy}{q}\right)$$

Inside of area Q(R) we take a point $M \stackrel{\text{def}}{=} (x_M, y_M)$, does not coincide which the point q.

• Let's draw a looped curve from the point M so that it doesn't pass through the point q and is described by the function which has a continuous derivative at each point.

Let's designate: $f_M(\tau) \stackrel{\text{\tiny def}}{=} f_x(\tau) + i f_y(\tau)$:

In accordance with the construction let's denote $\tau_{M,1}$ and $\tau_{M,2}$ such that:

$$f_M(\tau_{M,1}) = x_M + iy_M, \quad f_M(\tau_{M,2}) = x_M + iy_M.$$

• Function $Im \ln \zeta(s) - \frac{\ln \pi}{2} Im(s)$ is differentiable and therefore continuous and differentiable in τ function $Im \ln \zeta(f_M(\tau)) - \frac{\ln \pi}{2} Im(f_M(\tau))$.

It means that continuous on the segment and differentiable in the domestic range of this segment the real function gets at its ends the same values:

$$Im \ln \zeta (f_M(\tau_{M,1})) - \frac{\ln \pi}{2} Im(f_M(\tau_{M,1})) =$$

= $Im \ln \zeta (f_M(\tau_{M,2})) - \frac{\ln \pi}{2} Im(f_M(\tau_{M,2})) =$
= $Im \ln \zeta (f_M(x_M + iy_M)) - \frac{\ln \pi}{2} Im(f_M(x_M + iy_M)).$

• By Rolle's theorem on the extremum of a differentiable function on the interval we have:

$$\exists \tau_1 \in (\tau_{M,1}, \tau_{M,2}): \quad \left(Im \ln \zeta \left(f_M(\tau) \right) - \frac{\ln \pi}{2} Im(f_M(\tau)) \right)'_{\tau=\tau_1} = 0. \quad (15)$$

I.e. on a curve described by function $f_M(\tau)$, $\tau \in (\tau_{M,1}, \tau_{M,2})$ there is a point $\Theta_w = \Theta_w(M) \stackrel{\text{def}}{=} f_M(\tau_1)$ for which it is true (15).

• Let's consider the following option line, as a closed curve which passes through a point of M.

For any 0 < r < R construct a circle centered at the point q and the radius r.

The point of intersection of the left semicircle of the circle and the line $y = t_q$ let's denote as $J \stackrel{\text{def}}{=} (x_J, y_J)$.

Let's construct a circle with the center in a point J, with radius:

$$0 < r_{\delta} < \min(r, R - r).$$

As a point of M let's take more distant from q point of intersection of the circle with the line $y = t_q$.

Fig. 4.

• As the desired curve, we consider the circle with center at J and the radius r_{δ} .

Let's notice that the received curve satisfies to all declared properties for any as much as small radius since $\min(r, R - r)$.

Let's lead from a point J two straight lines under angles $-\beta_1$ and β_2 :

$$tg(\beta_1) > 0, tg(\beta_2) > 0.$$

Pairs of the intersection points of these lines with the circle of radius r_{δ} is denoted by N_1 , E_1 and N_2 , E_2 accordingly.

• Let's assign:

$$0 < r_{\delta} = O(r^3)_{r \to 0}, \quad \operatorname{tg}(\beta_1) = \operatorname{tg}(\beta_2) = \frac{1}{r^{\frac{1}{2}}}.$$
 (16)

Then $\exists 0 < R_1 \leq R : \forall 0 < r < R_1$ the condition is satisfied:

$$0 < r_{\delta} < \min(r, R - r).$$

• Let's assume, that the point Θ_w lays on any of the opened arches: MN_2 , E_1E_2 or N_1M .

As τ take Im(s) = y, then:

$$f_y(y) = y, \ x = f_x(y) = x_J \pm \sqrt{r_{\delta}^2 - (y - y_J)^2}.$$

• In view of (16) for any point $(x(\tau), \tau)$, laying on the considered opened arches:

$$0 \leqslant |x(\tau)'| < \frac{1}{r^{\frac{1}{2}}}.$$
(17)

• According to [1, p. 67, 82]:

$$Im \ln\left(1 - \frac{x + iy}{q}\right) = Im \ln\left(\sigma_q - x + i(t_q - y)\right) - Im \ln\left(q\right) =$$
$$= \arctan\left(\frac{t_q - y}{\sigma_q - x}\right) - \arctan\left(\frac{t_q}{\sigma_q}\right),$$

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}.$$

• Then:

$$\frac{d}{d\tau} Im \ln \left(1 - \frac{x(\tau) + i\tau}{q}\right)_{\tau=\tau_{1}} = \frac{d}{d\tau} \arctan \left(\frac{t_{q} - \tau}{\sigma_{q} - x(\tau)}\right)_{\tau=\tau_{1}} = \\
= \frac{1}{1 + \left(\frac{t_{q} - \tau_{1}}{\sigma_{q} - x(\tau_{1})}\right)^{2}} \frac{\partial}{\partial \tau} \left(\frac{t_{q} - \tau}{\sigma_{q} - x(\tau_{1})}\right)_{\tau=\tau_{1}} + \\
+ \frac{1}{1 + \left(\frac{t_{q} - \tau_{1}}{\sigma_{q} - x(\tau_{1})}\right)^{2}} \frac{\partial}{\partial x} \left(\frac{t_{q} - \tau_{1}}{\sigma_{q} - x}\right)_{x=x(\tau_{1})} x'(\tau_{1}) = \\
= -\frac{\sigma_{q} - x(\tau_{1})}{(\sigma_{q} - x(\tau_{1}))^{2} + (t_{q} - \tau_{1})^{2}} + \frac{x'(\tau_{1})(t_{q} - \tau_{1})}{(\sigma_{q} - x(\tau_{1}))^{2} + (t_{q} - \tau_{1})^{2}}.$$
(18)

• And for the s = x + iy equation (15) at the point $\Theta_w = (x(\tau_1), \tau_1)$ can be written as follows:

$$\frac{\sigma_q - x(\tau_1)}{(\sigma_q - x(\tau_1))^2 + (t_q - \tau_1)^2} - \frac{x'(\tau_1)(t_q - \tau_1)}{(\sigma_q - x(\tau_1))^2 + (t_q - \tau_1)^2} =$$

$$= \omega(x(\tau_1), y)'_{y=\tau_1} + x(\tau_1)'\omega(x, \tau_1)'_{x=x(\tau_1)}.$$
(19)

• At $r \to 0$ and (16):

$$(\sigma_q - x(\tau_1))^2 + (t_q - \tau_1)^2 \leqslant (r + r_\delta)^2 + r_\delta^2 = \theta(r^2),$$

$$(\sigma_q - x(\tau_1))^2 + (t_q - \tau_1)^2 \geqslant (r - r_\delta)^2 = \theta(r^2),$$

i.e.

$$(\sigma_q - x(\tau_1))^2 + (t_q - \tau_1)^2 = \theta(r^2).$$

• Hence the equation (19) at $r \to 0$ looks like this:

$$\theta\left(\frac{1}{r}\right) + O\left(\frac{1}{r^{\frac{1}{2}}}\right) = O\left(\frac{1}{r^{\frac{1}{2}}}\right).$$

That is impossible starting from some moment, i.e. $\exists 0 < R_2 \leq R_1$: $\forall 0 < r < R_2$ the assumption that the point Θ_w lays on the opened arches MN_2 , E_1E_2 or N_1M is false.

Therefore $\forall 0 < r < R_2$ on closed arcs N_2E_1 and N_1E_2 should be the point Θ_w for which the equality (15) is true.

• Indeed, if to assume that the point Θ_w lays on the closed arches N_2E_1 and N_1E_2 then the equation (15) in a point $\Theta_w = (\tau_1, y(\tau_1))$ where $f_x(\tau) = \tau$, $f_y(\tau) = y(\tau)$ could be written as follows:

$$y(\tau_1)' \frac{\sigma_q - \tau_1}{(\sigma_q - \tau_1)^2 + (t_q - y(\tau_1))^2} - \frac{t_q - y(\tau_1)}{(\sigma_q - \tau_1)^2 + (t_q - y(\tau_1))^2} =$$

$$= y(\tau_1)' \omega(\tau_1, y)'_{y=y(\tau_1)} + \omega(x, y(\tau_1))'_{x=\tau_1}.$$
(20)

• Hence the equation (20) at $r \to 0$ looks like this:

$$O\left(\frac{1}{r^{\frac{1}{2}}}\right) + O\left(1\right) = O\left(1\right).$$

I.e. always has a solution, and $y(\tau_1)' = O(r)_{r \to 0}$.

More precisely:

$$y(\tau_1)' \left(1 - \omega(\tau_1, y)'_{y=y(\tau_1)} \frac{(\sigma_q - \tau_1)^2 + (t_q - y(\tau_1))^2}{\sigma_q - \tau_1} \right) = \frac{t_q - y(\tau_1)}{\sigma_q - \tau_1} + \omega(x, y(\tau_1))'_{x=\tau_1} \frac{(\sigma_q - \tau_1)^2 + (t_q - y(\tau_1))^2}{\sigma_q - \tau_1}$$

And given the (16), where $r \to 0$:

$$y(\tau_1)' = \omega(x, y(\tau_1))'_{x=\tau_1}r + O(r^2).$$
(21)

The same reasonings for s = x + iy in the same area $s \in Q(R)$ points q for function $Im \ln \zeta(1-s) - \frac{\ln \pi}{2} Im(1-s)$ we shall come to conclusion that $\exists 0 < R_3 \leq R_2$: $\forall 0 < r < R_3$ on the closed arches N_2E_1 and N_1E_2 there should be a point $\Theta_z = \Theta_z(M) \stackrel{\text{def}}{=} f_M(\tau_2)$ for some $\tau_2 \in (\tau_{M,1}, \tau_{M,2})$ for which equality is true:

$$\left(Im\ln\zeta\left(1 - f_M(\tau)\right) - \frac{\ln\pi}{2}Im(1 - f_M(\tau))\right)'_{\tau=\tau_2} = 0.$$
 (22)

Indeed, if we apply the (14) value is 1 - s instead of s:

$$\ln \zeta(1-s) - \frac{\ln \pi}{2}(1-s) = -\ln\left((1-s)s\right) - \ln\Gamma\left(\frac{1-s}{2}\right) + \sum_{\rho \in \mathcal{P}}\ln\left(1-\frac{1-s}{\rho}\right)$$

that in view of that $\forall \ \rho \in \mathcal{P}$:

$$\left(1 - \frac{1-s}{\rho}\right)\left(1 - \frac{1-s}{1-\rho}\right) = \left(1 - \frac{s}{\rho}\right)\left(1 - \frac{s}{1-\rho}\right),$$

we have:

$$\ln \zeta(1-s) - \frac{\ln \pi}{2}(1-s) = -\ln \left(s(1-s)\right) - \ln \Gamma \left(\frac{1-s}{2}\right) + \sum_{\rho \in \mathcal{P}} \ln \left(1-\frac{s}{\rho}\right).$$
(23)

Let's designate the real function of two variables for s = x + iy:

$$\omega_{-}(x,y) \stackrel{\text{\tiny def}}{=} Im\left(-\ln\left(s(1-s)\right) - \ln\Gamma\left(\frac{1-s}{2}\right) + \sum_{\rho \in \mathcal{P} \setminus \{q\}} \ln\left(1-\frac{s}{\rho}\right)\right).$$

• Note that the function $\omega_{-}(x, y)$ and its partial derivatives on both variables exist and are limited to $\forall s = x + iy \in Q(R)$, since

$$\omega_{-}(x,y) = Im \ln \zeta (1 - x - iy) + \frac{\ln \pi}{2}y - k(q)Im \ln \left(1 - \frac{x + iy}{q}\right)$$

And all reasonings for functions $\ln \zeta(1-s) - \frac{\ln \pi}{2}(1-s)$ and $\omega_{-}(x,y)$ are similar to reasonings for appropriate functions $\ln \zeta(s) - \frac{\ln \pi}{2}(s)$ and $\omega(x,y)$. Hence at $r \to 0$:

$$y(\tau_2)' = \omega_{-}(x, y(\tau_2))'_{x=\tau_2}r + O(r^2).$$
(24)

• And note that from (21), (24) at $r \to 0$:

$$(y(\tau_1)' - y(\tau_2)')ReI_{\mathcal{P}}(x_J + iy_J) =$$

$$= (y(\tau_1)' - y(\tau_2)')\left(ReI_{\mathcal{P}\setminus\{q\}}(x_J + iy_J) - \frac{1}{r}\right) =$$

$$= -\omega(x, y(\tau_1))'_{x=\tau_1} + \omega_-(x, y(\tau_2))'_{x=\tau_2} + O(r) =$$

$$= -\frac{\partial}{\partial x}Im\left(-\ln\Gamma\left(\frac{x + iy_J}{2}\right) + \ln\Gamma\left(\frac{1 - x - iy_J}{2}\right)\right)_{x=x_J} + O(r) =$$

$$= -Im\frac{d}{ds}\left(-\ln\Gamma\left(\frac{s}{2}\right) + \ln\Gamma\left(\frac{1 - s}{2}\right)\right)_{s=x_J + iy_J} + O(r) =$$

$$= -\frac{1}{2}Im\left(-\frac{\Gamma'\left(\frac{x_J + iy_J}{2}\right)}{\Gamma\left(\frac{x_J + iy_J}{2}\right)} - \frac{\Gamma'\left(\frac{1 - x_J - iy_J}{2}\right)}{\Gamma\left(\frac{1 - x_J - iy_J}{2}\right)}\right) + O(r). \quad (25)$$

• So, for $\forall 0 < r < R_3$ in closed arcs N_2E_1 and N_1E_2 are two points of Θ_w and Θ_z , for which the equalities (15) and (22) respectively.

For $\forall s : ||s - (x_J + iy_J)|| < r_{\delta}$ derivative of function $-\ln(s(1-s)) + \sum_{\rho \in \mathcal{P}} \ln\left(1 - \frac{s}{\rho}\right)$ is continuous and equal to: $\frac{d}{ds} \left(-\ln(s(1-s)) + \sum_{\rho \in \mathcal{P}} \ln\left(1 - \frac{s}{\rho}\right)\right) = I_{\mathcal{P}}(s).$

Hence for fixed $0 < r < R_3$ from the continuity of the given above function at the point J:

 $\forall \varepsilon_r > 0, \exists \delta_{\varepsilon_r} > 0 : \forall s : ||s - (x_J + iy_J)|| < \delta_{\varepsilon_r} \text{ follows:}$ $|ReI_{\mathcal{P}}(s) - ReI_{\mathcal{P}}(x_J + iy_J)| < \varepsilon_r,$ $|ImI_{\mathcal{P}}(s) - ImI_{\mathcal{P}}(x_J + iy_J)| < \varepsilon_r.$

• Let's assign $\varepsilon_r = r^2$ then $\forall 0 < r_{\delta} < \delta_{\varepsilon_r}$ at $r \to 0$ with the condition (16) on the closed arches N_2E_1 and N_1E_2 where $f_x(\tau) = \tau$, $f_y(\tau) = y(\tau)$ and $y(\tau_1)' = O(r), y(\tau_2)' = O(r)$ it is carried out in a similar way (20):

$$\frac{d}{d\tau}Im\left(-\ln\left(f_M(\tau)(1-f_M(\tau))\right) + \sum_{\rho\in\mathcal{P}}\ln\left(1-\frac{f_M(\tau)}{\rho}\right)\right)_{\tau=\tau_1} - \frac{d}{d\tau}Im\left(-\ln\left(f_M(\tau)(1-f_M(\tau))\right) + \sum_{\rho\in\mathcal{P}}\ln\left(1-\frac{f_M(\tau)}{\rho}\right)\right)_{\tau=\tau_2} = \\ = (-y(\tau_1)'ReI_{\mathcal{P}}(\Theta_w) + ImI_{\mathcal{P}}(\Theta_w)) - \\ - (-y(\tau_2)'ReI_{\mathcal{P}}(\Theta_z) + ImI_{\mathcal{P}}(\Theta_z)) =$$

$$= -y(\tau_1)'ReI_{\mathcal{P}}(\Theta_w) + y(\tau_1)'ReI_{\mathcal{P}}(x_J + iy_J) - -y(\tau_2)'ReI_{\mathcal{P}}(x_J + iy_J) + y(\tau_2)'ReI_{\mathcal{P}}(\Theta_z) + -y(\tau_1)'ReI_{\mathcal{P}}(x_J + iy_J) + y(\tau_2)'ReI_{\mathcal{P}}(x_J + iy_J) + +ImI_{\mathcal{P}}(\Theta_w) - ImI_{\mathcal{P}}(x_J + iy_J) + +ImI_{\mathcal{P}}(x_J + iy_J) - ImI_{\mathcal{P}}(\Theta_z) =$$

$$= O(r^{3}) + O(r^{3}) - (y(\tau_{1})' - y(\tau_{2})')ReI_{\mathcal{P}}(x_{J} + iy_{J}) + O(r^{2}) + O(r^{2}) =$$
$$= Im\frac{d}{ds}\left(-\ln\Gamma\left(\frac{s}{2}\right) + \ln\Gamma\left(\frac{1-s}{2}\right)\right)_{s=x_{J}+iy_{J}} + O(r).$$
(26)

• Let's consider a difference of the equations (15) and (22) which on construction is equal 0 for $\forall 0 < r < R_3$:

$$\begin{split} \lim_{r \to 0} 0 &= \lim_{r \to 0} \left(\left(Im \ln \zeta \left(f_M(\tau) \right) - \frac{\ln \pi}{2} Im(f_M(\tau)) \right)'_{\tau = \tau_1} - \left(Im \ln \zeta \left(1 - f_M(\tau) \right) - \frac{\ln \pi}{2} Im(1 - f_M(\tau)) \right)'_{\tau = \tau_2} \right) = \\ &= \lim_{r \to 0} \left(- \left(Im \ln \Gamma \left(\frac{f_M(\tau)}{2} \right) \right)'_{\tau = \tau_1} + \left(Im \ln \Gamma \left(\frac{1 - f_M(\tau)}{2} \right) \right)'_{\tau = \tau_2} + \frac{d}{d\tau} Im \left(-\ln \left(f_M(\tau)(1 - f_M(\tau)) \right) + \sum_{\rho \in \mathcal{P}} \ln \left(1 - \frac{f_M(\tau)}{\rho} \right) \right)_{\tau = \tau_1} - \left(\frac{d}{d\tau} Im \left(-\ln \left(f_M(\tau)(1 - f_M(\tau)) \right) + \sum_{\rho \in \mathcal{P}} \ln \left(1 - \frac{f_M(\tau)}{\rho} \right) \right)_{\tau = \tau_2} \right) \end{split}$$

And then from (26) follows:

$$= \lim_{r \to 0} \left(-\left(Im \ln \Gamma\left(\frac{f_M(\tau)}{2}\right)\right)'_{\tau=\tau_1} + \left(Im \ln \Gamma\left(\frac{1-f_M(\tau)}{2}\right)\right)'_{\tau=\tau_2} + Im \frac{d}{ds} \left(-\ln \Gamma\left(\frac{s}{2}\right) + \ln \Gamma\left(\frac{1-s}{2}\right)\right)_{s=x_J+iy_J}\right) = \\ = \lim_{r \to 0} \left(-\frac{\partial}{\partial x} \left(Im \ln \Gamma\left(\frac{x+iy(\tau_1)}{2}\right)\right)_{x=\tau_1} - \\ -y(\tau_1)'\frac{\partial}{\partial y} \left(Im \ln \Gamma\left(\frac{\tau_1+iy}{2}\right)\right)_{y=y(\tau_1)} + \\ + \frac{\partial}{\partial x} \left(Im \ln \Gamma\left(\frac{1-x-iy(\tau_2)}{2}\right)\right)_{x=\tau_2} + \\ + y(\tau_2)'\frac{\partial}{\partial y} \left(Im \ln \Gamma\left(\frac{1-\tau_2-iy}{2}\right)\right)_{y=y(\tau_2)} + \\ + Im \frac{d}{ds} \left(-\ln \Gamma\left(\frac{s}{2}\right) + \ln \Gamma\left(\frac{1-s}{2}\right)\right)_{s=x_J+iy_J}\right) =$$

$$= \lim_{r \to 0} \left(-\frac{\partial}{\partial x} \left(Im \ln \Gamma \left(\frac{x + iy(\tau_1)}{2} \right) \right)_{x=\tau_1} + \frac{\partial}{\partial x} \left(Im \ln \Gamma \left(\frac{1 - x - iy(\tau_2)}{2} \right) \right)_{x=\tau_2} + Im \frac{d}{ds} \left(-\ln \Gamma \left(\frac{s}{2} \right) + \ln \Gamma \left(\frac{1 - s}{2} \right) \right)_{s=x_J + iy_J} \right) = 2Im \left(-\frac{d}{ds} \ln \Gamma \left(\frac{s}{2} \right)_{s=q} + \frac{d}{ds} \ln \Gamma \left(\frac{1 - s}{2} \right)_{s=q} \right) = Im \left(-\frac{\Gamma' \left(\frac{q}{2} \right)}{\Gamma \left(\frac{q}{2} \right)} - \frac{\Gamma' \left(\frac{1 - q}{2} \right)}{\Gamma \left(\frac{1 - q}{2} \right)} \right) = 0.$$

• Thus for the selected root q is:

$$Im\left(-\frac{\Gamma'\left(\frac{q}{2}\right)}{\Gamma\left(\frac{q}{2}\right)} - \frac{\Gamma'\left(\frac{1-q}{2}\right)}{\Gamma\left(\frac{1-q}{2}\right)}\right) = 0, \quad \forall q \in \mathcal{P}_1 \cup \mathcal{P}_2.$$
(27)

• From (6) equality (27) can be rewritten as follows:

$$\sum_{n=0}^{\infty} \left(\frac{t_q}{(2n+\sigma_q)^2 + t_q^2} - \frac{t_q}{(2n+1-\sigma_q)^2 + t_q^2} \right) = 0.$$

I.e.

$$\begin{split} \sum_{n=0}^{\infty} \frac{t_q((2n+1-\sigma_q)^2-(2n+\sigma_q)^2)}{((2n+\sigma_q)^2+t_q^2)((2n+1-\sigma_q)^2+t_q^2)} = \\ = \sum_{n=0}^{\infty} \frac{t_q(1-2\sigma_q)(4n+1)}{((2n+\sigma_q)^2+t_q^2)((2n+1-\sigma_q)^2+t_q^2)} = \\ = (1-2\sigma_q) \sum_{n=0}^{\infty} \frac{t_q(4n+1)}{((2n+\sigma_q)^2+t_q^2)((2n+1-\sigma_q)^2+t_q^2)} = 0. \end{split}$$

Sum

$$\sum_{n=0}^{\infty} \frac{t_q(4n+1)}{((2n+\sigma_q)^2 + t_q^2)((2n+1-\sigma_q)^2 + t_q^2)}$$

exists and is not equal to 0 when $t_q \neq 0$ so the equality (27) is performed exclusively at

$$\sigma_q = \frac{1}{2}.$$

So, assuming that an arbitrary nontrivial root q of zeta functions belongs to the union $\mathcal{P}_1 \cup \mathcal{P}_2$ we found that it belongs only to \mathcal{P}_2 , i.e. $\mathcal{P}_1 = \emptyset$.

And according to the fact that $\mathcal{P}_1 = \emptyset \Leftrightarrow \mathcal{P}_3 = \emptyset$ we have:

$$\mathcal{P}_3 = \mathcal{P}_1 = \varnothing, \ \mathcal{P} = \mathcal{P}_2.$$

This proves the basic statement and the assumption which had been made by Bernhard Riemann about of the real parts of the nontrivial zeros of zeta function.

REFERENCES:

- Abramowitz, M. and Stegun, I. A. (Eds.). "Polygamma Functions."§6.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 260, 1972.
- [2] Allouche, J.-P. "Series and Infinite Products related to Binary Expansions of Integers."1992.
- [3] Davenport, H. Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, 1980.
- [4] Edwards, H. M. Riemann's Zeta Function. New York: Dover, 1974.
- [5] Karatsuba, A. A. and Voronin, S. M. The Riemann Zeta-Function. Hawthorn, NY: de Gruyter, 1992.
- [6] Keiper, J. B. "Power Series Expansions of Riemann's xi Function."Math. Comput. 58, 765-773, 1992.
- [7] Knuth, D. E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1997.
- [8] Lehmer, D. H. "The Sum of Like Powers of the Zeros of the Riemann Zeta Function." Math. Comput. 50, 265-273, 1988.
- [9] Smith, D. E. A Source Book in Mathematics. New York: Dover, 1994.
- [10] Titchmarsh, E. C. The Theory of the Riemann Zeta Function, 2nd ed. New York: Clarendon Press, 1987.
- [11] Valle-Poussin C.J. De la Recherches analytiques sur la theorie des wombres partie I,II,III, Am. Soc. Sci. Bruxelles, Ser. A. - 1896-1897, t. 20-21.
- [12] Voros, A. "Spectral Functions, Special Functions and the Selberg Zeta Function." Commun. Math. Phys. 110, 439-465, 1987.