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Recently, a new measurement theory based on the truth values is proposed [37]. The results of
measurements are either 0 or 1. The measurement theory accepts a hidden variables model for a
single Pauli observable. Therefore we can introduce a classical probability space for the measure-
ment theory in this case. On the other hand, we discuss the fact that the projective measurement
theory (the results of measurements are either +1 or −1) does not meet a hidden variables model
for a single Pauli observable. Hence we cannot introduce a classical probability space for the pro-
jective measurement theory in this case. Our discussion provides new insight to formulate quantum
measurement theory, by using the measurement theory based on the truth values.

PACS numbers: 03.65.Ta (Quantum measurement theory), 03.65.Ud (Quantum non locality), 03.65.Ca (For-
malism)

I. INTRODUCTION

The projective measurement theory (cf. [1—6]) gives ac-
curate and at times remarkably accurate numerical pre-
dictions. Much experimental data has fit to the quantum
predictions for long time.

From the incompleteness argument of Einstein, Podol-
sky, and Rosen (EPR) [7], a hidden-variables interpreta-
tion of quantum mechanics has been an attractive topic
of research [3, 4]. One is the Bell-EPR theorem [8]. The
other is the no-hidden-variables theorem of Kochen and
Specker (the KS theorem) [9]. Greenberger, Horne, and
Zeilinger discover [10, 11] the so-called GHZ theorem for
four-partite GHZ state. And, the Bell-KS theorem be-
comes very simple form (see also Refs. [12—16]).

Leggett-type nonlocal hidden-variable theory [17] is ex-
perimentally investigated [18—20]. The experiments re-
port that the quantum theory does not accept Leggett-
type nonlocal hidden-variable theory. These experiments
are done in four-dimensional space (two parties) in order
to study nonlocality of hidden-variable theories. However
there are debates for the conclusions of the experiments.
See Refs. [21—23].

As for the applications of the projective measurement
theory, implementation of a quantum algorithm to solve
Deutsch’s problem [24, 25] on a nuclear magnetic res-
onance quantum computer is reported firstly [26]. Im-
plementation of the Deutsch-Jozsa algorithm on an ion-
trap quantum computer is also reported [27]. There are
several attempts to use single-photon two-qubit states
for quantum computing. Oliveira et al. implement
Deutsch’s algorithm with polarization and transverse
spatial modes of the electromagnetic field as qubits [28].
Single-photon Bell states are prepared and measured [29].
Also the decoherence-free implementation of Deutsch’s
algorithm is reported by using such single-photon and

by using two logical qubits [30]. More recently, a one-
way based experimental implementation of Deutsch’s al-
gorithm is reported [31]. In 1993, the Bernstein-Vazirani
algorithm was reported [32]. It can be considered as an
extended Deutsch-Jozsa algorithm. In 1994, Simon’s al-
gorithm was reported [33]. Implementation of a quantum
algorithm to solve the Bernstein-Vazirani parity prob-
lem without entanglement on an ensemble quantum com-
puter is reported [34]. Fiber-optics implementation of
the Deutsch-Jozsa and Bernstein-Vazirani quantum al-
gorithms with three qubits is discussed [35]. A quantum
algorithm for approximating the influences of Boolean
functions and its applications is recently reported [36].

More recently, a new measurement theory based on
the truth values is proposed [37]. The results of mea-
surements are either 0 or 1. The measurement theory
accepts a hidden variables model for a single Pauli ob-
servable. Therefore we can introduce a classical proba-
bility space for the measurement theory in this case. On
the other hand, we discuss the fact that the projective
measurement theory (the results of measurements are ei-
ther +1 or −1) does not meet a hidden variables model
for a single Pauli observable. Hence we cannot introduce
a classical probability space for the projective measure-
ment theory in this case. Our discussion provides new
insight to formulate quantum measurement theory, by
using the measurement theory based on the truth values.

II. MEASUREMENT THEORY BASED ON

THE TRUTH VALUES MEETS A HIDDEN

VARIABLES MODEL OF A SINGLE SPIN

OBSERVABLE

We discuss the new measurement theory meets a hid-
den variables model of a single spin observable. Assume
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a spin-1/2 state ρ. Let σx be a single Pauli observable.
We have a quantum expected value as

Tr[ρσx]. (1)

We derive a necessary condition for the quantum ex-
pected value for the system in a spin-1/2 state given in
(1). We have

0 ≤ (Tr[ρσx])
2 ≤ 1. (2)

It is worth noting here that we have (Tr[ρσx])
2 = 1 if ρ

is a pure state lying in the x-direction. Hence we derive
the following proposition concerning quantum mechanics
when the system is in a state lying in the x-direction

(Tr[ρσx])
2

max
= 1. (3)

(Tr[ρσx])
2

max
is the maximal possible value of the prod-

uct. It is worth noting here that we have (Tr[ρσx])
2 = 0

when the system is in a pure state lying in the z-direction.
Thus we have

(Tr[ρσx])
2

min
= 0. (4)

(Tr[ρσx])
2

min
is the minimal possible value of the product.

In short, we have

(Tr[ρσx])
2

min
= 0 and (Tr[ρσx])

2

max
= 1. (5)

In what follows, we derive the above proposition (5) as-
suming the following form:

Tr[ρσx] =

�
dλρ(λ)f(σx, λ). (6)

where λ denotes some hidden variable and f(σx, λ) is the
hidden result of measurements of the Pauli observable
σx. We assume the values of f(σx, λ) are 1 and 0 (in �/2
unit).

Let us assume a hidden variables theory of a single spin
observable based on the new measurement theory. In this
case, the quantum expected value in (1), which is the
average of the hidden results of the new measurements,
is given by

Tr[ρσx] =

�
dλρ(λ)f(σx, λ). (7)

The possible values of the hidden result f(σx, λ) are 1
and 0 (in �/2 unit). Same expected value is given by

Tr[ρσx] =

�
dλ′ρ(λ′)f(σx, λ

′), (8)

because we only change the notation as λ → λ′. Of
course, the possible values of the hidden result f(σx, λ

′)
are 1 and 0 (in �/2 unit). By using these facts, we derive a
necessary condition for the expected value for the system
in a spin-1/2 state lying in the x-direction. We derive the

possible values of the product (Tr[ρσx])
2. We have

(Tr[ρσx])
2

=

�
dλρ(λ)f(σx, λ)×

�
dλ′ρ(λ′)f(σx, λ

′)

=

�
dλρ(λ) ·

�
dλ′ρ(λ′)f(σx, λ)f(σx, λ

′)

≤

�
dλρ(λ) ·

�
dλ′ρ(λ′)|f(σx, λ)f(σx, λ

′)|

=

�
dλρ(λ) ·

�
dλ′ρ(λ′) = 1. (9)

Clearly, the above inequality can have the upper limit
since the following case is possible:

�{λ|f(σx, λ) = 1}� = �{λ′|f(σx, λ
′) = 1}�, (10)

and

�{λ|f(σx, λ) = 0}� = �{λ′|f(σx, λ
′) = 0}�. (11)

Thus we derive a proposition concerning the hidden vari-
ables theory based on the new measurement theory (in
a spin-1/2 system), that is, (Tr[ρσx])

2 ≤ 1. Hence we
derive the following proposition concerning the hidden
variables theory:

(Tr[ρσx])
2

max
= 1. (12)

We derive another necessary condition for the expected
value for the system in a pure spin-1/2 state lying in the
z-direction. We have

(Tr[ρσx])
2

=

�
dλρ(λ)f(σx, λ)×

�
dλ′ρ(λ′)f(σx, λ

′)

=

�
dλρ(λ) ·

�
dλ′ρ(λ′)f(σx, λ)f(σx, λ

′)

≥

�
dλρ(λ) ·

�
dλ′ρ(λ′)(0)

= (0)

��
dλρ(λ) ·

�
dλ′ρ(λ′)

�
= 0. (13)

Clearly, the above inequality can have the lower limit
since the following case is possible:

�{λ|f(σx, λ) = 1}� = �{λ′|f(σx, λ
′) = 0}�, (14)

and

�{λ|f(σx, λ) = 0}� = �{λ′|f(σx, λ
′) = 1}�. (15)

Thus we derive a proposition concerning the hidden vari-
ables theory based on the new measurement theory (in
a spin-1/2 system), that is, (Tr[ρσx])

2 ≥ 0. Hence we
derive the following proposition concerning the hidden
variables theory

(Tr[ρσx])
2

min
= 0. (16)

Thus from (12) and (16) we have

(Tr[ρσx])
2

min
= 0 and (Tr[ρσx])

2

max
= 1. (17)
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Clearly, we can assign the truth value “1” for two proposi-
tions (5) (concerning quantum mechanics) and (17) (con-
cerning the hidden variables theory based on the new
measurement theory), simultaneously. Therefore, the
new measurement theory meets the existence of the hid-
den variables theory of a single spin observable.

III. PROJECTIVE MEASUREMENT THEORY

DOES NOT MEET A HIDDEN VARIABLES

MODEL OF A SINGLE SPIN OBSERVABLE

In what follows, we cannot derive the proposition (5)
assuming the following form:

Tr[ρσx] =

�
dλρ(λ)f(σx, λ). (18)

where λ denotes some hidden variable and f(σx, λ) is the
hidden result of measurements of the Pauli observable σx.
We assume the values of f(σx, λ) are +1 and −1 (in �/2
unit).

Let us assume a hidden variables model based on the
projective measurement theory of a single spin observ-
able. In this case, the quantum expected value in (1),
which is the average of the hidden results of the projec-
tive measurements, is given by

Tr[ρσx] =

�
dλρ(λ)f(σx, λ). (19)

The possible values of the hidden result f(σx, λ) are +1
and −1 (in �/2 unit). Same expected value is given by

Tr[ρσx] =

�
dλ′ρ(λ′)f(σx, λ

′), (20)

because we only change the notation as λ → λ′. Of
course, the possible values of the hidden result f(σx, λ

′)
are +1 and −1 (in �/2 unit). By using these facts, we
derive a necessary condition for the expected value for
the system in a spin-1/2 state lying in the x-direction.
We derive the possible values of the product (Tr[ρσx])

2.
We have

(Tr[ρσx])
2

=

�
dλρ(λ)f(σx, λ)×

�
dλ′ρ(λ′)f(σx, λ

′)

=

�
dλρ(λ) ·

�
dλ′ρ(λ′)f(σx, λ)f(σx, λ

′)

≤

�
dλρ(λ) ·

�
dλ′ρ(λ′)|f(σx, λ)f(σx, λ

′)|

=

�
dλρ(λ) ·

�
dλ′ρ(λ′) = 1. (21)

Clearly, the above inequality can have the upper limit
since the following case is possible:

�{λ|f(σx, λ) = 1}� = �{λ′|f(σx, λ
′) = 1}�, (22)

and

�{λ|f(σx, λ) = 0}� = �{λ′|f(σx, λ
′) = 0}�. (23)

Thus we derive a proposition concerning the hidden vari-
ables theory based on the projective measurement theory
(in a spin-1/2 system), that is, (Tr[ρσx])

2 ≤ 1. Hence we
derive the following proposition concerning the hidden
variables theory

(Tr[ρσx])
2

max
= 1. (24)

We derive another necessary condition for the expected
value for the system in a pure spin-1/2 state lying in the
z-direction. We have

(Tr[ρσx])
2

=

�
dλρ(λ)f(σx, λ)×

�
dλ′ρ(λ′)f(σx, λ

′)

=

�
dλρ(λ) ·

�
dλ′ρ(λ′)f(σx, λ)f(σx, λ

′)

≥

�
dλρ(λ) ·

�
dλ′ρ(λ′)(−1)

= (−1)

��
dλρ(λ) ·

�
dλ′ρ(λ′)

�
= −1. (25)

Clearly, the above inequality can have the lower limit
since the following case is possible:

�{λ|f(σx, λ) = 1}� = �{λ′|f(σx, λ
′) = −1}�, (26)

and

�{λ|f(σx, λ) = −1}� = �{λ′|f(σx, λ
′) = 1}�. (27)

Thus we derive a proposition concerning the hidden vari-
ables theory based on the projective measurement theory
(in a spin-1/2 system), that is, (Tr[ρσx])

2 ≥ −1. Hence
we derive the following proposition concerning the hidden
variables theory

(Tr[ρσx])
2

min
= −1. (28)

Thus from (24) and (28) we have

(Tr[ρσx])
2

min
= −1 and (Tr[ρσx])

2

max
= 1. (29)

Clearly, we cannot assign the truth value “1” for two
propositions (5) (concerning quantum mechanics) and
(29) (concerning the hidden variables theory based on the
projective measurement theory), simultaneously. There-
fore, the projective measurement theory does not meet
the existence of the hidden variables theory of a single
spin observable.

IV. CONCLUSIONS

In conclusions, recently, a new measurement theory
based on the truth values has been proposed [37]. The re-
sults of measurements have been either 0 or 1. The mea-
surement theory has accepted a hidden variables model
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for a single Pauli observable. Therefore we can have in-
troduced a classical probability space for the measure-
ment theory in this case. On the other hand, we have
discussed the fact that the projective measurement the-
ory (the results of measurements are either +1 or −1)

does not meet a hidden variables model for a single Pauli
observable. Hence we cannot have introduced a classical
probability space for the projective measurement theory
in this case. Our discussion has provided new insight
to formulate quantum measurement theory, by using the
measurement theory based on the truth values.
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